第26讲 解三角形【教师版】

合集下载

2019-2020年九年级数学上册第26章解直角三角形26.1锐角三角形第1课时正切导学课件新版冀教版

2019-2020年九年级数学上册第26章解直角三角形26.1锐角三角形第1课时正切导学课件新版冀教版

2019/7/19
最新中小学教学课件
thank
you!
2019/7/19
最新中小学教学课件
第1课时 正切
目标二 能进行含30°,45°,60°角的正切值的计算
例3 [教材补充例题]计算: (1)(tan60°-tan30° )2; (2)3tan30°+ 2tan45°-(1-tan60°)2.

解:(1)(tan60°-tan30°)2=

3-332=2332=43.
3
___4_____.
[解析] 在Rt△ABC与Rt△BCD中,
∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.∴tan∠BCD=tan∠A=ABCC=68=34.
故答案为34.
第1课时 正切
[归纳总结]转化法求角的正切值 如果某个角在直角三角形中,但不易求出它的正切值时,那 可以通过等角关系,将其转化为容易求解的角的正切值.
解 : 如 图 , ∵ tanA= B AC C= 1 2, 设BC= x, 则AC= 2x.
由 勾 股 定 理 , 得AB=5x= 5, ∴ x=5, ∴ BC=5, AC= 2 5.
第1课时 正切
[归纳总结]在解决利用锐角的正切值求三角形的边长的问题 首先要准确画出符合要求的直角三角形,然后根据正切的定 确列式,结合方程思想和勾股定理进行求解.
第1课时 正切
总结反思
小结 知识点一 正切的定义
在Rt△ABC中,∠C=90°,∠A的对边与邻边的比 叫做∠A的正切,记作tanA,即tanA=∠ ∠AA的 的对 邻边 边.
第1课时 正切
[点拨](1)锐角的正切是一个比值,没有单位,其大小与所在的直 三角形的大小无关,只与锐角的大小有关;(2)锐角的正切值随着

【中考备战策略】2014中考数学(人教版)总复习课件:26解直角三角形及应用

【中考备战策略】2014中考数学(人教版)总复习课件:26解直角三角形及应用

4.方位角:从指北方向线按顺时针方向转到目标 方向线所成的角叫做方位角.
考点一
解直角三角形
例 1(2013· 上海)如图,在△ABC 中,AB=AC,BC 3 =8, tan C= ,如果将△ABC 沿直线 l 翻折后,点 B 落 2 在边 AC 的中点处, 直线 l 与边 BC 交于点 D, 那么 BD 的长为________.
2 2
3.解直角三角形的类型 已知条件 两直角边 (如 a,b) 解 法
a 由 tan A=b, 求∠A; ∠B =90° -∠A; c= a2+b2 a 由 sin A=c , 求∠A; ∠B =90° -∠A; b= c2-a2
斜边、一直 角边(如,b) 一锐角与对 边(如∠A,a)
考点二
解直角三角形的应用
1.仰角、俯角:如图①,在测量时,视线与水平 线所成的角中, 视线在水平线上方的角叫做仰角, 在水 平线下方的角叫做俯角.
2.坡度(坡比)、坡角:如图②,坡面的高度 h 和 水平距离 l 的比叫做坡度(或坡比),即 i=tan α= h ,坡面与水平面的夹角 α 叫做坡角. l
考点三 锐角三角函数的应用 例 3 (2013· 天 津 ) 天塔是天 津市的标 志性建筑 之 一.某校数学兴趣小组要测量天塔的高度.如图,
如图,他们在点 A 处测得天塔的最高点 C 的仰角 为 45° ,再往天塔方向前进至点 B 处测得天塔的最高点 C 的仰角为 54° ,AB=112 m.根据这个兴趣小组测得 的数据,计算天塔的高度 CD.(tan 36° ≈0.73,结果保留 整数) 【点拨】本题考查锐角三角函数的应用,仰角、俯 角问题,是常见的类型.


∠B=90° -∠A; b a=b· tan A;c= cos A ∠B=90° -∠A; a a b= ;c= tan A sin A

冀教版九年级上册数学教学课件(第26章 解直角三角形)

冀教版九年级上册数学教学课件(第26章 解直角三角形)

12
解:由勾股定理
2 2 2
B
2
13
A
BC 5 sin A BC AB AC 13 12 5 AB 13 AC 12 BC 5 cos A tan A AB 13 AC 12 BC 5 tan B AC 12 cos B BC 5 AB 13
B
(2)在Rt△ABC中, 求sinA就 是要确定∠A 的对边与斜边 的比;求sinB 就是要确定 ∠B的对边与 斜边的比
BC 5 sin A AB 13
AC AB2 BC2 132 52 12
3
A 4 C
B
5 13 A
sin B
AC 12 AB 13
C
二 余弦
学习目标
1.理解并掌握正弦的定义,会求一个角的正弦值.(重点)
2.理解并掌握余弦的定义,会求一个角的余弦值. (重点)
3.会推导特殊角的正弦和余弦值,并熟记这些特殊值.(难点

导入新课
观察与思考 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡 铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行 喷灌.现测得斜坡与水平面所成角的度数是30°,为使出 水口的高度为35m,那么需要准备多长的水管?
1.复习并巩固锐角三角形函数的相关知识. 2.学会利用计算器求三角函数值并进行相关计算. (重点) 3.学会利用计算器根据三角函数值求锐角度数并计算.(难点)
导入新课
回顾与思考
30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角α
三角函数
30°
1 2
45°
2 2
60°
3 2
sin α

冀教版九年级上册数学第26章 解直角三角形 【教学设计】 用解直角三角形解方位角的应用

冀教版九年级上册数学第26章  解直角三角形 【教学设计】 用解直角三角形解方位角的应用

用解直角三角形解方位角的应用【知识与技能】进一步掌握用解直角三角形的知识解决实际问题的方法,体会方位角的含义及其所代表的实际意义,能用它们进行有关的计算.【过程与方法】通过实际问题的求解,总结出用解直角三角形的知识解决实际问题的一般过程,增强分析问题和解决问题的能力.【情感态度】渗透数形结合的思想方法,增强学生的数学应用意识和能力.【教学重点】用三角函数有关知识解决方位角问题.【教学难点】学会准确分析问题,并将实际问题转化为数学模型.一、复习回顾,新知导引方位角的意义.【教学说明】教师提出问题顾,为后继学习作好准备.二、典例精析,掌握新知例如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B 处.这时,海轮所在的B 处距离灯塔P 有多远 (结果取整数)?分析与解 易知P 点正东方向与AC 具有垂直关系,即图中PC 丄AB ,若记垂足为C ,则图中出现了两个直角三角形APC 和直角三角形BPC.而在Rt △APC 中,知AP=80,∠APC=90°-65°=25°,故可求出线段PC 的长,即由AP PC =∠APC cos ,得PC=AP · cos25°=80·cos25°≈72.505,因此在Rt △BPC 中,由PB PC PB =∠C cos ,得,13056cos 505.7256cos ≈︒=︒=PC PB 从而可得知海轮在B 处时距离灯塔P 约130海里.【教学说明】本例的设计较上节课所学过的应用问题不同之处在于用其中一个直角三角形中所获得的结论来作为另一个直角三角形的条件而获得问题的解答,这正是学生感到困难的地方,因而教师应作为引导,帮助学生进行观察思考.三、师生互动,课堂小结问题 通过学习用解直角三角形知识解决实际问题过程中,你有哪些收获?【教学说明】师生共同探索,完善知识体系.1.布置作业:从教材习题中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应首先认知“方位角” 及其所代表的实际意义,然后结合解直角三角形的有关知识加以论证,层层展开,步步深入.。

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

九年级数学上册 第26章 解直角三角形 26.3 解直角三角形导学课件

九年级数学上册 第26章 解直角三角形 26.3 解直角三角形导学课件
第八页,共十三页。
26.3 解直角三角形
[归纳总结]在非直角三角形中求解(qiú jiě)长度或角度的方法
对于在非直角三角形中求解长度或角度的问题,通常作高构造直角三 角形,运用解直角三角形的知识来完成,这一过程可概括为“化斜为 直”.
2021/12/12
第九页,共十三页。
26.3 解直角三角形
第二十六章 解直角三角形
2021/12/12
第一页,共十三页。
第二十六章 解直角三角形
2021/12/12
26.3 解直角三角形
知识目标 目标突破 总结反思
第二页,共十三页。
26.3 解直角三角形
知识目标
1.通过梳理、归纳直角三角形中三条边、两锐角、边角之间的关 系,会选择恰当的关系式解直角三角形.
∵ sinA= ac, cosA= bc,
∴ a= c· sinA= 5sin36° ≈ 2.94, b= c· cosA= 5cos36° ≈ 4.05.
∴ ∠ B= 54° , a≈ 2.94, b≈ 4.05.
2021/12/12
第五页,共十三页。
26.3 解直角三角形
[归纳总结]解直角三角形的四种(sìzhǒnɡ)基本类型和解法 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边, 解Rt△ABC时通常有以下几种类型:
第六页,共十三页。
26.3 解直角三角形
目标二 会求非直角三角形的边长或角度
例2 [教材补充例题]如图26-3-2,在△ABC 中,AB= 10,AC=14,∠B=60°,求BC的长.
[解 析 ] 过点 A 作 AD⊥ BC 于 点 D.可 先 由∠ B= 60°,
AD⊥BC,AB=10,求得 BD=5,AD=5 3,进而

