12用数轴上的点表示有理数

合集下载

第二章---有理数及其运算-讲义-答案版本

第二章---有理数及其运算-讲义-答案版本

%第二章有理数及其运算1 有理数题型一具有相反意义的量及表示方法1.下列选项中,具有相反意义的量是()A.胜2局与负3局 B.6个老师与6个学生C.盈利3万元与支出3万元 D.向东行30米与向北行30米`2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果向东走5米记为+5米,那么向西走3米记为()A.﹣3米B.﹣5米C.+3米D.+5米3.某商场经理对今年上半年每月的利润作了如下记录:月盈利分别是33万元、32万元、万元、54万元,3、4月份亏损分别是万元和万元.试用正、负数表示各月的利润,并算出该商场上半年的总利润.|题型二几何图形的构成4.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.05.在下列各说法中,正确的是()A.数0的意义就是没有 B.一个有理数,不是整数就是分数C.一个有理数不是正有理数就是负有理数 D.正数和负数统称为有理数6.在﹣,2,0,,﹣9这五个数中,负有理数的个数为个;整数的个数为个.:7下列各数中,既不是整数也不是负数的是()A.B.5 C.﹣1 D.08.课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义.其中正确的个数是()A.4 B.3 C.2 D.19.(1)统称整数,(2)统称分数,(3)统称有理数.10..下列各数,哪些是整数,哪些是分数哪些是正数,哪些是负数1,﹣,,﹣789,325,0,﹣20,,1 .,11.五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+,﹣4,+,﹣,+.这五袋白糖共超过多少千克总重量是多少千克]题型三数的集合12.把下列各数填入相应的大括号内:﹣,2,0,﹣,﹣3,+27,﹣15%,﹣1正数集合{ }负数集合{ }整数集合{ }分数集合{ }非负数集合{ }—1 有理数-提升1.小青乘飞机取旅游,从放置在座位后背的一份杂志上看到这样的一张表格:飞机距离地面高度h(千米)012~3……飞机舱外面的温度t(℃)82﹣4﹣10……)此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面()千米.A.8 B.7 C.6 D.52.下列说法正确的是()A.有理数分为正数和负数B.﹣a一定表示负数C.正整数,正分数,负整数,负分数统称为有理数D.有理数包括整数和分数3.给出下列各数:+10,﹣2,0,﹣,5,﹣1,,﹣2016,,,其中,是负数的有()【A.2个B.3个C.4个D.5个4.小明和小红以旗杆为起点,小明向东走15米记作+15米,小红向西走3米记作﹣3米,小明和小红相距()米.A.18米B.19米C.20米5.﹣,0,2008,,10%,﹣23,,﹣,3,上述数中,整数有,负分数有.6.下列数﹣11、5%、﹣、、、0、﹣、﹣π、2014中,负有理数有个,负分数有个,整数有个.7.邻居张大爷上星期五买进某公司股票,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一;三四五二﹣每股涨跌+2 +﹣1。

有理数知识点

有理数知识点

有理数知识点归纳1.(重点)(1)正数:大于零的数;(2)负数:小于零的数(在正数前面加上负号“—”的数);注意:①0既不是正数也不是负数,它是正负数的分界点;②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数;③字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。

④正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

例:1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,π2、零下15℃,表示为_________,比O℃低4℃的温度是_________.3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为__ _____地,最低处为____ ___地.4、“甲比乙大-3岁”表示的意义是______________________.2.有理数的概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数的分类⑴按有理数的定义分类 ⑵按性质符号来分 正整数 正整数 整数 0 正有理数负整数 正分数有理数 有理数 0 (0不能忽视)正分数 负整数分数 负有理数负分数 负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。

例:1、下列有理数-7,10.1,-16,89,0,-0.67,315中,哪些是整数,哪些是分数,哪些是负数?2、把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123.52正整数集合 负整数集合正分数集合 负分数集合4. 规定了原点,正方向,单位长度的直线叫做数轴。

有理数应用题及答案

有理数应用题及答案

有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。

(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。

2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。

《有理数》 导学案

《有理数》 导学案

《有理数》导学案一、学习目标1、理解有理数的概念,能区分正有理数、零和负有理数。

2、掌握有理数的分类方法,会对给定的数进行分类。

3、理解数轴的概念,能正确画出数轴,能用数轴上的点表示有理数。

4、理解相反数和绝对值的概念,会求一个数的相反数和绝对值。

二、学习重难点1、重点(1)有理数的概念及其分类。

(2)数轴的概念及应用。

(3)相反数和绝对值的概念及计算。

2、难点(1)对负数概念的理解。

(2)绝对值的性质及其应用。

三、知识梳理(一)有理数的概念整数和分数统称为有理数。

整数包括正整数、零和负整数。

例如:5、0、-3 等。

分数包括正分数和负分数。

例如:1/2、-3/4 等。

(二)有理数的分类1、按定义分类:有理数分为整数和分数。

整数分为正整数、零和负整数。

分数分为正分数和负分数。

2、按性质分类:有理数分为正有理数、零和负有理数。

正有理数分为正整数和正分数。

负有理数分为负整数和负分数。

(三)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三要素:原点、正方向、单位长度。

3、数轴上的点与有理数的关系:数轴上的点与有理数一一对应,即任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的任意一个点都表示一个有理数。

(四)相反数1、定义:只有符号不同的两个数叫做互为相反数。

例如:5 和-5 互为相反数,0 的相反数是 0。

2、性质:(1)互为相反数的两个数的和为 0。

(2)在数轴上,互为相反数的两个数位于原点的两侧,且到原点的距离相等。

(五)绝对值1、定义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。

2、性质:(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。

即:当 a>0 时,|a| = a;当 a = 0 时,|a| = 0;当 a<0 时,|a| = a。

(2)绝对值具有非负性,即|a|≥0。

四、典型例题例 1:把下列各数分别填入相应的集合里:+5,-314,0,-7,12/13,-20%,-001,21,-98,314159正数集合:{________________}负数集合:{________________}整数集合:{________________}分数集合:{________________}解:正数集合:{+5,12/13,21,314159}负数集合:{-314,-7,-20%,-001,-98}整数集合:{+5,0,-7,21,-98}分数集合:{-314,12/13,-20%,-001,314159}例 2:画出数轴,并用数轴上的点表示下列各数:-3,2,0,-15,5/2解:先画出数轴,然后在数轴上找到对应的点。

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。

数轴上的点与有理数之间的关系

数轴上的点与有理数之间的关系

有理数与数轴上点的关系
有理数和数轴上的点不是一一对应。

原因如下:
数轴上包括了有理数和无理数,所以有理数与数轴不是一一对应。

正确:实数(有理数和无理数的总称)与数轴上的点一一对应。

有理数为整数(正整数、0、负整数)和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

因而有理数集的数可分为正有理数、负有理数和零。

无理数,也称为无限不循环小数,不能写作两整数之比。

若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

数轴的作用
1、数轴能形象地表示数,横向数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示。

2、比较实数大小,以0为中心,右边的数比左边的数大。

3、虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了复数平面。

4、用两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。

数轴具有数的完备性,不仅能够表示有理数和无理数,还能够表示虚数,同时还可以建立坐标系,构成了一个比较严密的数的系统。

1.2用数轴上的点表示有理数

1.2用数轴上的点表示有理数

-4
-3
-2
-1 0
1
2
3
4
拓展应用,深化认识
4.如果瓢虫先向左移动2个单位长度,再向右移动几个 单位长度才能回到自己的家?
-4
-3
-2
-1
0
1
2
3
4
拓展应用,深化认识
5.如果瓢虫第1次先向左移动1个单位长度,第2次再向右移动 2个单位长度,第3次再向左移动1个单位长度,第4次再向右 移动2个单位长度,如此第8次,瓢虫回到自己的家了吗?如 此下去,第100次瓢虫终点表示的数为__________.
请同学们观看一段视频,回答下列问题。 1、怎样的一条直线就是数轴? 2、数轴有哪些要素? 3、画数轴应注意的问题有哪些?
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳:像这样,规规定定了_原__点__、_正__方__向__、__单_位__长__度__的直线叫做数轴。
(二)应用新知,巩固提高
一般地,如果a是一个正数,则数轴上表示数a的点在原点_右__
边,距离原点_a_个单位长度;表示数-a的点在原点_左_边,距 离原点_a_个单位长度
任何一个有理数都可以用数轴上的一个点来表示。
例2:写出数轴上A,B,C,D ,E 表示的数:
EB
AC
D
-5 -4 -3 -2 -1 0 1 2 3 4 5
数轴的画法
一画(直线) 二定(原点) 三选(正方向) 四统一(单位长度)
判断下面所画数轴是否正确,并说明理由. 原点、正方向和单位长度缺一不可.
(三)应用迁移,动手实践
例1:画出数轴,试说出下列各数分别在数轴上的什么位置? 并在数轴上找到表示下列各数的点 。

