时变电磁场习题课
习题课 场与波
2.13 (均匀面电荷分布)求电场强度。(求两球壳间电压U)。 解: (1)r < a : E = 0
ρ s1 a 2 ρ s1a 2 a < r < b : 4πr ε 0 Er = 4πa ρ s1 , Er = , E = er 2 ε 0r ε 0r 2
2 2
r > b : 4πr 2ε 0 Er = 4π a 2 ρ s1 + b 2 ρ s 2
r
(
)
8πb 5 Q = ∫ ρdτ = ∫ b − r ⋅ 4πr dr = 0 τ 15 2b 5 2 D2 ⋅ 4πr = Q, D2 = 15r 2 2b 5 2b 5 E2 = , E 2 = er 2 15ε 0 r 15ε 0 r 2
b
(
2
2
)
2
*2.12 (两种媒质分界面)求电场强度、面电荷密度、电容。 解: D1 = D1n = D2 n = D2 = D
I 1 1 U = ∫ Er dr = − a 4πσ a b U σabU Jr = = 1 1 1 2 (b − a )r 2 − r σ a b I 4πσ 4πσab G= = = U 1 1 b−a − a b
b
3、恒定磁场求解(求磁场强度、磁通、磁场能量、电感) 2.31 求磁通。(求互感)。 解: (1)B = µ 0 I , φ = BdS = µ 0 I ∫S 2πx 2π
2.8 (电荷非均匀分布)求球内外任意一点的电场强度。 解:
(1)0 ≤ r ≤ b :
1 1 Q = ∫ ρdτ = ∫ b 2 − r 2 ⋅ 4πr 2 dr = 4π b 2 r 3 − r 5 0 τ 5 3 1 1 D1 ⋅ 4πr 2 = Q, D1 = b 2 r − r 3 3 5 1 1 1 1 1 1 E1 = b 2 r − r 3 , E1 = e r b 2 r − r 3 5 5 ε0 3 ε0 3 (2)r ≥ b :
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。
变化的电磁场习题课
1 H 2
2
1 BH 2
1
B
H
2
1
Wm
V
B 2
HdV
四、几个特殊的结论
无限长螺线管的自感
L n2V
同轴电缆的自感
L l ln R2 2 R1
圆柱形空间内均匀变化的均匀磁场产生的感应电场:
r B E感 内 2 t
E感 外
R2 2r
B t
(C)只适用于一个匝数很多,且密绕的螺线管. (D)适用于自感系数 L 一定的任意线圈.
4. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈 b,a和b相对位置固定,若线圈b中没有电流通过,则线圈b与a间 的互感系数:
(A)一定为零 (B)一定不为零 (C)可以不为零 (D)不可确定
5、一导体棒ab在均匀磁场中沿金属导轨向右作匀加速运动,磁 场方向垂直导轨所在平面。若导轨电阻忽略不计,并设铁芯磁 导率为常数,则达到稳定后在电容器的M 极板上:
三、计算类型
1、 感应电动势的计算:
求 方法小结:
(1)法 拉 第 电 磁 感 应 定 律 (闭 合 ) : d
dt
(2)动 生( 一 段 ) : ab ( 闭 合) :
b a
(v (v
B) dl B) dl
(3)感 生( 一 段 ) :
d
l
H
d
l
L1
L2
(B)
H
d
l
H
d
l
L1
L2
电磁场与电磁波课后习题及答案六章习题解答
第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。
滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。
设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。
设、、,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。
讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。
故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。
一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。
设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。
流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。
电磁场与电磁波课后习题及答案四章习题解答
如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
电磁场与微波技术第一二三章课后习题及部分答案
第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。
解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。
设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。
2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。
解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。
解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。
4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。
解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。
电磁场与电磁波 课后答案(冯恩信 著)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
时变电磁场习题课.