2023-2024学年九年级数学上册第26章解直角三角形全章综合检测上课课件新版冀教版

2023-2024学年九年级数学上册第26章解直角三角形全章综合检测上课课件新版冀教版

答案
17. [2022邢台期中]如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距B码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距B码头30 海里的E处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)
答案
10.A 如图,过点A作BC的平行线AG,过点E作EH⊥AG于点H,则∠EHG=∠HEF=90°,∵∠AEF=143°, ∴∠AEH=∠AEF-∠HEF=53°,∴∠EAH=37°.在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2 m, ∴EH=AEsin∠EAH≈1.2×0.60=0.72(m).∵AB=1.2 m,∴AB+EH≈1.2+0.72=1.92≈1.9(m).
全章综合检测
答案
答案
答案
答案Biblioteka 答案答案答案
答案
答案
10. [2021长沙雨花区调研]某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两 段的连接点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其 中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2 m,那么适合该地下车库的车辆限高标志牌为(参考数据:sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75) ( )
答案
12. [2022南京溧水区期中]如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC
是锐角三角形时,BC的取值范围是
.
答案

高中数学 正余弦定理解三角形 教师版

高中数学 正余弦定理解三角形 教师版

【教师备案】在初中的时候,我们就学过解直角三角形,解直角三角形是怎么回事呢?在直角三角形中,除了告诉我们直角外,还有5个要素,我们发现,如果解这个三角形,把要素都求出来,必须要知道至少2个要素,当然不能为2个角,换言之,解直角三角形就是知二求三的过程.当然,在我们学习了任意角的三角函数之后,我们的视野不能这么小,如果给我们一个一般的三角形,那我们应该如何解这个三角形呢?我们应该至少要知道几个量?我们先来回顾一下初中边和角相关的东西,我们在初中学过尺规作图,而且学过三角形全等的证明(SSS SAS ASA AAS ,,,),只要给出上述条件我们就能把三角形确定,也就是全等. 那么,为什么我们知道2条边1个夹角就能求出其他要素呢?而知道两条边和一边的对角就无法证明三角形全等呢?三角形的边和角之间存在什么关系呢?尺规作图毕竟是定性的感受,在高中阶段,我们可以给出一个严格的证明,就是今天我们要讲的正余弦定理.正余弦定理的本质就是构造边与角之间的关系,由角就可以求出边,由边就可以求出角.下面我们就先来介绍正弦定理.知识切片我会解三角形你会么?在ABC △中的三个内角A ,B ,C 的对边分别用a b c ,,表示: 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即sin sin sin a b cA B C==. 【教师备案】 正弦定理的推导由三角形中的线段关系或者由三角形的外接圆可以直接得到,且2sin sin sin a b cR A B C ===,其中R 为ABC △的外接圆的半径.建议老师用三角形的外接圆给学生证明,因为板块1.4中讲三角形面积的时候还会用到三角形的外接圆,所以不如这时给学生讲了.利用三角形中的线段关系证明正弦定理:①在R t ABC △中(如图),有sin sin a bA B c c==,,因此sin sin a b c A B ==,又因为sin 1C =,所以sin sin sin a b cA B C== ②在锐角ABC △中(如图),作CD AB ⊥于点D ,有sin CDA b =,即sin CD b A =;sin CDB a=,即sin CD a B =,因此 sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a c A C=,因此sin sin sin a b cA B C== ③在钝角ABC △中(如图),作CD AB ⊥,交AB 的延长线于点D ,则sin CDA b =,即sin CD b A =;()sin 180sin CDB B a =-=,即sin CD a B =,因此sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a cA C=,因此sin sin sin a b cA B C== 利用平面几何知识证明正弦定理:如图所示,设O 为ABC △的外接圆的圆心,连BO 并延长交O 于A ',连A C ',则A A '= 或πA A '=-,∴sin sin 2BC a A A A B R '===',即2sin aR A =,同理可证2sin sin b c R B C ==,故有2sin sin sin a b cR A B C=== 当ABC △是钝角三角形时,类似地得出上述结论. 利用向量知识证明正弦定理:①当ABC △是锐角三角形时,过A 点作单位向量i 垂直于AB , 如图,∵AC AB BC =+, ∴()i AC i AB BC i AB i BC i BC ⋅=⋅+=⋅+⋅=⋅, ∴()()cos 90cos 90b A a B -=-,得sin sin b A a B =,1.1正弦定理与其在解三角形中的应用知识点睛iCAc b a DCB A c b aDCB AC B Ac bOA 'C A得sin sin a bA B= ②当ABC △为钝角三角形时,类似地得出上述结论2.利用正弦定理解三角形⑴解三角形:三角形的三个内角和它们的对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.⑵利用正弦定理可解下列两类型的三角形:①已知三角形的任意两个角与一边,求其它两边和另一角;【教师备案】有了正弦定理之后,我们可以简单的看出,任意的两个角与一边相当于AAS 和ASA 的条件,可以确定所有的角,然后可以确定所有的边,因此,三角形也随之确定.②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角.【教师备案】1.已知三角形的两边和一边的对角,由正弦定理可以求得另一边的对角的正弦值,但是解三角形时,因为在(0,π)内,互补的角的正弦值相等,所以求得另一边所对的角的正弦值之后,可能对应有一个角或两个角,因此无法确定三角形的形状,这就是为什么SSA 无法证明三角形全等的原因.2.利用正弦定理证明三角形中“大边对大角”的结论:①当ABC △为锐角三角形时,若a b >,则sin sin A B >,又π02A B ⎛⎫∈ ⎪⎝⎭,,,正弦函数在此区间内单调递增,故A B >;②当ABC △为钝角三角形时,若A 为钝角,则由πA B +<得,πB A <-,又ππ02A B ⎛⎫-∈ ⎪⎝⎭,,,故由正弦函数的单调性知:()sin sin πsin B A A <-=,从而由正弦定理知:b a <.对直角三角形,此结论显然成立,故综上知,在任意三角形中,均有大边对大角.3.此时,到底取一个角还是取两个角,关键保持一个原则“大边对大角”.具体讨论如下:已知,a b 和角A ,若B 为钝角或直角,则C 至多有一个解; 若B 为锐角,得分情况讨论,如图:无解的情况例如:3460b c B ===︒,,,求C . 由sin sin b c B C=sin 4sin 60sin 13c B C b ︒⇒==>, ∴C 无解,从而满足此条件的三角形不存在.这就是sin c B b >的情况.【教师备案】在讲利用正弦定理解三角形时,对于边角互化和利用边角互化判断三角形形状的题型建议放到同步去讲,本板块只讲利用正弦定理解两种类型三角形,在讲完“已知两角和任一边解三角形”后就可以让学生做例1;在讲“已知两边和其中一边的对角解三角形”时一定要注意三角形的多解问题,具体的多解见考点2的【教师备案】,讲完多解问题后就可以让学生做例2的铺垫以及例2.b sin A<a<b , 两解一解考点1:已知两角和任一边解三角形【例1】 已知两角和任一边解三角形⑴ 已知ABC △中,a b c ,,分别是A B C 、、的对边,3c =,60A =︒,45C =︒, 则a =_______.⑵在ABC △中,30B =︒,45C =︒,1c =,则b =_______;三角形的外接圆半径R =_______. ⑶在ABC △中,已知8a =,60B =,75C =,则b =_______. 【解析】⑴322 ⑵22;22已知30B =,45C =,1c =,由正弦定理得:2sin sin b cR B C==, 所以sin 1sin 302sin sin 452c B b C ⋅===,1122sin sin 4522c R C ====,22R =⑶46由60B =,75C =,知45A =,再由正弦定理有846sin 45sin 60bb =⇒=考点2:已知两边和其中一边的对角解三角形【铺垫】根据下列条件解三角形:①6031A a b ===,,;②3012A a b ===,,;③30610A a c ===,,; ④150105A a c ===,,,其中有唯一解的个数为( ) A .1 B .2 C .3 D .4 【解析】C ①3sin 32b A =<,又31>∵,∴有唯一解;②sin 2sin301b A ==,∴有唯一解;③sin 10sin305610c A ==<<,∴有两解;④有唯一解.【例2】 已知两边和一边对角解三角形⑴在ABC △中,已知4522A a b ===,,,则B =_______.⑵已知ABC △中,a b c ,,分别是A B C 、、的对边,222345a b A ===︒,,, 则B =_______.⑶已知ABC △,三个内角A B C ,,的对边分别记为a b c ,,,若245c x b B ===︒,,,且这个 三角形有两解,求x 的取值范围. ⑷(目标班专用)(2010山东卷理数)在ABC △中,角A B C 、、所对的边分别为a b c 、、,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .【解析】⑴30 根据正弦定理得:sin sin a b A B =,∴sin 2sin 451sin 22b A B a ⋅===,b a <∵,B A <∴, B ∴为锐角,即30B = ⑵60或120经典精讲由正弦定理得,sin 23sin 453sin 222b A B a ===,∵sin b A a b <<,∴这个三角形有两组解,即60B =或120. ⑶ 由正弦定理可得:sin sin c b C B =,解得:2sin 4xC =,由于三角形有两解,又45B =︒, 则45135C <<︒且90C ≠,则2sin 12C <<,即22124x<<,解得222x <<.【点评】 本题的⑶也可用以下方法解,当sin c B b c <<,即sin 2x B x <<时,对应两个C 的值,方程有两组解,解得222x <<.⑷ π6由sin cos 2B B +=平方得12sin cos 2B B +=,即sin 21B =,因为0πB <<,所以π4B =.又因为22a b ==,,所以在ABC △中,由正弦定理得:22sin sin A B =,解得1sin 2A =. 