有理数

有理数

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0) 在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0;比较两个负数的大小:绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

绝对值的性质:①对任何有理数a ,都有|a|≥0。

②若|a|=0,则|a|=0,反之亦然。

③若|a|=b ,则a=±b ;④对任何有理数a,都有|a|=|-a|越来越大相反数1.下列各组数,互为相反数的是()A.3和13B.3和-3 C.3和13- D.-3和13-2. -35的相反数是()A.-35 B.35 C.53 D.-533.已知a是有理数,给出下列判断:(1)a是正数;(2)-a是负数;(3)a与-a必然有一个负数;(4)a与-a互为相反数.其中正确的个数是()A.1 B.2 C.3 D.44.-(-13)是____的相反数.5.化简:- [+(-75)]=_____.6.若a-5和-7互为相反数,则a的值为____.7.已知-m=-8,-n=0,求mn的值.8.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,-12,23,-4.5,0,-3.9.如图1-2.3-1,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是多少?10.化简下列各数,并解答问题.①-(-2);②+(-15);③- [-(-4)];④-[-(+3.5)];⑤-{-[-(-5)]};⑥-{-[-(+5)]}.问:(1)当+5前面有2 017个负号时,化简后结果是多少?(2)当-5前面有2 018个负号时,化简后结果是多少?你能总结出什么规律?绝对值1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是正数,那么这个数的绝对值是它本身D.如果一个数的绝对值是它本身,那么这个数是正数2.一个数的绝对值是最小的正整数,则该数是()A.0 B.-1 C.1 D.1或-13.下列数-3,1,-2,0,最小的数是()A.-3 B.0 C.-2 D.14.12007-的相反数的绝对值是________.5.67- _______78-.(填“>”“<”或“=”) 6.若|a-1|+|b-2|=0,则a+b=_____.7.若|x|=3,|y|=5,且0<x<y,求x+y的值.8.a,b,c的大小关系如图1-2.4-1,则a b b c c aa b b c c a----+---的值是()A.-1 B.1 C.-3 D.39.观察下列每对数在数轴上的对应点之间的距离:4与-2,3与5,-2与-6,-4与3,并回答下列各题:(1)如图,在数轴上,A,B两点分别表示的数为a,b,则这两点间的距离AB=_______.(2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为_______.(3)结合数轴探求|x-2|+|x+6|的最小值是_______.10.国际乒联规定在正式比赛中采用大球,对大球的直径有严格的规定.现有6个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,检测结果如下:A.-0.15 mm B.+0.05 mm C.+0.18 mm D.-0.05 mm E.-0.13 mm F.-0.21 mm你认为应选哪一个乒乓球用于比赛呢?为什么?相反数知识点一:相反数1-5的相反数是()A.-5 B.5 C.- D.2.如图所示,下面四个点表示的数互为相反数的是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D拓展点一:多重符号的化简1.化简下列各数:-(+19),+(-0.32),+(+8),-(-6).拓展点二:相反数与数轴的综合应用2.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点AB.点BC.点CD.点D3.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是.1.4的相反数是() A.4 B.-4 C. D.-2.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()3.计算:-(-1)=() A.±1 B.-2 C.-1 D.14如果a与-3互为相反数,那么a等于()A.3 B.-3 C. D.-5.下列各组数中,互为相反数的是()A.3和 B.3和-3 C.3和- D.-3和-6.数a的相反数是()A.-a B. C.- D.a7.如图,在单位长度为1的数轴上,点A,B表示的两个数互为相反数,那么点A表示的数是()A.2B.-2C.3D.-38.如图所示,数轴上点A所表示的数的相反数是.9-(-13)是的相反数.10.在数轴上画出表示下列各数以及它们的相反数的点:-4,0.5,3.11.若a-5和-7互为相反数,求a的值.12.如图,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是什么13.化简下列各式的符号,并回答问题:(1)-(-2); (2)+; (3)-[-(-4)]; (4)-[-(+3.5)]; (5)-{-[-(-5)]}; (6)-{-[-(+5)]}. 问:①当+5前面有2 016个负号时,化简后结果是多少?②当-5前面有2 017个负号时,化简后结果是多少?你能总结出什么规律?14.已知A 为数轴上的一点,先将点A 向右移动7个单位长度,再向左移动4个单位长度,得到点B ,若A ,B 两点表示的数恰好互为相反数,求点A 表示的数.知识点一:绝对值1.如果一个有理数的绝对值等于它本身,那么这个数一定是( ) A.负数 B.负数或零 C.正数或零 D.正数2.绝对值是10的有理数是( )A.10 B.-10 C.±10 D.以上都对知识点二:有理数的大小比较3.下列各式中,正确的是( )A.-|16|>0 B.|0.2|>|-0.2| C.->- D.|-6|<04.如图,数轴上A ,B 两点分别对应实数a ,b ,则a ,b的大小关系为5.比较下列有理数的大小: (1)-( )-20; (2)-( )-.拓展点一:字母表示的数的绝对值1.若|a|=|b|,则a ,b 的关系是( ) A.a=b B.a=-b C.a=b 或a=-b D.a=0且b=0拓展点二:利用绝对值解决实际问题2.某汽车配件厂生产一批圆形的橡胶垫,从中抽取6件进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查结果如下:用绝对值的知识说明哪个零件的质量最好?1.-5的绝对值是() A. B.5 C.- D.-52.|-2|=() A.2 B.-2 C.±2 D.3.已知点M,N,P,Q在数轴上的位置如图所示,则其中表示的数的绝对值最大的点是()A.MB.NC.PD.Q4.一个数的绝对值是5,则这个数是()A.±5 B.5 C.-5 D.255.数轴上点A,B表示的数分别是5,-3,则它们之间的距离可以表示为()A.-3+5B.-3-5C.|-3+5|D.|-3-5|6.点A,B在数轴上的位置如图所示,其表示的数分别是a和b.有以下结论:①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是()A.①②B.③④C.①③D.②④7.若x为实数,则|x|-x的值一定是()A.正数 B.非正数 C.非负数 D.负数8.已知|a+2|=0,则a=. 9.|-0.3|的相反数等于.10.计算:(1)|-5|+|-10|-|-9|;(2)|-3|×|-6|-|-7|×|+2|.11.若|a|=5,|b|=1,求a和b的值.12如图,若A是实数a在数轴上对应的点,则对于a,-a,1的大小关系表示正确的是()A.a<1<-aB.a<-a<1C.1<-a<aD.-a<a<113有理数a,b,c在数轴上对应的点分别为A,B,C,其位置如图所示.试化简|a|+|b|+|c|.。