0
H y t
E0 sin(t z)
Hy
E0 0
cos(t
z)
H
ey
E0 0
cos(t
z)
例3、在两导体平板(z=0和z=d)之间的空气中传播的
电磁波,已知其电场强度为
E
ey E0
sin(
d
z) cos(t
kx)
式中k为常数,求:(1)磁场强度;(2)两导体表面的面电流
密度。
解:(1)磁场强度
例2 已知在无源的自由空间中,
E exE0 cos(t z)
其中E0、β为常数,求 H。
解:无源即所研究区域内没有场源电流和电荷,J =0, ρ =0。
ex ey ez
E x
y
z
0
H t
Ex 0 0
ey
E0
sin
t
z
0
t
(ex Hx
ey
H
y
ez
Hz
)
由上式可以写出:
Hx 0, Hz 0
磁场强度和坡印廷矢量
例 1、 在无源的自由空间中,已知磁场强度
H ey 2.63105 cos(3109t 10z) (A/ m)
求位移电流密度JD 。
解:无源的自由空间中J = 0, 由
D H t JD
ex ey
ez
JD
D t
H
x
y
z
ex
H y z
0 Hy(z) 0
ex 2.63104 sin(3109 t 10z) ( A / m2 )
( E) 2E H t
H E E
t
E 0
所以,电场强度满足的波动方程为
第一章 电磁现象的普遍规律习题课
第一章 电磁现象的普遍规律要求掌握§1—§6,其中重点是§3—§5。
具体要求是:1. 需要掌握的主要数学公式 (1) 矢量代数公式:cb a bc a c b a b a c a c b c b a)()()()()()(⋅-⋅=⨯⨯⨯⋅=⨯⋅=⨯⋅ (2) 梯度、散度和旋度定义及在直角坐标和球坐标中的表达式。
(3) 矢量场论公式AB B A A A A A A⨯∇⋅∇±∇==⨯∇=⨯∇⋅∇=∇⨯∇∇-⋅∇∇=⨯∇⨯∇=,可引入=若,可引入若000)(0)()(2ϕϕ(4)复合函数“三度”公式:dudf uu f ∇=∇)(du A d u u A⋅∇=⋅∇)(duA d u u A⨯∇=⨯∇)((5)有关x x r '-=的一些常用公式:为常数矢量)a a r a r rr r r r r r r r r rr()(0),0(0,10,3,333=⋅∇=⨯∇≠=⋅∇-=∇=⨯∇=⋅∇=∇(6)积分变换公式:Sd A A l d A V d A s d SLVS⋅⨯∇=⋅⋅∇=⋅⎰⎰⎰⎰)(2. 麦克斯韦方程组建立的主要实验定律和假定电磁感应定律:⎰-=B dt d εS d⋅(实质:变化磁场激发电场)电荷守恒定律:0=∂∂+⋅∇t J ρ位移电流假定:tEJ D ∂∂=0ε(实质:变化电场可以激发磁场)感生电场i E : 0,=⋅∇∂∂-=⨯∇i i E tBE3. 真空中的麦克斯韦方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇00000B E t E J B t B E ερμεμ4.介质中的电磁性质方程仅讨论均匀介质:E P 00εχ=, p m H M ρχ,==P ⋅∇-,tE J H B E D t P J M J D P m ∂∂===∂∂=⨯∇=0,,,,εμε5.介中的麦克斯韦方程组微分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇0,B D t D J H t B Eρ 积分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅⋅+=⋅⋅-=⋅⎰⎰⎰⎰⎰⎰s S LL s S d B Q S d D Sd D dtd I l d H S d B dt d l d E 0 其中M BH P E D-=+=00,με6. 洛伦兹力公式:B J E f⨯+=ρ(适用于电荷分布情况)B v e E e F⨯+=(适用于单个带电粒子)7. 电磁场的边值关系⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0)()(0)()(12121212E E n H H n B B n D D n f fασ其它有用的边值关系:12)(εσσP f E E n +=-⋅, P P P n σ-=-⋅)(12,tJ J n f ∂∂-=-⋅σ)(128. 电磁场的能量能流密度矢量H E S⨯=及其意义;均匀介质中的能量密度 )(21H B D E w⋅+⋅=;能量在场中传递,传递方向为S的方向三、 练习题(一) 单选题(在题干后的括号内填上正确选项前的序号,每题1分) 1.高斯定理→→⎰⋅E S d s=εQ中的Q 是 ( 4 )① 闭合曲面S 外的总电荷 ② 闭合曲面S 内的总电荷 ③ 闭合曲面S 外的自由电荷 ④ 闭合曲面S 内的自由电荷 2.高斯定理→→⎰⋅E S d s=0εQ中的E是 ( 3 )① 曲面S 外的电荷产生的电场强度 ② 曲面S 内的电荷产生的电场强度③ 空间所有电荷产生的电场强度 ④ 空间所有静止电荷产生的电场强度 3.下列哪一个方程不属于高斯定理 (3 )①→→⎰⋅E S d s=εQ②→→⎰⋅E S d S=V d V'⎰ρε01② ▽→⨯E =-tB∂∂→④→⋅∇E =ερ4.