又a b <∵,所以AB <,所以π6A =.【点评】 易错点:忽略a b <A B ⇒<的隐藏条件.多解.【教师备案】在正弦定理中,我们还有两种类型的全等没有讨论,SAS 和SSS 型,正弦定理处理的是对边对角的情形,仅仅用正弦定理是很难把三角形求解出来的,因此,我们需要一个新的工具,能够把边的条件化成角,就是下面所介绍的余弦定理.1.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,即:2222222222cos ,2cos ,2cos .c a b ab C b a c ac B a b c bc A ⎧=+-⎪=+-⎨⎪=+-⎩ 它的变形为:222222222cos ,2cos ,2cos .2a b c C ab a c b B ac b c a A bc ⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩<教师备案> 余弦定理的推导可以由三角形的向量运算直接得到,比如:2222()()2a BC BA AC BA AC BA BA AC AC ==+⋅+=+⋅+()22222cos π2cos c bc A b c bc A b =+-+=-+.也可以通过坐标法及两点距离公式得到.建立合适的坐标系,如图,得()()()cos sin 000A b C b C B a C ,,,,,, 从而有22(cos )(sin )AB c b C a b C ==-+,整理得:2222cos c a b ab C =+-.也可以通过三角形中的线段关系证明:在ABC △中,已知边a b ,及C ∠(为了方便起见,假设C ∠为最大的角),求边c 的长证明:当90C ∠=时,那么222c a b =+1.2余弦定理及其在解三角形中的应用知识点睛bxyB C A (b cosC , b sinC)当90C ∠≠时,如图,无论C ∠为锐角还是为钝角,都过A 点做边BC 的高,交BC (或延长线)于点D ,这时高AD 把ABC △分成两个直角三角形ADB 和ADC , 则sin AD b C =,cos BD a b C =-,在Rt ADB △中,运用勾股定理,得 ()222222sin cos c AD BD b C a b C =+=+-222cos a b ab C =+-2.余弦定理及其变形常用来解决这样两类解三角形的问题: ①已知两边和任意一个内角解三角形; ②已知三角形的三边解三角形.【教师备案】老师在讲完余弦定理后,可以就SSS 和SAS 型的全等证明做个简单讲解,这样子整个讲义的主线就串在一起.然后,可以让学生做【铺垫】,【铺垫】是直接套公式的,做完【铺垫】就可以做例3,例3是灵活的运用余弦定理解三角形,在解题过程中需要转化的;学生在能够灵活运用余弦定理后,就可以讲考点4,用余弦定理判断三角形形状,在三角形中,因为每个角都在()0π,内,所以一个角的正弦不能判断这个角是锐角还是钝角,但是余弦就能很快的判定是锐角还是钝角,在三角形中,当cos 0α>时,α为锐角;当cos 0α<时,α为钝角;当cos 0α=时,α为直角;考点4的【铺垫】是直接根据三角形的三条边判断三角形形状的,老师可以让学生先体会一下怎么样用余弦判定三角形形状,例4是已知三角形形状,求边的取值范围的,在解题过程中要注意用余弦定理和构成三角形的条件.考点3:用余弦定理解三角形【铺垫】⑴在ABC △中,5a =,8b =,60C =︒,则c =_______.⑵在ABC △中,222a b c bc =++,则A 等于( ).A . 60B . 45C .120 D . 30 【解析】⑴ 7 由余弦定理2222cos 25644049c a b ab C =+-=+-=,∴7c =. ⑵C∵2222222()1cos 222b c a b c b c bc A bc bc +-+-++===-∵0180A <<,∴120A =.【例3】 余弦定理解三角形⑴在ABC △中,5a =,8b =,7c =,则sin C =_______.⑵在ABC △中,已知3sin 5A =,sin cos 0A A +<,35a =,5b =,则c =______.⑶在ABC △中,若1378cos 14a b C ===,,,则最大角的余弦是( ). A .15- B .16- C .17- D .18-【解析】⑴32经典精讲abcABCDD cbaCBA由余弦定理2222cos c a b ab C =+-,∴1cos 2C =,3sin 2C =. ⑵∵sin cos 0A A +<,且3sin 5A =,24cos 1sin 5A A =--=-∴,又∵35a =,5b =,2222cos a b c bc A =+-,∴()2224355255c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,即28200c c +-=,解得2c =或10c =-(舍),∴2c = ⑶ C由2222cos c a b ab C =+-,∴3c =,则b a c >>,∴最大角为B ,∴2221cos 27a cb B ac +-==-考点4:用余弦定理判断三角形形状【教师备案】最大角定三角形的形状,由余弦定理易得,较小两边的平方和与最大边的平方的差可以定最大角是锐角、直角或钝角.注意:三角形三边关系应满足的为:较小两边的和大于 第三边.【铺垫】在ABC △中,已知5a =,6b =,7c =,则此三角形是一个 三角形.【解析】锐角三角形 c b a >>∵,∴角C 为最大角,2221cos 025a b c C ab +-==>∴,∴角C 为锐角,∴三角形为锐角三角形 【例4】 判断三角形形状⑴ 若以34x ,,为三边组成一个直角三角形,则x 的值为 . ⑵ 若以34x ,,为三边组成一个锐角三角形,则x 的取值范围为 . ⑶ 若以34x ,,为三边组成一个钝角三角形,则x 的取值范围为 . 【追问】我们还可以考虑,当我们知道三角形两边的情况下,求某一个角的取值范围,例如下面这个问题:已知ABC △中,12AB BC ==,,则C ∠的取值范围是________________⑷ (目标班专用)已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长. 【解析】 ⑴ 5722234x +=或22234x +=.⑵)75依题意有:22217434x x x ⎧<<⎪>⎨⎪+>⎩或22217434x x x ⎧<<⎪⎨⎪+>⎩≤75x <.⑶ (()1757,∪, 解法一:依题意有:22217434x x x⎧<<⎪>⎨⎪+<⎩或22217434x x x ⎧<<⎪⎨⎪+<⎩≤解得57x <<或17x <<.解法二:本题也可以由函数的图象来解决,如图,设圆的半径3OA =, 4OB =,圆上任取一点与O B ,两点构成三角形,从图形上看 出,当圆上的点在点D 和点E 上时,构成直角三角形;当点 在DE 上时,构成锐角三角形;当点在AD 和EG 上时,构成 钝角三角形.由此可以很快得出答案.【追问】π06⎛⎤ ⎥⎝⎦,⑷设三角形三边的长为:()12n n n n *++∈N ,,最大角为α,∴222(1)(2)cos 2(1)n n n n n α++-+=+,∵α是钝角,∴cos 0α<,∴222(1)(2)02(1)n n n n n ++-+<+,2(1)0n n +>∵,∴222(1)(2)0n n n ++-+<∴2230n n --<,∴13n n *-<<∈N ,∵,1n =∴或2. 当1n =时,123,,不能构成三角形的三边,故舍去. 当2n =时,234,,即为所求三边的长.【拓展】⑴钝角三角形的三边分别是12a a a ++,,,其最大角不超过120,求a 的取值范围. ⑵在ABC △中,若三条边是三条连续的正整数,且最大角是最小角的2倍,求ABC △的三条边长.【解析】 ⑴∵钝角三角形的三边分别是12a a a ++,,,∴显然有210a a a +>+>>,设钝角三角形 的最大的(内)角为α,依题意,得90120α<≤,由()()()()()()22212313cos 21212a a a a a a a a a a a α++-+-+-===++,可得13022a a--<≤, 解得332a ⎡⎫∈⎪⎢⎣⎭,⑵设最小内角为θ,三边长为11n n n -+,,,根据正弦定理得:11sin sin 2n n θθ-+=, 112cos n n θ+-=∴,()1cos 21n n θ+=-∴,根据余弦定理得:()()()22211cos 21n n n n n θ++--=+,()()()()2221112121n n n n n n n ++--+=-+∴,解得5n =,从而得ABC △的三条边分别为456,,GFEDCBAO1.正弦定理灵活应用:①2sin a R A =,2sin b R B =,2sin c R C = (其中R 为ABC △的外接圆的半径);②sin2a A R =,sin 2b B R =,sin 2cC R=;③::sin :sin :sin a b c A B C =. 2.正余弦定理的综合应用已知条件 应用定理 一般解法一边和两角(如a B C ,,) 正弦定理 由πA B C ++=,求角A ;由正弦定理求出b 与c .两边和夹角 (如a b C ,,) 余弦定理 正弦定理 由余弦定理求第三边c ;由正弦定理求出小边所对的角(此角一定是锐角);再由πA B C ++=,求剩下的角.三边(a b c ,,) 余弦定理正弦定理由余弦定理求出最大角,然后正弦计算剩余两角. 两边和其中一边的对角 (如a b A ,,) 正弦定理余弦定理 由正弦定理求出角B ;由πA B C ++=,求出角C ;再利用正弦定理或余弦定理求c .【教师备案】本板块主要讲正余弦定理在解三角形中的灵活应用,尤其是正弦定理的灵活运用,根据正弦定理可以得到三角形的边与角之间的关系,可以把角全部换成边,也可以把边全部换成角,【铺垫】就是根据正弦定理把边用角表示,例5是先要根据正弦定理把边角化掉再根据余弦定理解三角形,此类题型不属于边角互化题型,是正弦定理的灵活运用,边角互化的题型是比如“2sin a b A =”类型的,对于这类题我们放到同步去讲;在讲完正余弦定理的灵活运用后就可以让学生体会一下正余弦定理在平面几何中的应用,因为在同步的时候不会讲此类题型,所以在预习的时候可以给学生介绍一下,具体见例6和目标班学案2,而对于三角形中()sin sin A B C +=的应用建议放到同步去讲.【铺垫】在ABC △中,若::1:2:3A B C =,则::a b c =______.【解析】 由已知得306090A B C ===,,,::sin :sin :sin 1:3:2a b c A B C ==∴【例5】 正余弦定理的综合运用⑴在ABC △中,若sin :sin :sin 3:2:4A B C =,则cos C 的值为( )A .14-B .14C .23-D .23⑵在ABC △中,若222sin sin sin A B C +<,则角C 为( )A .锐角B .钝角C .直角D .不确定【追问】在ABC △中,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .等边三角形C .钝角三角形D .等腰直角三角形 ⑶(2010天津理7)在ABC △中,内角A B C ,,的对边分别为a b c ,,,若223a b bc -=,sin 23sin C B =,则A =( )A .30B .60C .120D .1501.3正余弦定理在解三角形中的灵活应用经典精讲知识点睛【解析】⑴A 根据正弦定理sin 2a A R =,sin 2b B R =,sin 2cC R=,sin :sin :sin ::3:2:4A B C a b c ==∴,2223241cos 2324C +-==-⨯⨯∴⑵B222sin sin sin A B C +<∵,∴根据正弦定理得222a b c +<,222cos 02a b c C ab+-=<∴,∴角C 为钝角 【追问】B ⑶A由sin 23sin C B =,根据正弦定理,得23c b =.