有理数的46个知识点总结

有理数的46个知识点总结

有理数的46个知识点总结一、有理数的概念。

1. 有理数的定义。

- 有理数是整数(正整数、0、负整数)和分数的统称。

例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。

- 按正负性分类:有理数可分为正有理数、0、负有理数。

正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3. 有理数与无理数的区别。

- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。

有理数可以表示为两个整数之比,无理数则不能。

二、有理数的数轴表示。

4. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

原点表示0,原点右边表示正数,原点左边表示负数。

5. 有理数在数轴上的表示。

- 每一个有理数都可以用数轴上的一个点来表示。

例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。

6. 数轴上点的移动规律。

- 向右移动为加,向左移动为减。

如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。

三、相反数。

7. 相反数的定义。

- 绝对值相等,符号相反的两个数互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

8. 相反数的性质。

- 互为相反数的两个数相加为0,即a+(-a)=0。

如5+( - 5)=0。

- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。

四、绝对值。

9. 绝对值的定义。

- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,|3| = 3,| - 2|=2,|0| = 0。

10. 绝对值的性质。

- | a|≥slant0,即绝对值是非负的。

- 若| a|=| b|,则a = b或a=-b。

有理数的概念知识点归纳及练习题

有理数的概念知识点归纳及练习题

有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量;掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小;掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义;重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义;运用数轴理解绝对值的几何意义;有理数比较大小的方法的掌握;二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数;用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;知识点二:正数和负数的概念要点诠释:1 像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大;2 像-3、-1.5、、-584等在正数前面加“-”读作负号的数,叫做负数;负数比0小;3 零既不是正数也不是负数,零是正数和负数的分界;注意:1为了强调,正数前面有时也可以加上“+”读作正号,例如:3、1.5、也可以写作+3、+1.5、+ ;2对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数;例如:-a一定是负数吗答案是不一定;因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了此时-a是正数;知识点三:有理数的有关概念要点诠释:1、有理数:整数和分数统称为有理数;注:1有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数;但是本节中的分数不包括分母是1的分数;2因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数;3“0”即不是正数,也不是负数,但“0”是整数;2、整数包括正整数、零、负整数;例如:1、2、3、0、-1、-2、-3等等;3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等;知识点四:有理数的分类要点诠释:1、按整数、分数的关系分类:2、按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数也叫做自然数,负整数和0统称为非正整数;如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a 0表明a是非负数;a 0表明a是非正数;知识点五:数轴的概念要点诠释:规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:1数轴是一条直线,可以向两端无限延伸;2数轴有三要素——原点、正方向、单位长度,三者缺一不可;3原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的通常取向右为正方向;知识点六:数轴的画法要点诠释:1、画一条直线一般画成水平的直线;2、在直线上选取一点为原点,并用这点表示零在原点下面标上“0”;3、确定正方向一般规定向右为正,用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……注:1原点的位置、单位长度的大小可根据实际情况适当选取;2确定单位长度时,根据实际情况,有时也可以每隔两个或更多的单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;知识点七:数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示出来,反过来,不能说数轴上所有的点都表示有理数;要点诠释:正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示;知识点八:利用数轴比较有理数的大小要点诠释:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0;负数都小于0;正数大于一切负数;知识点九:相反数的概念1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数;2、相反数的代数定义:只有符号不同的两个数除了符号不同以外完全相同,我们说其中一个是另一个的相反数,0的相反数是0;要点诠释:1“只”字是说仅仅是符号不同,其它部分完全相同;2相反数是数,不是量;3相反数是成对出现的;知识点十:相反数的表示方法要点诠释:一般地,数a的相反数是-a;这里a表示任意的一个数,可以是正数、负数、或者0;知识点十一:多重符号的化简把多重符号化成单一符号,如果是正号,则可以省略不写,实际上,多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,如-{---4}=4 ;若“-”个数为奇数个时,化简结果为负,如-{+--4}=-4 ;要点诠释:1、在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+-5=-5;2、在一个数的前面添上一个“-”号,就成为原数的相反数;如--3就是-3的相反数,因此,--3=3;知识点十二:绝对值的概念要点诠释:1、绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“ ”2、绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;即知识点十三:两个负数大小的比较要点诠释:因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小;比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;三、根据“两个负数,绝对值大的反而小”做出正确的判断;知识点十四:有理数大小的比较法则要点诠释:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小;三、规律方法指导有理数与小学所学的数,主要区别在于负数;有理数可以用数轴上的点来表示,任何一个有理数都能在数轴上找到表示它的位置,而是唯一确定的点;数轴上的点可以表示三类数;在数轴上表示零的点称做原点,以这个点为界,正有理数正整数、正分数用原点右边的点来表示;负有理数负整数、负分数用原点左边的点来表示,这就说明,数轴是有方向的;由于数轴规定了方向,因而在数轴上排列着的数就是有顺序的;从左到右一个数比一个数大;即数轴上表示的数,右边的总比左边的大;在数轴上,原点左、右两边距离原点等远的点所表示的有理数,它们只有符号不同,这样的一对数称为互为相反数;如果数轴上的点只考虑它到原点的距离,而不考虑它的正、负方向的数,则表示这个有理数的绝对值;经典例题透析类型一:有理数分类的问题例1:请把下列各数填入它所属于的集合的大括号里;1, 0.0708, -700, -3.88, 0,3.14159265, , .正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …}负分数集合:{ …}分数集合:{ …}思路点拨:这种关于有理数的分类问题,关键是要掌握各种数的概念;小学时所学的自然数就是正整数和零,进入中学,出现了负整数,而整数的范围就扩大到了正整数、零和负整数;有限小数和无限循环小数都可以写成分数的形式,因此,它们都是分数;解析:正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265, ;负分数:-3.88, ;分数:0.0708,3.14159265, ,-3.88,总结升华:有理数包括整数和分数,分数包含有限小数和无限循环小数,但须注意的是,不是所有的小数都是分数,比如π等;所以,我们也不能说小学学过的所有数都是有理数,还有一部分数不是有理数,那么这部分数我们将在今后学习研究;举一反三:变式1在数-100, 70.8, -7, π, -3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是______________;变式2下列四种说法,正确的是 .A所有的正数都是整数B不是正数的数一定是负数C正有理数包括整数和分数 D0不是最小的有理数类型二:正负数的概念例2:若把向北走7km记为-7km,则+10km表示的含义是A.向北走10kmB.向西走10kmC.向东走10kmD.向南走10km思路点拨:“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km.答案:D总结升华:在一对具有相反意义的量中,若先规定一个为正,则另一个就用负表示;若先规定一个为负,则另一个就用正表示;举一反三:变式1如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ . 2若购进50本书,用-50本表示,则盈利30元如何表示类型三:与数轴相关的问题例3: 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.思路点拨:到原点的距离等于5.5 的点既可以在原点左边,也可以在原点右边,因此这样的点有两个;解析:5.5或-5.5总结升华:与数轴相关的问题还有数轴的画法以及借助数轴来比较有理数的大小;例4:如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为 _________.思路点拨:数轴上的点表示的数右边的比左边的大;因此,被污染的部分的数大于-1.3,小于2.6,再考虑这一范围内的整数即可;解析:-1,0,1,2总结升华:利用数轴解决问题是数形结合数学思想的的一个重要应用,要能由“形”看出“量”的一些关系;举一反三:变式1实数在数轴上表示如图所示,则下列结论错误的是A. B. C. D.变式2一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是______.变式3数轴上点A对应的数为-3,那么与A相距1个长度的点B所对应的数是_________.类型四:与相反数相关的问题例5:1 的相反数是_________,-3与_________互为相反数2 的相反数是________, 的相反数是________,的相反数是________.30的相反数是_________.4已知那么的相反数是________.已知 ,则a的相反数是________.思路点拨:1代数意义:只有符号不同的两个数互为相反数,特别地,O的相反数是0.相反数必须成对出现,不能单独存在.例如+5和-5互为相反数,或者说+5是-5的相反数,-5是+5的相反数,而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数.2几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.3求任意一个数的相反数,只要在这个数的前面添上“一”号即可.一般地,数a的相反数是-a;这里以a表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意-a 不一定是负数.注意:当a>O时,-a<0正数的相反数是负数;当a=O时,-a=O0的相反数是0;当a<0时, a>O 负数的相反数是正数.4互为相反数的两个数的和为零,即若a与b互为相反数,则a+b=0,反之,若a+b=O,则a与b 互为相反数.5多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号.解析:1 ,3; 2m,--m+1,-m+1; 3 0 4 -9, 9总结升华:求相反数时,要紧紧抓住“只有符号不同”这一条件,即“符号不同而数字相同”的两个数;举一反三:变式11 一个数的相反数的倒数是-4,这个数是__________.2 如果与-3互为相反数,那么等于A. 3B. -3C.D.类型五:与绝对值相关的问题例6:的绝对值是________.思路点拨:1取绝对值也是一种运算,这个运算符号是“ ”,求一个数的绝对值,就是根据性质去掉绝对值符号.2绝对值具有非负性,取绝对值的结果总是正数或0.3任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5,符号是负号,绝对值是5.解析:总结升华:绝对值符号具有括号的功能,根据绝对值的意义去掉绝对值符号即可举一反三:变式1已知∣x∣=4,∣y∣=6,求代数式∣x+y∣的值.有理数的概念课后练习一、选择题:1.若一个数的绝对值大于零,这个数一定是A正数 B任意有理数 C非零数 D负数2.在有理数中,下面说法正确的是A有最小的数 B有最大的数C没有最小的数,也没有最大的数 D以上答案都不对3.下面四句话中错误的是A负分数一定是负有理数 B分数中除正分数就是负分数Ca的相反数是-a D有理数中除了正数就是负数4.下列说法正确的是A带有“-”的数是负数 B任何数的绝对值都是正C任何负数都小于它的相反数D一个数的相反数一定是负数5.一个数的绝对值一定是A正数B负数C非正数D非负数6.有理数a,b,c在数轴上的位置如图,下列结论错误的是Ac<b<a Ba-b>0Cb<0,c<0 Dc>b7、下列说法中,正确的是A、一个数不是正数就是负数;B、正有理数和负有理数组成全体有理数;C、零是最小的有理数;D、零既不是正数,也不是负数,但零是整数8、下列说法中,正确的是A、非负有理数就是正有理数;B、零表示没有,不是有理数;C、正整数和负整数统称为整数;D、整数和分数统称为有理数9、下面两个数互为相反数的是A、12和0.2 B、13和-0.333 C、-2.75和324 D、9和--910、一个数的绝对值大于它本身,那么这个数是A、正有理数B、负有理数C、零D、不可能11、a是一个有理数,那么-aA、负数;B、正数;C、零;D、以上都可能;12、已知数轴上表示-2和-101的两个点分别为A,B,那么A,B两点间的距离等于A99 B100 C102 D10313、数轴上原点及左边的点表示的数是A、负数;B、正数;C、非负数;D、非正数;14、“互为相反数”是指A、一个正数,一个负数;B、一个数前面添加上“-”号所得的数;C、数轴上原点两旁的两个点所表示的两个数;D、只有符号不同的两个数,且0的相反数是0;15、如果a+b=0,那么一定有A、a=0且b=0 ;B、a=0或b=0 ;C、a、b异号;D、a、b互为相反数;16、以下四个推理中,正确的是A、如果|a|=|b|,那么a=b;B、如果|a|=b, 那么a=b;C、如果a=-b,那么|a|=|b|;D、如果|a|=b,那么a=-b;二.填空题:1.-2.5的相反数是______________,绝对值是______________;2.最小的正整数是____________,最大的负整数是____________,绝对值最小的数是____________;3.在有理数-3,0, , ,3.1416,--7, , 中,属于负数集的是________,属于正分数集的是______________,属于整数集的是______________4.|-7|=______________, | |=π;5.化简---2002= ____________,--3.14=____________, __________;6.a的相反数是-11,那么______________;若3是x的相反数,那么x=______________, 3×-x=__________;7.相反数大于-4的正整数是__________,绝对值不大于2的整数是__________8.一个数的绝对值与它的相反数相等,这个数为__________,一个数的相反数大于它的本身, 这个数为__________;9.若两个数的绝对值相等,这两个数可能是__________;10.若一个数的相反数不小于零,那么这个数为__________;10.若|-m|=--0.3,那么m=__________;11.在数轴上点B表示数-3,那么与B点相距4个单位长度的点表示的数是__________;12、仪表的指针顺时针方向旋转90°记作-90°,那么逆时针旋转180°应记作 .13、说明下面一段话的意义:汽车先前进+50米,再前进-30米,即 ;14、数轴上表示互为相反数的两个点之间的距离是6,则这两个数为__________15、简化下列各数的符号:1--5= 3---4=16、L市在冬季的某一天最高温度为4℃,最低温度为-1℃,这天温差是℃.17、如果|x|=3.5,那么x= ;如果|-x|=|-2 1|,那么x= 18、数轴上离开原点2个单位长度的点表示的数是____________19、绝对值最小的有理数是________;绝对值等于3的数是______;绝对值等于本身的数是_______;绝对值等于相反数的数是___________数;20、绝对值不大于3的非负整数有21、观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2006个数是 ;三.解答题:1.把下列各数填在相应的大括号内:10,-0.082,-30 1/2,3.14,-2,0,-98,-3 1/2 –21/8,1,3/5整数集合: { }分数集合: { }正分数集合:{ }负分数集合:{ }非负数集合:{ }非正数集合:{ }2.把下列各数表示在数轴上,并比较他们5的大小;-3 , 1/2,0.,3,. -2.53、1写出绝对值大于3而小于8的所有有理数;4、计算:1|-15|-|-6| 2|0.24|+|-5.06|5已知|a|=3,|b|=2,求|a+b|的值;6、比较大小:114-15-;22(3--113-;3+-4.21 (4)3 --7.求下列各数的相反数和绝对值1102 20 314-43248.一个病人每天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压9、出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,这天下午他的行车里程单位:千米如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+61将最后一名乘客送到目的地时,小李距下午出车时的出发点多远2若汽车耗油量为3升/千米,这天下午小李共耗油多少升。