静电场方程▽→⨯E = 0 ( 1 )① 表明静电场的无旋性 ② 适用于变化电磁场 ③ 表明静电场的无源性 ④ 仅对场中个别点成立5.对电荷守恒定律下面哪一个说法成立 ( 3 )① 一个闭合面内总电荷保持不变 ② 仅对稳恒电流成立 ③ 对任意变化电流成立 ④ 仅对静止电荷成立6.在假定磁荷不存在的情况下,稳恒电流磁场是 ( 4 ) ① 无源无旋场 ② 有源无旋场 ③有源有旋场 ④ 无源有旋场7.下面哪一个方程适用于变化电磁场 ( 3 )① ▽→⨯B =→J 0μ ②▽→⨯E =0 ③→⋅∇B =0 ④ →⋅∇E =08.下面哪一个方程不适用于变化电磁场 ( 1 )① ▽→⨯B =→J 0μ ②▽→⨯E =-t B ∂∂→③▽•→B =0 ④ ▽•→E =0ερ 9.通过闭合曲面S 的电场强度的通量等于 ( 1 )① ⎰⋅∇VdV E )( ②⎰⋅⨯∇L l d E )( ③ ⎰⨯∇V dV E )( ④⎰⋅∇SdS E )(10.电场强度沿闭合曲线L 的环量等于 ( 2 )① ⎰⋅∇VdV E )( ② ⎰⋅⨯∇SS d E )( ③⎰⨯∇VdV E )( ④⎰⋅∇SdS E )(11.磁感应强度沿闭合曲线L 的环量等于 ( 2 )① l d B L⋅⨯∇⎰)( ② ⎰⋅⨯∇SS d B )( ③⎰⨯SS d B ④⎰⋅∇VdV B )(12. 位置矢量r的散度等于 ( 2 )①0 ②3 ③r1④r 13.位置矢量r的旋度等于 ( 1 )①0 ②3 ③r r ④3rr14.位置矢量大小r 的梯度等于 ( 3 )①0 ② r 1 ③ r r ④3rr15.)(r a⋅∇=? (其中a 为常矢量) ( 4 )① r ② 0 ③ rr④a16.r1∇=? ( 2 )① 0 ② -3rr ③ r r④ r17.⨯∇ 3rr=? ( 1 )① 0 ② r r③ r ④r118.⋅∇ 3rr=?(其中r ≠0) ( 1 )①0 ② 1 ③ r ④r119.)]sin([0r k E ⋅⋅∇ 的值为(其中0E和k 为常矢量) ( 3 )①)sin(0r k k E ⋅⋅②)cos(0r k r E ⋅⋅③)cos(0r k k E ⋅⋅④)sin(0r k r E⋅⋅20.对于感应电场下面哪一个说法正确 ( 4 )①感应电场的旋度为零 ②感应电场散度不等于零③感应电场为无源无旋场 ④感应电场由变化磁场激发21.位移电流 ( 4 )①是真实电流,按传导电流的规律激发磁场 ②与传导电流一样,激发磁场和放出焦耳热 ③与传导电流一起构成闭合环量,其散度恒不为零 ④实质是电场随时间的变化率22.麦氏方程中tBE ∂∂-=⨯∇ 的建立是依据哪一个实验定律 ( 3 )①电荷守恒定律 ②安培定律 ③电磁感应定律 ④库仑定律23.麦克斯韦方程组实际上是几个标量方程 ( 2 )①4个 ②6个 ③8个 ④10个24.从麦克斯韦方程组可知变化电场是 ( 2? )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场25.从麦克斯韦方程组可知变化磁场是 ( 3 4 )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场26.束缚电荷体密度等于 ( 3 )①0 ②P ⨯∇ ③-P⋅∇ ④)(12P P n-⋅27.束缚电荷面密度等于 ( 4 )①0 ②P ⨯∇ ③-P ⋅∇ ④-)(12P P n -⋅28.极化电流体密度等于 ( 4 )①0 ②M ⋅∇ ③M ⨯∇ ④tP∂∂29.磁化电流体密度等于 ( 1 )①M ⨯∇ ②M ⋅∇ ③tM ∂∂④)(12M M n -⋅30.对于介质中的电磁场 ( 3 )①(E,H )是基本量,(D ,B )是辅助量②(D ,B )是基本量,(E,H )是辅助量 ③(E,B )是基本量,(D ,H )是辅助量 ④(D ,H )是基本量,(E,B )是辅助量31. 电场强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续32.磁感应强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续33.玻印亭矢量S( )①只与E垂直 ②H 垂直 ③与E 和H 均垂直 ④与E 和H均不垂直(二)填空题(在题中横线上填充正确的文字或公式)1.连续分布的电荷体系)(/x ρ产生的电场强度=)(x E ___________________。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
电磁场理论课程习题答案
电磁场理论习题集信息科学技术学院第1章1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。
1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即∇ ⋅ (∇ ⨯ E ) = 01-3 试由微分形式麦克斯韦方程组,导出电流连续性方程t∂∂-=∇⋅ρJ1-4 参看1-4题图,分界面上方和下方两种媒质的介电常数分别为 ε1和 ε2,分界面两侧电场强度矢量E 与单位法向矢量n 21之间的夹角分别是 θ1和 θ2。