所以22236a b bc b -==,即227a b =.由余弦定理得2223cos 22b c a A bc +-==.所以30A =︒.【例6】 正余弦定理在平面几何中的应用⑴ 在平行四边形ABCD 中,3AB =,5BC =,6AC =,求BD⑵ 在ABC △中,已知4AB =,7AC =,BC 边上的中线7AD =,那么BC = .⑶ (目标班专用)在ABC △中,已知46AB =6cos ABC ∠=,AC 边上的中线5BD ,求sin A 的值【解析】 ⑴如图,在ABC △中,2222cos AC AB BC AB BC B =+-⋅,即222635235cos B =+-⋅⋅ ①在ABD △中,2222cos BD AB AD AB AD A =+-⋅,即22235235cos BD A =+-⋅⋅ ② ①+②得:()22226235BD +=+,即42BD =【点评】由本题可以得出平行四边形定理:平行四边形的对角线平方之和等于四条边长平方之和⑵ 解法一:如图:设BD x =,则2BC x =,DC x =,∵πADB ADC ∠=-∠,cos cos ADB ADC ∠=-∠∴,由余弦定理,得222222774722772222x x x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⋅⋅⋅⋅,解得92x =,9BC =∴ 解法二:由平行四边形定理得:()2222247781BC =+-=,9BC =∴⑶ 如图:设E 为BC 的中点,连接DE ,则DE AB ∥,且1262DE AB ==BE x =,在BDE △中利用余弦定理可得: 2222cos BD BE ED BE ED BED =+-⋅∠,()()6cos cos πcos πcos BED DEC ABC ABC ∠=-∠=-∠=-∠=∵28266523x =++∴,解得1x =或73x =-(舍),故2BC =,从而222282cos 3AC AB BC AB BC ABC =+-⋅∠=,即DA 72xx745463DCADCB A2213AC =, 又30sin 6ABC ∠=∵,故22123sin 306A =,70sin 14A =∴【教师备案】因为三角形的面积和正余弦定理关系不是特别紧密,而且到本讲结束,三角形的面积公式已经全部讲完,所以把三角形的面积单独做一个板块,老师可以把所有的三角形面积公式给学生讲一下. 面积公式:()11111sin sin sin 222224a abcS ah a b c r ab C bc A ac B R ==++====.其中r 为ABC △内切圆半径,R 为外接圆半径.【教师备案】在求三角形的面积时,学生印象最深的就是12a ah ,那这个时候老师就可以根据12a ah 推导其它公式,并且老师可以在这里把三角形的面积公式全部给学生整理一下,但是本讲重点是介绍1sin 2S ab C =类型的三角形面积公式,如果学生的程度很好,老师可以介绍一下“海伦公式”和圆内接四边形面积公式.【选讲】海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=. 【推导】 ()2222222111sin 1cos 12224a b c S ab C ab C ab a b+-==-=- ()()()2222222222221142244a b a b c ab a b c ab a b c =-+-=++---+()()()()()()22221144a b c c a b a b c a b c a c b b c a ⎡⎤⎡⎤=+---=+++-+-+-⎣⎦⎣⎦ 令()12p a b c =++,则()()()S p p a p b p c =---圆内接四边形面积:()()()()S p a p b p c p d =----,其中2a b c dp +++=. 【推导】由()22222cos 2cos πa b ab c d cd θθ+-=+--,可得2222cos 22a b c d ab cdθ+--=+()()222222222sin 1cos 22ab cd a b c d ab cdθθ+-+--=-=+()()()()=22b c d a a c d b a b d c a b c d ab cd++-++-++-++-+1.4三角形的面积知识点睛CB A c b aDC BAπ-θθd cba(){}()11sin sin πsin 22S ab cd ab cd θθθ=+-=+ ()()()()()()()()1=42222b c d a a c d b a b d c a b c d a b c d a b c d a b c d a b c d a b c d p a p b p c p d ++-++-++-++-++++++++++++⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=----【教师备案】老师在讲完三角形的面积后就可以让学生做【铺垫】,【铺垫】是直接利用公式求三角形面积的,例7不能够直接利用公式求三角形面积,需要先看在面积公式中缺少哪些变量,然后再根据题中的已知条件利用正余弦定理求出所需要的变量,最后再利用面积公式就可以了.第三题放了一道关于圆内接四边形面积的题目,供老师选择使用;例8是已知三角形面积解三角形,在解题过程中会用到正余弦定理,对于求面积的最大值的问题建议放到同步,因为在求最大值的问题时大多数要用到均值定理,学生这时候还没学,所以建议以后再讲.【铺垫】 在ABC △中,若5AB =,7BC =,33sin 14B =,求ABC △的面积. 【解析】 ∵5AB =,7BC =,33sin 14B =, 1133153sin 5722144ABCS AB BC B =⋅⋅=⨯⨯⨯=△∴【例7】求面积⑴ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,43460b c B ===︒,,,求ABC S △. ⑵ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,若234a b c ===,,,求ABC S △. ⑶(目标班专用)已知:四边形ABCD 内接于圆O ,四边长依次为2,7,6,9,求圆直径. 【解析】⑴ 分析:三角形的已知条件为常见的SSA 型.根据条件有两种思路求三角形的面积: 11sin sin 22ABC S bc A ac B ∆=⋅=⋅.所以欲求三角形面积需要先求A 或先求a .方法一:由正弦定理知sin sin b cB C =,sin 4sin 601sin 243c B C b ︒===, 因为C 是三角形的一个内角,故30C ︒=或150︒, 又60B ︒=,故30C ︒=.180603090A ︒︒︒︒=--=,从而1832ABC S bc ∆==.方法二:由余弦定理得222cos 2a c bB ac +-=,即24320a a --=.()()480a a +-=.因为0a >,所以8a =.1sin 832ABC S ac B ∆=⋅=.⑵ 要求面积,先求一个角,已知三边,可以用余弦定理求一角:222416911cos 21616a cb B ac +-+-===,经典精讲∴2315sin 1cos 16B B =-=, ∴113153sin 241522164ABC S ac B ∆==⋅⋅⋅=. ⑶85.【铺垫】已知ABC △的三边长分别为a b c ,,,且面积()22214ABC S b c a =+-△,则A 等于( ) A .45 B .30 C .120 D .15【解析】 A()2221112cos cos 442ABC S b c a bc A bc A =+-=⨯=△,又1sin 2ABC S bc A =△∵,sin cos A A =∴,45A =∴【例8】 已知三角形面积解三角形ABC △中,角A B C ,,的对边分别为a b c ,,,22sin 3cos C C =,7c =,又ABC △的面积为332, 求⑴角C 的大小;⑵a b +的值【解析】⑴由已知得()221cos 3cos C C -=,1cos 2C =∴或cos 2C =-(舍), ∴在ABC △中,60C =⑵133sin 22ABC S ab C ==△∵,133sin 6022ab =∴,6ab =∴,又2222cos c a b ab C =+-∵,()22272cos a b ab C =+-∴,227a b ab +-=∴,2213a b +=∴,222255a b a b ab +=++==∴【演练1】 (2010北京卷文理10)在ABC △中,若2π133b c C ==∠=,,,则________a = 【解析】1 方法一: 由余弦定理222cos 2a b c C ab+-=得, 220a a +-=.∵0a >,∴1a =.方法二: 由正弦定理sin sin b c B C =得,1sin 2B =,π6B =或5π6,又因为b c <,即B C <, 所以π6B =,∴2ππππ366A =--=.∴1a b ==.【演练2】 在ABC △中,角A B C ,,的对边分别为a b c ,,,若()222tan 3a c b B ac +-=,则角B 的值为( ).实战演练A .π6 B . π3 C .π6或5π6 D . π3或2π3【解析】D由余弦定理2222cos a c b ac B +-=及()222tan a c b B +-得, sin B =. 所以π3B =或2π3.【演练3】 在ABC △中,已知222sin sin sin sin B C A A C --=,则角B 的大小为( )A .150︒B .30︒C .120︒D .60︒ 【解析】A由222sin sin sin sin B C A A C --及正弦定理可得222b c a --=即得222cos 2a c b B ac +-==,∴150B =︒.【演练4】 在ABC △中,角A B C ,,所对的边分别是a b c ,,,1tan 2A =,cos B = 若ABC △最长的边为1,则最短边的长为( ).A B C D 【解析】D由cos B =B 为锐角,∴1tan 3B =,故()()tan tan πtan C A B A B =--=-+tan tan 11tan tan A BA B+=-=--⋅①, 由①知135C ∠=︒,故c 边最长,即1c =,又tan tan A B >,故b 边最短,∵sin B =,sin C =sin sin b c B C =,∴sin sin c B b C ==【演练5】(2011西城一模文15) 设ABC △的内角A ,B ,C 所对的边长分别为a ,b ,c ,且4cos 5B =,2b =. ⑴ 当30A =︒时,求a 的值;⑵ 当ABC △的面积为3时,求a c +的值.【解析】 ⑴ 因为4cos 5B =,所以3sin 5B =,由正弦定理sin sin a b A B =,可得10sin303a =︒,所以53a =.⑵ 因为ABC △的面积1sin 2S ac B =,3sin 5B =,所以3310ac =,10ac =.由余弦定理2222cos b a c ac B =+-,得222284165a c ac a c =+-=+-,即2220a c +=.所以2()220a c ac +-=,2()40a c +=,所以,a c +=概念要点回顾1.正弦定理公式;余弦定理公式22a b+-= .2.三角形面积公式S=.盲人数学家——欧拉1783年9月18日,法国人蒙高尔费兄弟举行了第二次热气球升空试验。