2.2用数轴上的点表示有理数

2.2用数轴上的点表示有理数
1
-1
0
2
-1 0
0 1
是数轴
例1 在数轴上画出表示下列各数的点:
3 ,3 1 . 2,0,1.5,1.5, 5 2
解:如图
1 3 2
-4 -3
3 -1.5 5 0
-2 -1 0
1.5 2
1 2 3 4
ቤተ መጻሕፍቲ ባይዱ
议一议:
在以厘米为单位长度的数轴上, 是否有表示1光年的点? -1纳米呢?
例2 如图,指出数轴上点A、B、C 表示的数:
原点:就是数轴上表示“0”的点,是正数和负数的分界. 原点 可以选择在直线上的任何位置,通常根据需要来定; 正方向:告诉读图者,哪边是正数,同时顺着这个方向越来越 大.画数轴直线走向可以任意确定,同样,正方向可以在直线自 由选择,但习惯上大家都画水平的直线,并把向右定为数轴的正 方向.
单位长度:告诉别人一个单位用多长线段表示,有了它数轴上的点才能 找到自己的位置.一条数轴只能规定统一的单位长度.
数形结合
小结:
数缺形时少直观,
形少数时难入微;
数形结合百般好, 隔离分家万事休。 --华罗庚
原点、正方向、单位长度一个也不能少。
C 数轴的三要素( ) A、数轴 原点 正方向 B、正方向 原点 箭头 C、正方形 原点 单位长度 D、负方向 原点 单位长度


若点A在数轴上原点的左边, 则A点表示的数是( ) B

在数轴上0与3之间(不包括0,3)还有 个数。( )
D
A、2个
B、3个
C、4个
D、无数个

一个点从数轴的原点开始,先向左 移动3个单位长度,再向右移动6个 单位长度,这个点最终所对应的数 是(C ) A.+6 D.-9 B.-3 C.+3

(必考题)七年级数学上册第一单元《有理数》-解答题专项经典练习卷(课后培优)(1)

(必考题)七年级数学上册第一单元《有理数》-解答题专项经典练习卷(课后培优)(1)

一、解答题1.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭ 解析:70 【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.7.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.8.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.9.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】 (1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--,52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元), 答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.17.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.18.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.19.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.20.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.25.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.29.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.。