假设两种媒质分界面上的电荷面密度 ρS = 0,试证明:2121tan tan εεθθ=上式称为电场E 的折射定律。
1-5 参看1-4题图,分界面上方和下方两种媒质的磁导率分别为 μ1和 μ2,假设两种媒质的分界面上的表面电流密度矢量J S = 0,把图中的电场强度矢量E 换成磁感应强度矢量B 。
试证明:2121tan tan μμθθ=上式称为磁场B 的折射定律。
若 μ1为铁磁媒质,μ2为非铁磁媒质,即 μ1>>μ2 ,当 θ1 ≠ 90︒ 时,试问 θ2的近似值为何?请用文字叙述这一结果。
1-6 已知电场强度矢量的表达式为E = i sin(ω t - β z )+j 2cos(ω t - β z )通过微分形式的法拉第电磁感应定律t∂∂-=⨯∇BE ,求磁感应强度矢量B (不必写出与时间t 无关的积分常数)。
1-7 一平板电容器由两块导电圆盘组成,圆盘的半径为R ,间距为d 。
其间填充介质的介电常数 ε 。
如果电容器接有交流电源,已知流过导线的电流为I (t ) = I 0sin(ωt )。
忽略边缘效应,求电容器中的电位移矢量D 。
1-8 在空气中,交变电场E = j A sin(ω t - β z )。
试求:电位移矢量D ,磁感应强度矢量B 和磁场强度矢量H 。
1-9 设真空中的磁感应强度为)106sin(10)(83kz t e t B y -⨯=-π试求空间位移电流密度的瞬时值。
第5章-习题详解
z B w 0
α
Φ = ∫ B ⋅ dS = e y Bm sin(ωt ) ⋅ en hw
S
h y en
= Bm hw sin(ωt ) cos α dΦ = −ωBm hw cos(ωt ) cos α in = − dt
x 穿过线圈的磁通变化既 (2) 线圈以角速度 ω 旋转时, 习题 5-1 题图 有因磁场随时间变化引起的,又有因线圈转动引起 的。此时线圈面的法线 e n 是时间的函数,表示为 en (t ) , α = ωt 。因此
Φ = B (t ) ⋅ en (t ) S = e y Bm sin(ωt ) ⋅ e y hw cos α = Bm hw sin(ωt ) cos(ωt )
故
in
=−
dΦ = −ωBm hw cos 2ωt dt
5-2
长直导线载有电流 i = I m cos ωt ,其附近有一 a × b 的矩形线框,如图所示。在下列两 种情况下求线圈中的感应电动势:(1)线圈静止不动;(2)线圈以速度 v 向右方运动。
导体表面外侧的坡印廷矢量s由高斯定理可知面电荷在导体外产生的电场为当轴向通以均匀分布的恒定电流i设以电流流向为z坐标方向时导体内的电场为根据边界条件导体表面上电场的切向分量应连续即oz恒定电流i在导体外产生的磁场为521在球坐标系下已知真空中时变电磁场的电场强度为cossin
第 5 章 时变电磁场
5-1
C/ m 2
10 4 cos(ωt − kz ) ,电缆的内外导体之间填充了理想 r 介质,介质参数为 ε r = 2, µ r = 1 。求:理想介质中的电场强度 E 和磁场强度 H 。
在无源区域,已知电磁场的电场强度 E = e x 0.1sin(6.28 ×109 t − 20.9 z ) V/m,求空间任一 点的磁场强度 H 和磁感应强度 B。
谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】
2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37
时变电磁场习题讲解课件
例5.1 复数形式和瞬时值形式的转化 例5.2 边界条件 例5.3 坡印廷矢量的瞬时值和复数形式
第五章 时变电磁场
例5.1 将下列场矢量由复数形式写成瞬时值 形式,或作相反的变化。 (1) (2) (3)
第五章 时变电磁场
解:(1)题为复数形式,其瞬时值形式为 (2)题为复数形式,其瞬时值形式为
第五章 时变电磁场
解: 由麦克斯韦第二方程有
从而有
第五章 时变电磁场
电场和磁场的瞬时值分别为
坡印亭矢量的瞬时值为
第五章 时变电磁场
平均坡印亭矢量
(3)证明在z=0处磁场满足边界条件Leabharlann xz区域II
区域I
y
第五章 时变电磁场
解:(1)边界z=0处
常数A=80 (2)
第五章 时变电磁场
(2)
第五章 时变电磁场
同理 (3)证明在z=0处磁场满足边界条件
第五章 时变电磁场
例5.3 已知无源的自由空间中,时变电磁场 的电场强度复矢量
式中k, E0为常数,求 (1)磁场强度复矢量; (2)坡印亭矢量的瞬时值; (3)坡印亭矢量时间平均值;
第五章 时变电磁场
(3)题为瞬时值形式,也可以写作 复数形式为
第五章 时变电磁场
例5.2 设区域I在(z<0)的媒质参数εr1=1,µr1=1, σ1=0; 区域II在(z>0)的媒质参数εr2=5,µr2=2, σ2=0。区域I 中的电场强度为
区域2中的电场强度为
求:(1)常数A;
(2)两区域中的磁场强度;
《电磁场与电磁波》课后习题解答(第五章)
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