冀教版九年级数学上册第26章《解直角三角形》教案

冀教版九年级数学上册第26章《解直角三角形》教案

第二十六章解直角三角形1.理解锐角三角函数的概念,并能通过实例进行说明.2.能推导并熟记30°,45°,60°角的三角函数值,并能解决含有30°,45°,60°角的三角函数值的计算.3.能够正确地使用计算器,由已知锐角求出它的三角函数值,或由已知三角函数值求出相应的锐角.4.会运用勾股定理、直角三角形的两个锐角互余以及锐角三角函数解直角三角形.5.会用解直角三角形的有关知识解决简单的实际问题,并能对相关知识进行综合应用.1.通过探究锐角正弦、余弦、正切概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳推理能力.2.通过锐角三角函数的学习,进一步认识函数,培养学生观察、比较、分析、概括等逻辑思维能力.3.通过在直角三角形中探究三角函数与边长、角之间的数量关系,培养学生从已有的知识、特殊图形中去感知、迁移.4.综合运用所学知识解决和直角三角形有关的计算,逐步提高学生分析问题、解决问题的能力,培养学生思维能力的灵活性.5.经历从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力,进一步感受数形结合思想在数学中的应用.1.通过引导学生参与体验数学活动,让学生学会用数学思维方式思考、发现问题,提高数学思维能力.同时体验数学活动中充满着探索与发现,培养学生积极思考,勇于探索的精神.2.通过主动探究,合作交流,培养学生的团队精神,增强合作意识,同时让学生体验成功的快乐.3.让学生经历观察、操作等数学活动,探索三角函数有关知识,锻炼克服困难的意志,建立自信心.4.在探索直角三角形中边角关系的过程中,渗透数形结合思想,培养学生综合运用知识的能力和良好的学习习惯.5.通过将实际问题转化为数学问题,培养建模思想,调动学生学习数学的积极性和主动性,培养学生认真思考等学习习惯,形成事实求是的科学态度.本章《锐角三角函数》是《数学课程标准》中“空间与图形”领域的重要内容,是初中阶段研究三角形部分的最后阶段,主要研究锐角三角函数的概念、求锐角三角函数的值,以及锐角三角函数的简单应用.它是在学习了函数、相似三角形的基础上,对直角三角形中边角之间的关系的进一步研究,属于三角学中的最基础的内容,而高中阶段的三角内容是三角学的主体部分,所以本章的学习是为高中数学中三角函数等知识的学习做好准备.本章内容是在前面研究了直角三角形中勾股定理、两个锐角之间的关系的基础上,进一步研究边角之间的关系,本章中只有正确了解锐角三角函数的概念,才能真正理解直角三角形中边角之间的关系,从而利用这些关系来解直角三角形,这样才能把直角三角形的判定、性质、作图与直角三角形中边角之间的数量关系统一起来.锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际生活中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会,研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依据锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的基础.通过本章的学习,使学生全面掌握直角三角形的组成元素之间的关系,并综合运用已学知识解决与直角三角形有关的度量问题,进一步培养学生的推理能力、运算能力和数学建模思想.本章重点是锐角三角函数的概念、解直角三角形及三角函数的简单应用.通过研究直角三角形中各元素之间的关系,并把这种关系用数量关系的形式表示出来,使学生经历数学抽象的过程,通过本章的学习,使学生进一步感受数形结合的思想,体会数形结合的方法.直角三角形中边角之间的关系在解决实际问题中有着重要的作用,现实生活中距离、高度、角度等计算问题,常常应用到解直角三角形的知识,使学生进一步感受数学建模思想在实际生活中的应用.【重点】正弦,余弦,正切概念、特殊角的三角函数值、会解直角三角形、能利用三角函数有关知识解决实际问题.【难点】把实际问题转化为直角三角形中的问题,并通过锐角三角函数解决问题.1.组织学生积极参与课堂教学活动,根据问题情境,让学生在独立思考的基础上,鼓励学生在小组间通过合作与交流的方式解决问题.2.关于锐角三角函数概念的教学,应注重创设符合学生实际的问题情境,从实际问题出发,让学生经历建立概念的过程,使学生感受数学与现实的联系.3.引导学生观察、分析、发现直角三角形中边角之间的关系,鼓励学生有条理地进行思考和表达.在观察、操作和推理的过程中,使学生有意识地反思其中的数学思想方法.4.教师在学生活动的过程中,要鼓励学生积极大胆地发表自己的意见,特别是学生与众不同的意见,要有意识地培养学生求异思维的能力和不断创新的欲望.5.关于锐角三角函数求值的教学,应以实际操作为主,通过求函数值,使学生加深对锐角三角函数概念的理解,让学生初步感受到锐角三角函数值随角度的变化而变化.6.对于锐角三角函数的应用,首先要引导学生弄清实际问题的意义,然后把实际问题转化为数学问题.同时,应注重数形结合思想方法的渗透,引导学生逐步从对具体问题的研究中提炼出思想方法.26.1锐角三角函数1.经历正切、正弦、余弦概念建立的过程,理解三角函数的意义.2.经历探索30°,45°,60°角的三角函数值的过程,能够进行有关推理,并能根据这些值说出对应的锐角度数.3.能熟练地计算含有30°,45°,60°角的三角函数的代数式的值.4.能够根据直角三角形中的边角关系,进行简单的计算.1.经历从实际问题中抽象出数学模型的过程,探索直角三角形中边角关系的过程,体会现实生活与数学的联系.2.通过探究锐角正弦、余弦、正切概念的形成,养成善于观察、勤于思考的良好习惯,培养学生的归纳推理能力.3.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.4.通过推导特殊角的三角函数值,学会综合运用数学知识解决问题的能力.1.学生通过问题情境经历三角函数概念的形成过程,培养学生积极思考,勇于探索的精神.2.通过思考、发现、总结、验证等数学活动,提高学生数学思维能力.3.通过主动探究,合作交流,增强学生的合作意识,培养学生团队意识,同时让学生体验成功的快乐.4.在探索与三角函数有关的知识过程中,学生通过观察、操作获取知识,锻炼克服困难的意志,建立自信心.【重点】理解各三角函数的意义,会求锐角的各三角函数值;熟记30°,45°,60°角的三角函数值,能熟练地计算含有30°,45°,60°角的三角函数的代数式的值.【难点】探索各三角函数值的概念;30°,45°,60°角的三角函数值的推导过程.第课时1.利用相似的直角三角形,探索直角三角形的锐角固定时,它的对边与邻边的比值是固定值,引出正切的概念.2.理解锐角正切的概念并能根据正切的概念进行计算.3.会计算特殊角的正切值.1.经历从实际问题中抽象出数学模型的过程,探索直角三角形中边角关系的过程,体会现实生活与数学的联系.2.经历正切概念的形成过程,培养学生观察、比较、分析、概括等逻辑思维能力,养成善于观察、勤于思考的良好习惯,同时培养学生的归纳推理能力.1.通过积极参与数学学习活动,体验数学活动中充满着探索与发现,培养学生积极思考,勇于探索的精神.2.通过主动探究,合作交流,培养学生的合作意识,同时体验成功的快乐.【重点】理解正切函数的意义,并会求锐角的正切值.【难点】理解直角三角形中的锐角,它的对边与邻边的比值是固定值.【教师准备】多媒体课件.【学生准备】预习教材P104~106.导入一:【课件展示】如图所示,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.旗杆的高约为多少米?【师生活动】教师展示章前页问题情境并简单说明,学生观察图示,教师引出本章课题.[导入语]通过测量仰角、俯角及小明与旗杆的距离,应用以前学过的数学知识,我们还不能求出旗杆的高度.通过本章的学习,你将能够解决这个问题.导入二:复习提问:1.直角三角形有哪些特殊性质?2.有一个锐角是30°的直角三角形有什么特殊性质?3.有一个锐角是45°的直角三角形有什么特殊性质?【师生活动】学生思考回答,教师点评.导入三:【课件展示】如图所示,轮船在A处时,灯塔B位于它的北偏东35°的方向上.轮船向东航行5 km到达C处时,轮船位于灯塔的正南方,此时轮船距灯塔多少千米?(结果保留两位小数)教师提问:该实际问题中的已知和所求为图中的哪些角和线段?(事实上,求轮船距灯塔的距离,就是在RtΔABC中,已知∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)【师生活动】教师提示学生将实际问题转化为数学问题,学生思考回答,教师点评.[设计意图]通过章前页问题情境提出如何求得旗杆高度,让学生认识到本章将要学习的主要内容,激发学生学习和探求新知识的欲望.通过复习和本节课有关的直角三角形的知识导入新课,为本节课的学习做好铺垫.通过导入三中把实际问题转化为数学问题,让学生初步感知直角三角形中边角之间存在着某种关系,体会生活与数学之间的密切联系.共同探究直角三角形中锐角的对边与邻边的比是定值【课件展示】如图所示,在RtΔABC中和RtΔA'B'C'中,∠C=∠C'=90°.当∠A=∠A'时,与具有怎样的关系?思路一教师引导思考:(1)如何证明线段成比例?(三角形相似)(2)根据已知,你能证明这两个直角三角形相似吗?(∵∠A=∠A',∠C=∠C'=90°,∴RtΔABC∽RtΔA'B'C')(3)由三角形相似的性质可以得到与之间的关系吗?∵RtΔABC∽RtΔA'B'C',∴,即(4)你能用语言叙述这个结论吗?(当锐角A确定时,∠A的对边与邻边的比值是确定的,与所在三角形的大小无关)【师生活动】学生独立思考后,小组合作交流,小组代表展示后,教师作出点评.思路二教师展示课件后,小组合作交流,共同探究,写出结论,说明理由.教师对有困难的学生进行分析指导,对学生的展示进行点评.解:.理由:∵∠A=∠A',∠C=∠C'=90°,∴RtΔABC∽RtΔA'B'C'.∴,即.追问:你能用语言叙述这个结论吗?【师生活动】学生尝试叙述结论,教师归纳完整.结论:当锐角A确定时,∠A的对边与邻边的比值是确定的,与所在三角形如图所示,已知∠EAF<90°,BC⊥AF,B'C'⊥AF,垂足分别为C,C'.与具有怎样的关系?【师生活动】学生类比上边的思考方法,独立思考后,小组内交流答案,教师及时发现问题,及时帮助解决问题.追问:根据以上两个图形中角的对边与邻边的比的探究,你能得到什么结论?【师生活动】学生独立思考后回答,教师点评,规范归纳的结论.【课件展示】在两个直角三角形中,当一对锐角相等时,这两个直角三角形相似,从而两条对应直角边的比相等,即当∠A(小于90°)确定时,以∠A为锐角的RtΔABC的两条直角边的比是确定的.[设计意图]通过教师引导或独立思考后小组合作交流,让学生感知并证明锐角一定时,它的对边和邻边的比是定值,为引出正切的概念做好铺垫,同时培养学生观察、思考及合作交流的能力.的比是固定值,那么这个固定值被定义为什么呢?【课件展示】如图所示,在RtΔABC中,∠C=90°,我们把∠A的对边与.邻边的比叫做∠A的正切,记作tan A,即tan A=的对边的邻边大家谈谈:(1)∠A的正切tan A表示的是tan 与A的乘积还是一个整体?(tan A表示的是一个整体)(2)当∠A的大小变化时,tan A是否变化?(tan A随着∠A的大小变化而变化)(3)tan A有单位吗?(tan A是一个比值,没有单位)(4)∠B的正切怎么表示?tan A与tan B之间有怎样的关系?(5)要求一个锐角的正切值,我们需要知道直角三角形中的哪些边?(需要知道这个锐角的对边和邻边)(6)若知道直角三角形的斜边和一直角边,你能求一个锐角的正切值吗?(根据勾股定理求出另一直角边,再根据正切定义求解)【师生活动】学生独立思考,小组合作交流,小组代表回答问题,教师点评.[设计意图]在解决一系列的问题中,经历建立数学概念的过程,让学生全面理解正切的概念、写法和意义,教师强调概念中注意的事项,使学生加深对正切概念的理解和掌握.例题讲解(教材105页例1)在RtΔABC中,∠C=90°.