专题1.1有理数的有关概念12大考点精讲精练

专题1.1有理数的有关概念12大考点精讲精练

2022-2023学年七年级数学上学期复习备考高分秘籍(苏科版)专题1.1有理数的有关概念12大考点精讲精练(知识梳理+典例剖析+变式训练)【目标导航】【知识梳理】一、正数和负数1、在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.二、有理数与无理数1、有理数的概念:整数和分数统称为有理数.2、如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.3、(1)、定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)、无理数与有理数的区别: ①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数, 比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562. ②所有的有理数都可以写成两个整数之比;而无理数不能.三、数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.四、相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“-”号结果为负,有偶数个“-”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“-”,如a的相反数是-a,m+n的相反数是-(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.五、绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(3)绝对值的非负性任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.六、科学记数法(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.【典例剖析】专题1.1有理数的有关概念12大考点精讲精练(七上苏科)【考点1】数学与生活【例1】(2022·江苏泰州·七年级期末)下列所给数据中,能反映出一瓶矿泉水重量的是().A.500毫克B.500克C.500千克D.500吨【答案】B【分析】根据生活常识,即可得到一瓶矿泉水重量.【详解】解:能反映出一瓶矿泉水重量的是500克.故选:B.【点睛】本题考查了数学常识,是基础题型,比较简单.【变式1.1】(2022·江苏·七年级专题练习)下列人或物中,质量最接近1吨的是( )A.1000枚1元硬币B.25名小学生C.5000个鸡蛋D.10辆家用轿车【答案】B【分析】质量单位有:吨、千克、克,本题中结合实际情况选择合适的计量单位即可判断出答案.例如:1名六年级的学生大约重40kg,求出25名学生的重量;1个鸡蛋大约50g,求出5000个鸡蛋的重量等等.【详解】解:1吨=1000千克,A、1元硬币1个大约6 g,1000×6 g=6000 g=6kg,故此选项不符合题意;B、六年级的学生体重大约40kg,25×40kg=1000kg,故此选项符合题意;C、1个鸡蛋大约50g,5000×50g=250000g=250kg,故此选项不符合题意;D、1辆家用轿车大约1500kg,10×1500kg=15000kg,故此选项不符合题意.故选:B.【点睛】本题考查了根据情景选择合适的计量单位,联系生活实际、计量单位,算出这些数据的大小再选择是解题的关键.【变式1.2】(2022·江苏·七年级)如图,“英寸”是电视机常用尺寸,1英寸约为大拇指第一节的长,则9英寸长相当于( )A.一支粉笔的长度B.课桌的长度C.黑板的宽度D.数学课本的宽度【答案】D【分析】根据题意可得1英寸约为大拇指第一节的长,大约有3--4厘米,即可估算求解.【详解】解:根据题意可得1英寸约为大拇指第一节的长,大约有3--4厘米,所以9英寸长相当于数学课本的宽度.故选D.【点睛】本题属于基础题,考查了基本的计算能力和估算的能力,解答时可联系生活实际去解.【变式1.3】(2022·江苏·七年级)下面四位数学家里有三位对π进行了深入的研究,其中有一位研究方向在其他方面,这位数学家是()A.祖冲之B.张衡C.刘徽D.杨辉【答案】D【分析】根据中国古代数学家对圆周率的研究逐项判断即可.【详解】A、祖冲之,他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率π”精算到小数第七位,他提出的“祖率”对数学的研究有重大贡献B、张衡,他研究过球的外切立方体积和内接立方体积,研究过球的体积,其中还定圆周率值为10的开方,这个值比较粗略,但却是中国第一个理论求得π的值C、刘徽,首创割圆术,为计算圆周率建立了严密的理论和完善的算法D、杨辉,他的数学研究重点在于改进筹算乘除计算技术,总结各种乘除捷算法故选:D.【点睛】本题考查了关于圆周率的史实,掌握相关史实是解题关键.【考点2】正数和负数【例2】(2022·江苏·七年级专题练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【变式2.1】(2022·江苏·七年级专题练习)规定:(↑30)表示零上30°C,记作+30,(↓5)表示零下5°C,记作()A.+5B.−5C.+15D.−15【答案】B【分析】先明确“正”和“负”所表示的意义,然后根据题意作答即可.【详解】解:规定:(↑30)表示零上30摄氏度,记作+30;则(↓5)表示零下5摄氏度,记作﹣5.故选:B.【点睛】本题考查了正数和负数表示相反意义,弄清题意、知道“正”和“负”所表示的意义是解答本题的关键.【变式2.2】(2022·江苏南通·七年级期末)规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A.+5B.-5C.15D.-15【答案】B【分析】根据题意,在表示相反意义的量中,规定其中一个为正,则另一个为负,即可得出答案.【详解】解:因为(→2)表示向右移动2,记作+2,∴则(←5)表示向左移动5,记作-5;故选B【点睛】本题考查正负数的概念,解题的关键在于理解相反意义的量.【变式2.3】(2022·江苏·七年级专题练习)在-3,36,+25,-0.01,0,−34中,负数的个数为()A.2个B.3个C.3个D.4个【点睛】本题考查了正数和负数,掌握正数和负数的定义是解题的关键.【考点3】有理数与无理数【例3】(2022·江苏·泰州市姜堰区南苑学校七年级)下列说法正确的是()A.整数包括正整数和负整数B.零是整数,但它既不是正数,也不是负数C.分数包括正分数、负分数和零D.一个数不是正数就是负数【答案】B【分析】根据有理数的分类依据即可判断.【详解】A.整数包括正整数、负整数和零,故该选项说法错误,不符合题意;B.零是整数,但不是正数,也不是负数,故该选项说法正确,符合题意;C.分数包括正分数、负分数,故该选项说法错误,不符合题意;D.一个数不是正数就是负数,还有零,故该选项说法错误,不符合题意.故选:B.【点睛】此题主要考查有理数的分类,解题的关键是熟知有理数的分类特点.【变式3.1】(2022·江苏·泰州市姜堰区南苑学校七年级)下列各数中,是无理数的是()A.−2B.1.6C.1.010010001D.2π【答案】D【分析】根据无理数的概念即可解答.【详解】解:A. −2是整数,不是无理数,不符合题意;B. 1.6是小数,不是无理数,不符合题意;C. 1.010010001是小数,不是无理数,不符合题意;D. 2π是无理数,符合题意.故选D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…等有这样规律的数.【变式3.2】(2022·江苏·七年级专题练习)下列数中既是分数又是负数的是( )A.5.2B.0C.﹣2D.﹣2.5【答案】D【分析】利用分数及负数的分类判断即可得到结果.【详解】解:A、5.2是分数,但不是负数,故本选项不合题意;B、0是整数,故本选项不合题意;C、﹣2是负数,但不是分数,故本选项不合题意;D、﹣2.5既是分数,又是负数,故本选项符合题意.故选:D .【点睛】此题考查分数和负数,熟练掌握分数及负数的分类是解本题的关键.【变式3.3】(2022·江苏·七年级专题练习)在-0.8、3.5、23、0、π2、3.01001001…(每两个1之间0的个数逐次增加1)中,有理数的个数共有( )A .1个B .2个C .3个D .4个【例4】(2022·江苏·泰州市姜堰区南苑学校七年级)数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上画出一条长2007cm 的线段AB ,则AB 盖住的整点个数是( )A .2005或2006B .2006或2007C .2007或2008D .无法确定【答案】C【分析】根据线段的位置分为两种:起点在整点、不在整点两种,分别得到整点的个数即可.【详解】依题意得:①当线段AB 起点在整点时覆盖2008个数(因为相邻两个数之间的距离为1cm ,可以参考图1);②当线段AB 起点不在整点,即在两个整点之间时覆盖2007个数(可以参考图2).故选:C .【点睛】本题主要考查了利用数轴确定有理数的个数,正确理解题意利用数形结合和分类讨论的思想求解是解题的关键.【变式4.1】(2022·江苏·泰州市姜堰区南苑学校七年级)如图,数轴上点M所表示的数可能是()A.1.5B.−1.6C.−2.6D.−3.4【答案】C【分析】根据数轴上的点表示数的方法得到点M表示的数大于-3且小于-2,然后分别进行判断即可.【详解】解:∵点M表示的数大于-3且小于-2.∴A、B、D三选项错误,C选项正确.故选C.【点睛】本题考查了数轴:数轴有三要素,原点左边的点表示负数,右边的点表示正数.【变式4.2】(2022·江苏·七年级专题练习)如图,数轴上点D对应的数为d,则数轴上与数﹣3d对应的点可能是( )A.点A B.点B C.点D D.点E上的位置如图所示,则a,-b,-a,b从大到小的顺序为()A.b>−a>a>−b B.−a>−b>b>aC.−b>a>−a>b D.b>a>−a>−b【答案】A【分析】根据数轴上点的位置可得a<0<b,|a|<|b|,据此求解即可.【详解】解:由题意得:a<0<b,|a|<|b|,∴−b<a<−a<b,故选A.【点睛】本题主要考查了根据数轴上点的位置比较有理数的大小,正确得到a<0<b,|a|< |b|是解题的关键.【考点5】相反数【例5】(2021·江苏·南通市东方中学七年级阶段练习)下列各对数中,互为相反数的是( )A.+(﹣2)和﹣|﹣2|B.﹣5和﹣(﹣5)C.+(﹣3)和﹣3D.﹣1和22A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)【答案】C【详解】根据相反数和绝对值的定义化简各选项中的数即可得出答案.【解答】解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.【点睛】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.【变式5.2】(2021·江苏·无锡市东林中学七年级期中)下列化简正确的是()A.+(−2)=2B.−(−3)=3C.+(+3)=−3D.−(+2)=2【答案】B【分析】根据去括号法则:括号前面是“+”时,去掉括号,括号内的数的符号不变,括号前面是“-”时,去掉括号后,括号内的数改变符号,依次进行判断即可得.【详解】解:A、+(−2)=−2,选项说法错误,不符合题意;B、−(−3)=3,选项说法正确,符合题意;C、+(+3)=3,选项说法错误,不符合题意;D、−(+2)=−2,选项说法错误,不符合题意;故选B.【点睛】本题考查了去括号法则,解题的关键是掌握去括号法则.【变式5.3】(2022·江苏南京·七年级阶段练习)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【答案】B【分析】数轴上互为相反数在原点两侧,并且到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【详解】解:表示互为相反数的点,必须要满足在数轴原点的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点的同一侧,所以可以得出答案为B.故选:B.【点睛】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.【考点6】绝对值【例6】(2022·江苏扬州·七年级期末)已知a,b的位置如图,则|b−a|−|a+b|的值为( )A.0B.-2b C.-2a D.2b-2a【答案】B【分析】结合数轴可知:b<0<a,进一步可知:b−a<0,a+b>0,再去绝对值即可.【详解】解:由图可知:b<0<a,∴b−a<0,a+b>0,∴|b−a|−|a+b|=a−b−(a+b)=a−b−a−b=−2b.故选:B【点睛】本题考查根据数轴上的点判断式子的正负,去绝对值,解题的关键是根据数轴得出b<0<a,得出b−a<0,a+b>0.【变式6.1】(2021·江苏泰州·七年级期末)−2021的绝对值是()A.2021B.−2021C.12021D.