电磁场与电磁波课后习题及答案五章习题解答
五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。
解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。
将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
习题课 电磁场
J
2 B1 dl B1 2 r 0 r J
1 B1 0 rJ 2
磁介质
R2
I
导体
R1
解:在以圆柱轴线为对称轴的圆周上, 各处磁场强度大小相等且沿圆周切线方向。 应用H的安培环路定理
H dl 2 rH I 0
L
R2
I
磁介质 导体
R1
在导体内 r R1
r2 r2 I0 I R2 I R2 1 1
r 2 rH I 2 (r R1 ), R1
I
O
L
方向垂直于圆电流和环路 L 所在平面, 方向向里。故A后半部分错,B对。
10.在一载流螺线管外, 做一平面圆回路 L , I 且其平面垂直于螺线管的轴, 圆心在轴上。 B dl 则环路积分 L 等于多少?
B dl 0 有人说,
I
L
, L 有人根据安培环路定理认为 B dl 0 I , L 究竟哪种说法 正确? 答:密绕的无限长螺线管,常用紧密排列的封闭 圆电流组来近似,因而管内 B 0nI ,管外 B 0 。 所以,紧密排列的封闭圆电流组产生的磁场中, 在管外绕一周,积分
例2.四条平行的无限长直导线, 垂直通过边长为 a 20cm 正方形顶点, 每条导线中的电流都是
I 20 A,这四条导线
]。
在正方形中心点 O 产生的磁感应强度为[ A. B 0.8 104 T B. B 1.6 104 T C.
B0
a
O
D. B 0.4 104 T
I
I
dB
y
dI
I
I I dI Rd d R
R
电磁场与电磁波课后习题及答案四章习题解答
电磁场与电磁波课后习题及答案四章习题解答(共20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2四章习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。
解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a aππ==⎰ 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩, 故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。
上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。
设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。
题图3解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==② 2(,)0()x y x ϕ=→∞③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩ 根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x b n n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b bππππ∞-=+∑ 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时变电磁场习题课
1.无源真空中,已知时变电磁场的磁场强度(,)H r t 为;12(,)sin(4)cos()cos(4)sin() /x z H r t e A x t y e A x t y A m ωβωβ=-+-,其中A 1、A 2为常数,求位移电流密度J d 。
2.在均匀导电媒质(介电常数ε,磁导率μ,电导率γ)中,若忽略位移电流,证明:电场强度E 和磁场强度H 满足微分方程为:
22E E t H H t μγμγ∂⎧∇=⎪⎪∂⎨∂⎪∇=⎪∂⎩
3.如图所示,一尺寸为a b ⨯的矩形线框与无限长直导线共面:
(1)若长直导线中载有电流m sin i I t ω=,求矩形线框中感应电动势的大小。
(2)求两导体的互感系数。
(3)若长直导线不载电流,而矩形线框中载有电流m sin i I t ω=,那么长直导线上的感应电动势为多少?
4.如图所示,一个尺寸为a b ⨯的矩形线框位于载有反向电流i I t =m cos ω的平行双导线之间
并与其共面,求线框中的感应电动势e 。
5.在线性各向同性的无损耗均匀媒质中,写出用E 和H 表示的无源麦克斯韦方程组的微分
形式,并由此推导出E 和H 所满足的波动方程,媒质的介电常数为ε,磁导率为μ,电导率为零。
i
6.球形电容器的内、外半径分别为R1、R2,电极间的介质为空气。
设电极间外加缓变电压
m t
u U eτ-
=,τ为常数。
(1)求内外导体之间的电场强度E;(2)求电容器的位移电流
d
i。