(1)如图(1)所示,∠A=30°,求tan A,tan B的值.(2)如图(2)所示,∠A=45°,求tan A的值.【师生活动】学生独立思考完成,小组内交流答案,小组代表板书过程,教师巡视、观察学生的解答情况,对发现的问题及时解决,并对学生的展示进行点评和规范做题步骤.解:(1)在RtΔABC中,∵∠A=30°,∴∠B=60°,且a=c.∴b=-= - c.∴tan A=tan 30°=c÷c=,tan B=tan 60°=c÷c=.(2)在RtΔABC中,∵∠A=45°,∴a=b.∴tan A=tan 45°==1.这样,就得到tan 30°=,tan 45°=1,tan 60°=.[设计意图]学生独立完成该问题的理解和解答,巩固了对正切的概念的理解和应用,为下节课学习特殊角的三角函数值做好铺垫,同时教师规范学生的解题过程,让学生体会数学的严谨性,培养学生分析问题和解决问题的能力.[知识拓展]1.正切是一个比值,没有单位.2.正切值只与角的大小有关,与三角形的大小无关.3.tan A是一个整体符号,不能写成tan ·A.4.当用三个字母表示角时,角的符号“∠”不能省略,如tan∠ABC.5.tan2A表示(tan A)2,而不能写成tan A2.1.在直角三角形中,当锐角A的度数一定时,无论这个直角三角形的大小如何,∠A的对边与邻边的比值是一个固定值.2.正切的定义:在RtΔABC中,∠C=90°,我们把锐角A的对边与邻边的比.叫做∠A的正切,记作tan A,即tan A=的对边的邻边1.如图所示,在RtΔABC中,∠C=90°,三边分别为a,b,c,则tan A等于()A.B. C.D..故选B.解析:根据锐角正切的定义可得tan A=的对边的邻边2.把ΔABC三边的长度都扩大为原来的3倍,则锐角A的正切值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定解析:因为ΔABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的正切值也不变.故选A.3.已知RtΔABC中,∠C=90°,tan A=,BC=12,则AC等于.解析:根据正切定义可得tan A=,所以AC=9.故填9.4.如图所示,在RtΔABC中,∠C=90°.(1)若tan A=,BC=9,求AB的长;(2)若tan B=,AC=16,求AB的长.解:(1)∵tan A=,BC=9,∴AC=12,由勾股定理可得AB==15.∴AB的长为15.(2)∵tan B=,AC=16,∴BC=12.由勾股定理可得AB==20.∴AB的长为20.第1课时共同探究直角三角形中锐角的对边与邻边的比是定值形成概念例题讲解一、教材作业【必做题】教材第106页习题A组第1,2题.【选做题】教材第106页习题B组第1,2题.二、课后作业【基础巩固】1.已知RtΔABC中,∠C=90°,BC=1,AC=2,则tan A的值是()A.2B.C.D.2.已知RtΔABC中,∠C=90°,tan A=,BC=8,则AC等于()A.6B.C.10D.123.在RtΔABC中,∠C=90°,若AC=2BC,则tan B的值是()A. B.2 C. D.4.如图所示,A,B,C三点在正方形网格线的交点处,若将ΔACB绕着点A逆时针旋转得到ΔAC'B',则tan B'的值为.5.已知等腰三角形的腰长为 6 cm,底边长为10 cm,则底角的正切值为.6.如图所示,点A(t,4)在第一象限,OA与x轴所夹的角为α,tan α=,则t的值是.7.如图所示,在RtΔABC中,∠ACB=90°,CD⊥AB于点D,若BC=2,AB=3,求tan ∠BCD的值.【能力提升】8.如图所示,ΔABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC于D,E,连接CD.如果AD=1,那么tan∠BCD=.9.如图所示,在ΔABC中,∠C=90°,D是BC上一点,AC=2,CD=1,记∠CAD=α.(1)求α的正切值;(2)若∠B=α,求BD的长.【拓展探究】10.如图所示,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果,求tan∠DCF的值.【答案与解析】1.B(解析:在RtΔABC中,∵∠C=90°,AC=2,BC=1,∴tan A=.故选B.)2.A(解析:∵tan A=,BC=8,∴AC=·BC=6.故选A.)3.B(解析:∵AC=2BC,∴tan B==2.故选B.)4.(解析:由旋转可得∠B'=∠B,所以tan B'=tan B=.故填.)5.(解析:根据等腰三角形的三线合一,可得底边的一半为5 cm,由勾股定.故填.) 理可得底边上的高为cm,所以底角的正切值为底边的高底边的一半6.3(解析:如图所示,过A点分别向x轴,y轴作垂线,垂足分别为B,C,∵点A(t,4)在第一象限,∴AB=4,OB=AC=t,又∵tan α=,∴t=3.故填3.)7.解:∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,又∠BCD+∠ACD=90°,∴∠BCD=∠A,在RtΔABC中,AC=--,∴tan A=,∴tan ∠BCD=tan A=.8.-1(解析:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=45°,∴∠ADC=∠BDC=90°.∵AD=CD=1,∴AB=AC=BD=-1.在直角三角形BCD中,tan∠BCD=-1.故填-1.)9.解:(1)在RtΔACD中,tan α=. (2)在RtΔABC中,tan B=,由(1)知tan α=,又∠B=α,∴tan B=,又AC=2,∴BC=4,∴BD=BC-CD=4-1=3.10.解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵,∴,设CD=2x,CF=3x,则DF=-x,∴tan∠DCF=.本节课通过复习特殊角直角三角形的性质,为探究锐角的正切概念做好铺垫,同时以具体情境引入新课,让学生体会数学与生活息息相关,激发学生学习兴趣,并初步感受直角三角形中边角之间的关系.然后通过学生自主探究、合作交流等数学活动,归纳出结论:直角三角形中锐角一定时,它的对边与邻边的比相等.从而自然引出正切的概念,顺理成章完成知识的迁移,培养了学生发现问题、探究思考与合作交流的能力.在课堂上,学生参与意识较强,课堂气氛活跃,让不同的学生得到不同的发展,突出了学生在课堂上的主体作用.本节课通过探究直角三角形中锐角的对边和邻边的比是固定值,由此归纳总结正切定义.在教学设计中,注重知识间的联系,由前边所学知识自然推导结论,由结论自然导出正切概念,但在授课过程中忽略了学生的认知能力,部分学生对正切的理解有困难.在以后的教学中,给出正切定义后,应给出几个简单的练习题,加深学生对概念的理解和掌握.本节课根据问题情境中提出的问题,引导学生画出图形,将实际问题转化为数学问题,激发学生探究本节课的学习兴趣,然后根据已有的相似三角形的知识,让学生独立思考后,小组合作交流,探究出直角三角形中的锐角确定时,它的对边和邻边的比是确定的,很自然地引出正切的定义,然后通过例题讲解让学生进一步理解和掌握正切的概念.学生在经历概念的形成过程中,加深对正切概念的理解和掌握,同时提高了数学思维及归纳总结能力.练习(教材第106页)1.提示:(1)1. (2)2+. (3)0. (4).2.解:在RtΔABC中,AC=--=2,tan B=.3.解:根据勾股定理可以求得另一条直角边为,所以tan α=.习题(教材第106页)A组1.提示:-2-.2.提示:AC=,AB=.B组1.解:ΔABC的周长为AB+BC+AC=+10+,ΔABC的面积为AC·BC=×10=.2.解:BC=---=6,∴tan B=.加强探究能力,发展学生的思维能力本节课的重点是探究直角三角形中锐角的正切概念,在教学设计中,通过“观察与思考”“大家谈谈”等教学环节,为学生提供探究交流的空间,发展学生的思维能力.首先通过复习特殊直角三角形的性质,为学生探究活动做好铺垫,然后让学生通过独立思考、小组合作交流、共同归纳等数学活动,探索出结论“在直角三角形中,当一个锐角确定时,这个角的对边与邻边的比是确定的”,从而很自然地把直角三角形中这个确定的值定义为这个锐角的正切.在课堂上以问题引导的形式让学生积极参与课堂,亲身经历概念的形成过程,为学生提供了更加广阔的探索空间,培养学生观察、思考、与他人合作及归纳总结的能力.然后设计“大家谈谈”环节,让学生独立完成后,小组交流得出结论,巩固对正切概念的理解.在例题讲解环节,设计了求30°,45°这些特殊角的正切值,学生在教师的引导下,再次经过独立思考后,小组合作交流,得出正确结果,提高学生探究能力和分析问题、解决问题的能力,使学生的数学思维能力得到进一步的提升.(2015·内江中考)在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=.〔解析〕如图所示,设直线l与坐标轴的交点分别为A,B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由题意可得OB=b,OA=2b,在RtΔOAB中,tan∠OAB=,∴tan∠OPQ=.故填.第课时1.经历正弦、余弦概念的形成过程,理解三角函数的定义,并能根据正弦、余弦的概念进行计算.2.经历探索30°,45°,60°角的正弦、余弦值的过程,能够进行有关推理,并能进行含有30°,45°,60°角的三角函数值的计算.1.结合正切概念探索锐角正弦、余弦概念的形成,培养学生类比推理的能力及归纳总结的能力.2.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.3.通过推导特殊角的三角函数值,了解知识间的联系,学会综合运用数学知识解决问题的能力.1.通过积极参与数学学习活动,体验数学活动中充满着探索与发现,培养学生积极思考,勇于探索的精神.2.引导学生参与体验数学活动,学会用数学思维方式思考、发现、总结、验证问题,提高数学思维能力.3.通过主动探究,合作交流,培养学生的团队精神,增强合作意识,同时让学生体验成功的快乐.【重点】1.理解正弦、余弦的概念,并会求锐角的正弦值、余弦值.2.熟记30°,45°,60°角的三角函数值,能熟练计算含有30°,45°,60°角的三角函数的代数式的值.【难点】类比正切概念,探索正弦、余弦的概念及30°,45°,60°角的正弦、余弦值的推导过程.【教师准备】多媒体课件.【学生准备】预习教材P106~108.导入一:复习提问:1.在直角三角形中,如果一个锐角确定时,它的对边与邻边的比值有什么规律?2.什么是正切?如何求一个角的正切?3.含30°,45°的直角三角形有哪些性质?4.你还记得我们探究正切概念时所得的30°,45°角的正切吗?导入二:观察两个不同大小的三角板,当角是30°,45°,60°时,它们的对边与斜边、邻边与斜边的比值有什么规律?谈谈你的看法.本节课的内容,为本节课做好铺垫.计算直角三角板中特殊角的对边与斜边、邻边与斜边的比值,观察、归纳规律,很自然地引出本节课的概念,同时培养学生计算、观察、猜想的能力.共同探究一直角三角形中,锐角的对边与斜边的比、邻边与斜边的比是定值思路一【课件展示】如图所示,在RtΔAB1C1和RtΔAB2C2中,∠C1=∠C2=90°.【思考】(1)RtΔAB1C1与RtΔAB2C2之间有什么关系?(RtΔAB1C1∽RtΔAB2C2)(2)与,与之间各有什么关系?(3)过射线AB1上任取一点B3,过B3作B3C3⊥AC1,垂足为C3,则与,与之间有什么关系?(4)根据以上思考,你得到什么结论?(直角三角形中∠A的对边与斜边、邻边与斜边的比值是固定不变的)(5)如果改变∠A的大小,上边的比值是否变化?归纳你的结论.【师生活动】教师提出问题,学生思考后小组合作交流,共同归纳结论,教师在巡视过程中帮助有困难的学生,对学生的回答作出点评.【课件展示】1.在直角三角形中,当锐角确定时,无论这个直角三角形的大小如何,这个角的对边与斜边的比是确定的.2.在直角三角形中,当锐角确定时,无论这个直角三角形的大小如何,这个角的邻边与斜边的比也是确定的.思路二。