−12021【答案】A【分析】根据绝对值的定义直接求解.【详解】解:−2021是负数,绝对值是它的相反数2021,故选A.【点睛】本题考查绝对值的定义,解题的关键是掌握“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0”.【变式6.2】(2022·江苏淮安·七年级期末)下列说法正确的是()A.任何数的绝对值都是正数B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数D.只有负数的绝对值是它的相反数【答案】C【分析】数轴上表示数a的点与原点的距离是数a的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方4≠−4,但|4|=|−4|,故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C【点睛】本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.【变式6.3】(2021·江苏南通·七年级期中)现有四种说法:①−a表示负数;②若a<b<0,则|a|>|b|;③绝对值最小的有理数是0;④若|a|=|b|,则a=b,其中正确的是()A.1个B.2个C.3个D.4个【答案】B【分析】根据正数和负数的定义以及绝对值的性质求解即可.【详解】解:①当a=0时,−a是0,故①错误;②若a<b<0,则|a|>|b|,故②正确;③对值最小的有理数是0,故③正确;④若|a|=|b|,则a=b或a=−b,故④错误;其中正确的有:②③,共2个,故选:B.【点睛】本题主要考查的是正数和负数、绝对值的定义和性质,掌握正数和负数的定义、绝对值的性质以及比较有理数大小的方法是解题的关键.【考点7】绝对值的非负性【变式7】(2020·江苏镇江·七年级阶段练习)若(x﹣2)2+|y+1|=0,则x﹣y等于()A.−2B.1C.−4D.3【答案】D【分析】根据非负数的性质知(x﹣2)2=0,|y+1|=0,可求出x、y的值,然后将它们的值代入即可计算.【详解】解:∵(x﹣2)2+|y+1|=0,∴(x﹣2)2=0,|y+1|=0,∴x=2,y=-1,∴x-y=2-(-1)=3,故选:D.【点睛】本题考查了非负数的性质,属于基础题,熟练掌握偶次方和绝对值的非负性是解题的关键.【变式7.1】(2020·江苏·汇文实验初中七年级阶段练习)x是任意实数,则下列各式中一定表示正数的是()A.2020x B.x+2020C.|2020x|D.|x|+2020【答案】D【分析】根据绝对值非负数的性质,举反例对各选项分析判断利用排除法求解.【详解】解:A、2020x表示任何实数,故A错误;B、x+2020表示任何实数,故B错误;C、当x=0时,|2020x|=0,故C错误;D、|x|+2020>0,故D正确;故选:D.【点睛】本题考查了绝对值非负数的性质,是基础题,举反例验证更简便.【变式7.2】(2019·江苏·泰州市姜堰区张甸初级中学七年级期中)若|a+1|+(b−2)2=0,则(a +b )3+a 4的值为( )A .-2B .0C .2D .7【答案】C【分析】根据绝对值和偶次方的非负性确定a 、b 的值,然后代入即可完成解答.【详解】解:∵|a +1|+(b−2)2=0∴a+1=0,b-2,∴a=-1,b=2∴(a +b )3+a 4=(-1+2)3+(-1)4=13+(-1)4=1+1=2,故答案为C.【点睛】本题考查了绝对值和偶次方的非负性,掌握几个非负的代数式之和为0,则每个代数式都为0是解答本题的关键.【变式7.3】(2018·江苏南通·七年级期末)如果a+b+c =0,且|a|>|b|>|c|,则下列式子可能成立的是( )A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =0【答案】A【分析】根据题意分类讨论,综合情况解出即可.【详解】1.假设a 为负数,那么b+c 为正数;(1)b 、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数;2.假设a 为正数,那么b+c 为负数,b 、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0不成立;(2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立.故选A.【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.【考点8】有理数的大小比较【例8】(2022·江苏盐城·七年级阶段练习)下列各组数中,比较大小正确的是( )A .|﹣23|<|﹣12|B .﹣|﹣3411|=﹣(﹣3411)C .﹣|﹣8|>7D .﹣56<﹣45()A.在点−4的左边B.在点−3的右边C.和原点的距离小于3D.和原点的距离大于3【答案】D【分析】比较-π和选项中的数的大小,依据右边的数总是大于左边的数即可判断.【详解】A.−π>−4,则-π在-4的右边,故A项错误;B.−π<−3,则-π在-3的左边边,故B项错误;C.-π和原点的距离是π,π>3,故C项错误;D.-π和原点的距离是π,π>3,故D项正确;故选:D.【点睛】本题考查了实数的大小比较,理解数轴上右边数的总是大于左边的数是解题的关键.这【变式8.2】(2021·江苏·常州市金坛良常初级中学七年级阶段练习)在0.2,−2,0,−12四个有理数中,最小的数是()A.0.2B.−2C.0D.−12故选:B【点睛】本题考查了有理数的大小比较,熟知正数大于0,负数小于0,正数大于负数,两个负数比较大小,绝对值大的,反而小是解题的关键.【变式8.3】(2022·江苏宿迁·七年级期末)在﹣0.2418中,若用3去替换其中的一个非0数字,并使所得的数最大,则替换的数字是( )A.1B.2C.4D.8【答案】C【分析】根据两个负数,绝对值大的其值反而小,即可得到被替换的数字.【详解】解:∵在-0.2418中用数字3替换其中的一个非0数码后,使所得的数最大,而用数字3替换其中的一个非0数字后,绝对值最小的数为-0.2318,∴被替换的数字是4.故选:C.【点睛】本题考查了有理数大小比较,掌握有理数大小比较的法则是解答本题的关键.【考点9】科学记数法【例9】(2021·江苏·南通市八一中学七年级阶段练习)“天问一号”探测器由长征五号运载火箭直接送入地火转移轨道,飞行期间已成功完成地月合影获取、两次轨道中途修正、载荷自检等工作,截至2020年10月1日凌晨,探测器已飞行约188000000千米,飞行状态良好,把188000000用科学记数法表示,结果正确的是()A.188×106B.18.8×107C.1.88×108D.1.88×109【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:188000000这个科学记数法表示,结果正确的是1.88×108,故选:C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【变式9.1】.(2021·江苏·南京东山外国语学校七年级阶段练习)某建成的新机场一期将满足年旅客吞吐量45000000人次的需求.将45000000用科学记数法表示应为()A.4.5×107B.45×106C.0.45×108D.4.5×106【答案】A【分析】根据科学记数法的定义即可得.【详解】解:45000000=4.5×107,故选:A.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法)是解题关键.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【变式9.2】(2022·江苏南京·七年级期末)据统计,电影《长津湖》上映第16天,累计票房突破45.6亿元.将数据45.6亿用科学记数法表示为()A.45.6×108B.4.56×109C.4.56×1010D.0.456×1011【答案】B【分析】用科学计数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:45.6亿=4560000000=4.56×109,故选:B.【点睛】此题考查了用科学计数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题关键.【变式9.3】(2021·江苏南通·七年级期中)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A.0.36×105B.3.6×105C.3.6×104D.36×103【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】36000用科学记数法表示为3.6×104.故选:C.【点睛】本题考查用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.【考点10】有理数的分类(大题)【例10】(2021·江苏·南通市海门区中南中学七年级阶段练习)请你把下列各数填入表示它所在的数的集合内:,0, 4.7,|−3|4,−(−2)5,−62,|−0.5|﹣2,20%,﹣0.13,﹣734正有理数集合:{…};整数集合:{…};负分数集合:{…}.自然数集合:{…}.−12; -7; 47; -90; -3; 0.4; 0; 53负整数集合: { …};分数集合: { …}.1,13,0,﹣π,﹣6.4,﹣9,﹣26,1.010010001….正数集合:{};负数集合:{};整数集合:{};有理数集合{}.−12,﹣7,+2.8,﹣900,﹣312,99.9,0,4.【例11】(2022·江苏·七年级专题练习)现场学习:我们知道|x |=x(x >0)0(x =0)−x(x <0),所以当x >0时,x |x|=x x =1,当x <0时,x |x|=x −x =﹣1.解决问题:已知a ,b 是有理数,当ab ≠0时,求a |a|+b |b|的值.①|﹣5|+|4|_____|﹣5+4|;②|﹣6|+|3|_____|﹣6+3|;③|﹣3|+|﹣4|_____|﹣3﹣4|;④|0|+|﹣9|_____|0﹣9|;(2)归纳:|a|+|b|_____|a+b|;(3)根据上题(2)得出的结论,若|m|+|n|=7,|m+n|=1,求m的值.【答案】(1)①>;②>;③=;④=;(2)≥;(3)m的值为:±3或±4【分析】(1)分别计算出左右两边算式的结果,再进行比较大小即可;(2)根据(1)中的算式结果,分析可知|a|+|b|大于或等于|a+b|,由此填空即可;(3)分类讨论可分为m,n同号,或者m,n异号.【详解】解:(1)①∵|﹣5|+|4|=9,|﹣5+4|=1,∴|﹣5|+|4|>|﹣5+4|;②∵|﹣6|+|3|=9,|﹣6+3|=3,∴|﹣6|+|3|>|﹣6+3|;③∵|﹣3|+|﹣4|=7,|﹣3﹣4|=7,∴|﹣3|+|﹣4|=|﹣3﹣4|;④|0|+|﹣9|=9,|0﹣9|=9,∴|0|+|﹣9|=|0﹣9|,故答案为:>,>,=,=;(2)通过(1)的比较、分析、归纳:|a|+|b|≥|a+b|,故答案为:≥;(3)由(2)中结论可得:∵|m|+|n|=7,|m+n|=1,∴|m|+|n|≠|m+n|,∴m,n异号,当m为正数,n为负数时,m﹣n=7,则n=m﹣7,|m+n|=|m+m﹣7|=1,解得:m=4或3,当n为正数,m为负数时,﹣m+n=7,则n=m+7,|m+n|=|m+m+7|=1,解得:m=﹣3或﹣4,综上所述,m的值为:±3或±4.【点睛】本题考查绝对值的化简,分类讨论思想,能够熟练掌握分类讨论思想是解决本题的关键.【变式11.2】(2022·江苏·七年级专题练习)若a,b满足|a|<|b|≤4,且a,b为整数.(1)直接写出a,b的最大值;(2)当a,b为何值时,|a|+b有最小值?此时,最小值是多少?【答案】(1)a的最大值为3,b的最大值为4;(2)当a=0,b=﹣4时,|a|+b有最小值,最小值是﹣4【分析】(1)根据条件可知b的最大值是4,从而得到a的最大值是3;(2)根据绝对值的非负性知道a=0时,|a|最小,从而得到当b=﹣4时,代数式有最小值.【详解】解:(1)∵|a|<|b|≤4,且a,b为整数,∴a的最大值为3,b的最大值为4;(2)∵|a|≥0,∴当a=0时,|a|最小,∴当a=0,b=﹣4时,|a|+b有最小值,最小值是﹣4.【点睛】本题考查了绝对值的意义,表示一个数a的点到原点的距离叫做这个数的绝对值.一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,【变式11.3】(2022·江苏·七年级专题练习)我们知道:|4−(−1)|表示4与−1的差的绝对值,实际上也可以理解为4与−1两数在数轴上所对应的两点之间的距离;同理|x−3|也可以理解为x与3两数在数轴上所对应的两点之间的距离.类似地,|5+3|=|5−(−3)|表示5、−3之间的距离.一般地,点A,B两点在数轴上表示有理数a、b,那么A、B之间的距离可以表示为|a−b|.试探索:(1)若|x−3|=7,则x=___________;(2)若A,B分别为数轴上的两点,A点对应的数为−2,B点对应的数为4.折叠数轴,使得A点与B点重合,则表示−4的点与表示__________的点重合;。

复习有理数知识点及练习

复习有理数知识点及练习

有理数知识点一.正数0 负数0 正数负数即不是正数,也不是负数二._______和_______统称有理数三.有限小数和无限循环小数_____有理数,而无限不循环小数_____无理数_______ ______________ _______ _______ _______四. 有理数 _______ 有理数 ______________ _______ _______ ______________ _______五.无理数的几种常见形式判断:①含π的式子,如②构造型:如(3)无规律且不循环,如六.数轴(1)规定了______、______和______ 的______叫数轴,缺一不可。

(2)作用:用数轴上的点表示有理数;数轴____边的点表示的数总比____边的点表示的数大;两个负数比较,距离原点远的数比距离原点近的数____;数轴上求任意两点间的距离七、相反数(1)概念:不同、相同的两个数互为相反数,其中一个数叫做另一个数的相反数。

(2)代数意义:a、b互为相反数 ______(3)几何意义:数轴上表示互为相反数的两个点到原点的距离______八.绝对值1. 几何定义一般地,数轴上______ 与的______叫这个数的绝对值记作|a|。

归纳为①②②非负性:|a|≥0,若|a|+b2=0, 则a=b=.3.绝对值的性质任何一个有理数的绝对值都是,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

即(1)0的绝对值是0;绝对值是0的数是0. 即:a=0<═>|a|=0;(2)一个数的绝对值是,绝对值最小的数是.即:|a|≥0;⑶(3)任何数的绝对值都不小于原数。

即:|a|≥;(4)绝对值是相同正数的数有两个,它们互为相反数。

即:若|x|=a(a>0),则x=;(5)互为相反数的两数的绝对值。

即:|-a|=|a| 或若a+b=0,则|a|=|b|;(6)绝对值相等的两数或。

七年级数学上册 第一章 有理数 1.2 有理数 1.2.2 数轴导学案新人教版

七年级数学上册 第一章 有理数 1.2 有理数 1.2.2 数轴导学案新人教版

第一章 有理数1.2 有理数1.2.2 数轴学习目标:1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2.会正确的画出数轴,利用数轴上的点表示有理数.重点:掌握数轴的概念,理解数轴上的点和有理数的对应关系. 难点:会正确的画出数轴,利用数轴上的点表示有理数.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西方向的马路上,有一个学校,学校东50m 和西150m 处分别有一个书店和一个超市,学校西100m 和东200m 处分别有一个邮局和医院,以学校为“基准”,并把向东记作“+”,向西记作“-”,用正负数表示书店、超市、邮局、医院的位置.二、新知预习1.观察图中的温度计:(1) 温度计上有哪三类数:______________.(2) 如图,把温度计平放,零上温度居右,它像我们小学学过的一条_______. (3) 按照温度计设计的方法,请你把“知识链接”中的问题,设计一条直线来表示这几个有理数.【提示】以学校作为“0”点,用1cm 表示50m 作为单位长度,负数放在“0”点左边,正数在原点右边.类似温度计,按照如下方式处理的一条直线:(1)在直线上任取一个点表示数0,这个点叫做 ;(2)通常规定直线上从原点向右(或向上)为 ,从原点向 为负方向; (3)选取适当的长度作为 ,从直线上原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法表示-1,-2,-3,…. 这样的直线叫做数轴. 【自主归纳】规定了 、 和 的直线叫做数轴.三、自学自测下列图形中,不是数轴的是 ( )四、我的疑惑___________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分___________________________________________________________一、要点探究探究点1:数轴的概念及画法 问题1:什么是数轴?注意事项:(1)数轴是一条特殊的直线;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; (3)选取适当的长度为单位长度.做一做: 判断下面哪些是数轴,哪些不是?为什么?问题2:怎样画一条数轴?探究点2:在数轴上表示有理数思考:1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2.每个数到原点的距离是多少?由此你又有什么发现?3.如何用数轴上的点来表示分数或小数? 如:1.5 怎样表示.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片2)2.探究点1新知讲授(见幻灯片7-10)3.探究点2新知讲授(见幻灯片11-16)-2 -1 0 1 2 1 2 3 4 -1 -2 0 1 2要点归纳:任何一个有理数都可以用数轴上的一个点来表示.一般地,设a 是一个正数,则数轴上表示数a 在原点的____边,与原点的距离是____个单位长度;表示数-a 的点在原点的____边,与原点的距离是____个单位长度.典例精析例1:在所给数轴上画出表示下列各数的点.1,-5,-2.5,4 ,0注意:1.把点标在线上;2.把数标在点的上方,以便观看.例2 在下面数轴上,A ,B ,C ,D 各点分别表示什么数?例3 从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动5个单位长度到达点C ,则点C 表示的数是 .针对训练1.在数轴上,0和-1之间表示的点的个数是( )A.0个B.1个C.2个D.无数个2. 点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为 ( )A.2B.-6C.2或-6D.不同于以上二、课堂小结1.数轴的定义:规定了原点、正方向和单位长度的直线叫数轴.2.数轴的画法.3.所有的有理数都可以用数轴上的点来表示,原点右边的数是正数,原点左边的数是负数,0是正负数的分界限.21-5教学备注 配套PPT 讲授3.探究点2新知讲授 (见幻灯片11-16)1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点 2.下图中所画的数轴,正确的是( )-1210-2A 21543B-1210C -1210D3.与原点距离是2.5个单位长度的点所表示的有理数是( ) A .2.5 B .-2.5 C .±2.5 D .这个数无法确定4.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点 到表示数-8的点的距离是_______个单位长度.5.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________. 6.如图所示,根据数轴上各点的位置,写出它们所表示的数.5430-1-2-3-421FED CB A7.画出数轴并标出表示下列各数的点.-312,4,2.5,0,1,7,-5.8.如图所示,在数轴上有A 、B 、C 三个点,请回答:(1)将A 点向右移动3个单位长度,C 点向左移动5个单位长度,它们各自表示新的 什么数?(2)移动A 、B 、C 中的两个点,使得三个点表示的数相同,有几种移动方法?当堂检测教学备注 配套PPT 讲授4.课堂小结5.当堂检测 (见幻灯片17-20)。