初三九年级数学冀教版 第26章 解直角三角形 专训1 构造三角函数的基本图形解决实际问题中的四种数学模型

初三九年级数学冀教版 第26章  解直角三角形  专训1 构造三角函数的基本图形解决实际问题中的四种数学模型

专训1构造三角函数的基本图形解决实际问题中的四种数学模型名师点金:解直角三角形及其应用是近几年各地中考命题的热点之一,考查内容不仅有传统的计算距离、高度、角度的应用题,还有要求同学们根据题中给出的信息构建三角函数的基本图形,建立数学模型,将某些简单的实际问题转化为数学问题,把数学问题转化为锐角三角函数问题来求解.运用锐角三角函数知识解决与实际生活、生产相关的应用题是近年来中考的热点题型.构造直角三角形解决实际问题1.【中考·山西】太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300 cm,AB的倾斜角为30°,BE=CA=50 cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少厘米(结果保留根号).(第1题)2.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离(结果精确到0.1 m.参考数据:2≈1.414,3≈1.732).(第2题)构造形如“”的两个直角三角形解决实际问题3.如图,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°.在M 的南偏东60°方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?(第3题)4.【中考·黔东南州】黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C 处测得电线杆顶端A的仰角为45°,斜坡与地面成60°角,CD=4 m,请你根据这些数据求电线杆的高(AB)(结果精确到1 m.参考数据:2≈1.4,3≈1.7).【导学号:83182074】(第4题)5.【中考·安徽】如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE(结果保留根号).(第5题)构造形如“”的两个直角三角形解决实际问题6.【中考·深圳】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8 s,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为 4 m/s,求这架无人飞机的飞行高度(结果保留根号).【导学号:83182076】(第6题)7.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大【导树AB的底部B的俯角为30°,已知平台CD的高度为5 m,求大树的高度(结果保留根号).学号:83182075】(第7题)构造形如“”的两个直角三角形解决实际问题8.如图,小刚同学在广场上观测新华书店楼房墙上的电子屏幕CD,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6 m到达B处,又测得该屏幕上端C处的仰角为45 °,延长AB与楼房垂直相交于点E,测得BE=21 m,请你帮小刚求出该屏幕上端与下端之间的距离CD(结果保留根号).【导学号:83182077】(第8题)答案1.解:如图,过点A 作AG ⊥CD 于点G ,则∠CAG =30°.(第1题)在Rt △ACG 中,CG =AC·sin 30°=50×12=25(cm ),∵GD =50-30=20(cm ),∴CD =CG +GD =25+20=45(cm ).连接FD 并延长与BA 的延长线交于点H ,则∠H =30°, 在Rt △CDH 中,CH =CDsin 30°=2CD =90 cm ,∴EH =EC +CH =AB -BE -AC +CH =300-50-50+90=290(cm ), 在Rt △EFH 中,EF =EH·tan 30°=290×33=29033(cm ). 答:支撑角钢CD 和EF 的长度各是45 cm ,29033cm .2.解:如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H ,(第2题)则DE =BF =CH =10 m ,在Rt △ADF 中,∵AF =80-10=70(m ), ∠ADF =45°,∴DF =AF =70 m .在Rt △CDE 中,∵DE =10 m ,∠DCE =30°, ∴CE =DE tan 30°=1033=103(m ).∴BC =BE -CE =70-103≈70-17.32≈52.7(m ). 答:障碍物B ,C 两点间的距离约为52.7 m . 3.解:由题易得,∠AMN =30°, ∠ABN =45°.如图,过点A 作AC ⊥MN 于点C.(第3题)在Rt △ABC 中,tan ∠ABC =ACBC,∴BC =AC.在Rt △AMC 中,tan ∠AMC =ACMC ,∴MC =3AC.由MB =MC -BC ,得3AC -AC =400, ∴AC =200(3+1)≈546(m )>500 m .∴如果不改变方向,输水路线不会穿过居民区.4.解:延长AD 交BC 的延长线于点G ,作DH ⊥BG 于点H ,如图.(第4题)在Rt △DHC 中,∠DCH =60°,CD =4 m ,则CH =CD·cos ∠DCH =4×cos 60°=2(m ),DH =CD·sin ∠DCH =4×sin 60°=23(m ), ∵DH ⊥BG ,∠G =30°, ∴HG =DH tan G =23tan 30°=6(m ),∴CG =CH +HG =2+6=8(m ), 设AB =x m ,∵AB ⊥BG ,∠G =30°,∠BCA =45°, ∴BC =x m ,BG =AB tan G =xtan 30°=3x(m ).∵BG -BC =CG , ∴3x -x =8, 解得x ≈11.答:电线杆的高(AB)约为11 m .5.解:如图,过点A 作AF ⊥BC 于点F.在Rt △ABF 中,∠ABF =α=60°,∴AF =AB·sin 60°=20×32=103(m ). 在Rt △AEF 中,β=45°,∴AF =EF.∴AE=AF2+EF2=(103)2+(103)2=106(m).即改造后的坡长AE为10 6 m.(第5题)6.解:如图,作AD⊥BC于点D,BH垂直水平线于点H,(第6题)由题意得∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°.∵AB=32 m,∴AD=CD=AB·sin 30°=16(m),BD=AB·cos 30°=163(m).∴BC=CD+BD=(16+163)m,则BH=BC·sin 30°=(8+83)m.即这架无人飞机的飞行高度为(8+83) m.7.解:如图,作CE⊥AB于点E.(第7题)则CD=BE=5 m,CE=BEtan 30°=53(m),AE=CE·tan 45°=53(m),∴AB=AE+BE=(5+53)m.即大树的高度为(5+53) m.8.解:∵∠CBE=45°,CE⊥AE,∴CE=BE.∴CE=21 m.在Rt△ADE中,∵∠DAE=30°,AE=AB+BE=6+21=27(m),∴DE=AE·tan 30°=27×33=93(m).∴CD=CE-DE=(21-93) m.即该屏幕上端与下端之间的距离CD为(21-93) m.。