《 1.2.2 数轴》教学设计教学反思-2023-2024学年初中数学人教版12七年级上册

《 1.2.2 数轴》教学设计教学反思-2023-2024学年初中数学人教版12七年级上册

《1.2.2 数轴》教学设计方案(第一课时)一、教学目标1. 知识与技能:学生能够理解数轴的概念,掌握数轴的基本性质。

2. 过程与方法:通过观察、思考、探究,学生能够熟练使用数轴表示有理数。

3. 情感态度与价值观:培养学生的数学思维,激发学生对数学的兴趣。

二、教学重难点1. 教学重点:引导学生理解数轴的概念,掌握数轴的基本性质及应用。

2. 教学难点:如何让学生熟练使用数轴表示有理数,形成正确的数学思维。

三、教学准备1. 准备教学用具:黑板、白板、粉笔、实物展示台;2. 制作数轴教具:可以准备一些带有刻度的直线教具,便于学生直观理解;3. 教材分析:深入分析教材,明确教学目标和重难点;4. 教学方法:采用观察、思考、探究等教学方法,引导学生逐步掌握数轴知识。

四、教学过程:1. 导入新课(5分钟)通过复习《1.2.1 有理数》的内容,引出有理数也可以用一种新的工具来表示,即数轴。

2. 讲授新课(20分钟)让学生观察教材上的数轴图片,找出共同点:原点、正方向和单位长度。

讲解数轴的三要素。

通过例题演示,让学生学会画数轴。

3. 合作探究(10分钟)出示问题,让学生以小组的形式进行讨论和探究,如:数轴上的点表示有理数的情况,有理数可以无限次地排列在数轴上吗?让学生通过实际操作和观察,得出结论。

4. 课堂练习(15分钟)通过练习题,让学生进一步掌握数轴的概念和画法,同时检查学生对知识的掌握情况。

5. 课堂小结(5分钟)让学生总结本节课所学到的知识和技能,强调数轴在数学中的应用和重要性。

四、教学过程具体内容1. 激发兴趣:通过有趣的实例和问题,激发学生的兴趣和好奇心,引导学生进入学习状态。

2. 直观展示:通过展示数轴的图片和实物,让学生直观地理解数轴的概念和特点。

3. 实例讲解:通过例题演示,让学生掌握数轴的画法和注意事项,同时引导学生自己动手画数轴。

4. 实践操作:让学生通过实际操作和观察,掌握数轴上的点和有理数的对应关系,培养学生的观察能力和动手能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.与原点距离是 2.5个单位长度的点所表示的有理数是
( C)
A.2.5
B .-2.5
C.±2.5
D .这个数无法确定
3.在数轴上表示数 6的点在原点 __右___侧,到原点的距
离是__6___个单位长度,表示数 -8的点在原点的 __左___
侧,到原点的距离是 __8___个单位长度.表示数 6的点
到表示数 -8的点的距离是 ___1_4__个单位长度.
4.在数轴上到表示 -2的点相距 8个单位长度的点表示
的数为 _-_1_0_或__6__ .
5.如图,写出数轴上点 A,B,C,D,E表示的
1,-5,-2.5,4
1 2
,0
-5 -4 -3 -2 -1 0 1 2
解:
-5
-2.5


-5 -4 -3 -2 -1
注意:
01


012
①把点标在线上;
②把数标在点的上方, 以便观看 .
345
1 42

345
任何一个有理数都可以用数轴上的一个点来表示 .
一般地,设 a是一个正数,则数轴上表示数 a 在原点的 _右___边,与原点的距离是 __a__个单位长 度;表示数 -a的点在原点的 _左___边,与原点的距 离是__a__个单位长度.
0
0
-3 -2 -1 0 1 2 3
?
?
?
试一试: 判断下面所画数轴是否正确,并说明理由 原点、正方向、单位长度一个也不能少 .
归纳总结
画数轴注意事项:
(1)原点、单位长度和正方向三要素缺一不可; (2)直线一般画水平的; (3)正方向用箭头表示,一般取从左到右; (4)取单位长度应结合实际需要,但要做到刻 度均匀.
§1.2.2
育才中学 苏海珠
1.什么叫有理数?
有 理 数 的 分 类
学习目标
1.掌握数轴的概念,理解数轴上的点和 有理数的对应关系.(重点) 2.会正确的画出数轴,利用数轴上的点 表示有理数.(难点)
情景引入1
问题: 在一条东西向的马路上,有一个汽车站牌, 汽车站牌东 3m和7.5m处有一棵柳树和一棵杨树, 汽车站西 3m和4.8m处分别有一棵槐树和一根电线 杆,试画图表示这一情境.
答:1、点P表示5和1;
2、点B是5;
3.点C是1
变式训练
点A为数轴上表示- 2的动点,当点 A沿数轴移动 4
个单位长度到点 B时,点B所表示的数为 ( C )
A.2
B. -6
C.2或-6 D.不同于以上
分析:点A可能向左移,也可能向右移,所以需 分情况讨论 .
拓展三
请同学们开动你的脑筋想一想,我们选择什 么的数轴,能标出1000,5000,-2000,-4000的 大数呢?
正方向
单位长度
定义:规定了原点、正方向、单位长度的直线叫数轴 .
考一考你: 数轴有哪些要素?
1、原点
2、正方向 3、单位长度
数轴的画法:
1.画一条水平直线,定原点 (如图),原点表示 0. 2.规定从原点向右为正方向,那么相反的方向 (从
原点向左 )则为负方向 . 3.选择适当的长度为单位长度 .
-4.8 -3
01 3
7.5
我们把正数、 0和负数用一条直线上的点表示出来 .
情景引入2
观察如图所示的温度计,回答下列
50
问题:
45
40
B
(1)点A表示多少摄氏度?点 B呢? 30 35
25
点C呢?
20
15
A
(2)温度计刻度的正负是怎样规定 10 5
的?以什么为基准 ?
0 -5
(3)每摄氏度两条刻度线之间的距 -10
. . B 左移2个
-3 -2 -1 0
右移5个
C.
12 3
拓展一
1. 书店A、冷饮店B、商店C依次坐落在一条东西
走向的商业街上。冷饮店在书店西边20米处,
商店位于书店东边100米处。小明从书店沿街
向东走了40米,接着又向西走了60米,此时小
明的位置在哪儿?
解:
60米
40米
BA
C
-120 -100 -80 -60 -40 -20 0 20 40 60 80 100
例2 在下面数轴上, A,B,C,D各点分别表示 什么数?
.D C. B.
A.
-2
-1
0
1
2
解: (1)A 点表示2; (2) B 点表示0.25; (3)C点表示-0.75; (4) D点表示-1.5
例3 从数轴上表示 -1的点出发,向左移动两个单位 长度到点 B,则点B表示的数是 -3 ,再向右移动 5个单位长度到达点 C,则点C表示的数是 2 . 解析:如图,
-15
C
-20
离有什么特点 ?
一 数轴的概念 活动: 把温度计平放,我们能从中发现什么?
-20 -10 0 10 20 30 40 50
-15 -5 5 15 25 35 45
零下
0
零上 分刻度
思考:你能借鉴温度计 ,用一条直线上的点表示有理 数吗?
? 温度计的启示
横放的温度计
原点
-2 -1 O 1 2 3
注意:对很大(或很小)的数,我们要选适当 的单 位长度确定数轴再在数轴上标出所求的大数(或 很小)的数
当堂练习
1.下列说法中正确的是( C) A. 在数轴上的点表示的数不是正数就是负数 B.数轴的长度是有限的 C. 一个有理数总可以在数轴上找到一个表示它的点 D. 所有整数都可以用数轴上的点表示,但分数就不 一定能找到表示它的点
二 在数轴上表示有理数
..
-3 -2 -1 0 1 2 3 思考: 1.观察上面数轴,哪些数在原点的左边,哪些数在原点
的右边,由此你有什么发现?
2.每个数到原点的距离是多少?由此你又有什么发现 ? 3.如何用数轴上的点来表示分数或小数? 如:1.5,- —3 怎样表示.
2
典例精析
例1 在所给数轴上画出表示下列各数的点 .
4.8 3
0
3
7.5
4.8 3
0
3
7.5
图中没有表示 出来东西方向, 那我们怎样表 示出东西方向
呢?
东西方向可以用前 面我们学过的相反 意义的量来表示.
思考:怎样简明地表示这些树、电线杆与汽车站牌的 相对位置关系(方向、距离)?
为了使表达更清楚,我们规定向东为正,把点 汽车站牌左右两边的数分别用负数和正数表示 .
答:小明在冷饮店。
拓展二
数轴上的点 P与表示有理数 3的点A距离是2ຫໍສະໝຸດ 1、试确定点 P表示的有理数?
2、将点A向右移动2个单位到 B点,点B表示 的有理 数是多少?
3、再将点 B向左移动4个单位长度到 C点,
则点C表示的有理数是多少? 4
解:
C
P
2 PB
A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
相关文档
最新文档