九年级数学上册第26章解直角三角形26.2锐角三角函数的计算授课课件新版冀教版

九年级数学上册第26章解直角三角形26.2锐角三角函数的计算授课课件新版冀教版
和 SHIFT 键.
2.具体操作步骤是:先按SHIFT 键,再按sin ,cos , tan 键之一,再依次输入三角函数值,最后按=键, 那么屏幕上就-讲
(1)上面得出的结果是以“度〞为单位的,再按°’〞 键
即可显示以“度、分、秒〞为单位的结果.
(2)求角度的计算结果,如没有特别说明,一般精确到
板上涉及三角函数的键有sin ,cos 和tan ,当我们
计算整数度数的某锐角的三角函数值时,可选按这
三个键之一,然后再从高位到低位依次按出表示度
数的键,然后按=键,屏幕上就会显示出结果.
感悟新知
知1-讲
(2)求非整数度数的锐角三角函数值,假设度数的单位是 用
度、分、秒表示的,在用科学计算器计算其三角函数 值时,同样先按sin ,cos 或tan 键,然后从高位到低位 依次按出表示度的键,再按°’〞键,然后,从高位到 低 位依次按出表示分的键,再按°’〞键,然后,从高位 到
1″.
3.易错警示:注意由值求角必须保证按键顺序正确.
感悟新知
例 3 根据以下条件求锐角A的度数:(结果精确到1′)
知2-练
(1)sin A=0.732 1;(2)cos A=0.218 7;(3)tan A=3.527.
导引:利用sin ,cos ,tan 键的第二功能计算,即先按SHIFT
键,再按sin或cos或tan键,然后输入三角函数值,最
课时导入
在Rt△ABC中,∠ACB=90°,BC=ABsin 16°.你知 道sin16°是多少吗?我们可以借助科学计算器求锐角的三 角函数值. 怎样用科学计算器求三角函数值呢?
感悟新知
知识点 1 用计算器求锐角的三角函数值
知1-讲
1.计算器的使用方法:

2012年高考总复习一轮《名师一号-数学》第26讲

2012年高考总复习一轮《名师一号-数学》第26讲
第3页
高考总复习( 高考总复习(文、理)
(2)余弦定理 a2=b2+c2-2bc·cosA, 2=a2+c2-2ac·cosB, 2=a2+b2-2ab·cosC, b c b2+c2-a2 a2+c2-b2 a2+b2-c2 或 cosA= ,cosB= ,cosC= . 2bc 2ac 2ab
高考总复习( 高考总复习(文、理)
点评:解三角形时常用结论: ①大边对大角,反之亦然; ②两边之和大于第三边,两边之差小于第三边; ③sin(A+B)=sinC,cos(A+B)=-cosC, A+B C tan(A+B)=-tanC;sin =cos , 2 2 A+B A+B C C cos =sin ,tan =cot , 2 2 2 2 tanA+tanB+tanC=tanAtanBtanC. ④△ABC 为正三角形的充要条件是 A、B、C 成等差数列且 a、b、c 成等比数列.
答案:B
第14页
高考总复习( 高考总复习(文、理)
5.(2010·江苏卷)在锐角△ABC 中,角 A、B、C 的对边分别为 a、b、 b a tanC tanC c,若 + =6cosC,则 + 的值是________. a b tanA tanB
解析:
1 解法一: a=b=1, cosC= , 取 则 由余弦定理得 c2=a2+b2-2abcosC 3 4 2 3 = , ∴c= .在如图所示的等腰三角形 ABC 中, 可得 tanA=tanB= 2, 3 3 又 sinC=
第6页
高考总复习( 高考总复习(文、理)
在△ABC中,已知a,b和A时,解的情况如下:
A为锐角


关系式 解个数
a=bsinA 一解
bsinA<a<b 两解

2019-2020年九年级数学上册第26章解直角三角形26.1锐角三角形第2课时正弦和余弦导学课件新版冀教版

2019-2020年九年级数学上册第26章解直角三角形26.1锐角三角形第2课时正弦和余弦导学课件新版冀教版

式.用顺口溜可记为“一,二,三;三,二,一;三九二十七” .
三句话中的“1,2,3” “3,2,1” “3,9,27”分别是30°,45
60°角的正弦,余弦,正切值中分子根号内的m的值.
第2课时 正弦和余弦
目标三 求三角形的边长
例 3 [教材补充例题]如图 26-1-4,在△ABC 中,∠A=30°, ∠B=45°,AC=2 3,求 AB 的长.
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
2019/7/19
最新中小学教学课件
thank
you!
2019/7/19
最新中小学教学课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。

专题26 三角形全等【考点巩固】(解析版)

专题26  三角形全等【考点巩固】(解析版)

专题26 三角形全等考点1:全等三角形的概念和性质1.如图所示,已知△ABC△△ADE,BC的延长线交DE于F,△B=△D=25°,△ACB=△AED =105°,△DAC=10°,则△DFB为()A.40°B.50°C.55°D.60°【分析】设AD与BF交于点M,要求△DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求△AMC的大小,再转化为在△ACM中求△ACM就可以.【答案】解:设AD与BF交于点M,△△ACB=105,△△ACM=180°﹣105°=75°,△AMC=180°﹣△ACM﹣△DAC=180°﹣75°﹣10°=95°,△△FMD=△AMC=95°,△△DFB=180°﹣△D﹣△FMD=180°﹣95°﹣25°=60°.故选:D.2.如图,△ABC△△AED,连接BE.若△ABC=15°,△D=135°,△EAC=24°,则△BEA的度数为()A.54°B.63°C.64°D.68°【分析】直接利用全等三角形的性质结合三角形内角和定理得出△BAE=54°,进而得出答案.【答案】解:△△ABC△△AED,△D=135°△△C=△D=135°,AB=AE,△△ABE=△AEB,△△ABC=15°,△D=△C=135°,△△BAC=30°,△△EAC=24°,△△BAE=54°,×(180°﹣54°)=63°.则△BEA的度数为:12故选:B.3.下图所示的图形分割成两个全等的图形,正确的是()A.B.C.D.【分析】直接利用全等图形的性质进而得出答案.【答案】解:如图所示:图形分割成两个全等的图形,.故选:B.考点2:三角形全等的判定1.(2021·重庆)如图,点B,F,C,E共线,△B=△E,BF=EC,添加一个条件,不等判断△ABC△△DEF的是()A.AB=DE B.△A=△D C.AC=DF D.AC△FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件△A =△D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC △△DEF ,故C 符合题意;D. 添加一个条件AC △FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .2.(2021·山东)如图,四边形ABCD 中,BAC DAC ∠=∠,请补充一个条件____,使ABC ADC △≌△.【答案】D B ∠=∠(答案不唯一)【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【详解】解:添加的条件为D B ∠=∠, 理由是:在ABC 和ADC 中,BAC DAC D B AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ADC △≌△(AAS ),故答案为:D B ∠=∠.3.(2021·湖北)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.【答案】()2,2【分析】根据题意画出图形,易证明ADC CEB △≌△,求出OE 、BE 的长即可求出B 的坐标.【详解】解:如图所示,点A 绕点C 顺时针旋转90︒得到点B ,过点A 作x 轴垂线,垂足为D ,过点B 作x 轴垂线,垂足为E ,△点C 的坐标为()1,0-,点A 的坐标为()3,3-, △CD=2,AD =3,根据旋转的性质,AC =BC ,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△90ACD DAC ∠+∠=︒,△BCE DAC ∠=∠,△ADC CEB △≌△,△AD =CE =3,CD =BE =2,△OE =2,BE =2,故答案为:()2,2.4.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC △△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上△//,//AC DF BC EF△,A FDE ABC DEF ∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△()ABC DEF ASA △≌△5.(2020•泸州)如图,AC 平分△BAD ,AB =AD .求证:BC =DC .【分析】由“SAS”可证△ABC△△ADC,可得BC=DC.【解答】证明:△AC平分△BAD,△△BAC=△DAC,又△AB=AD,AC=AC,△△ABC△△ADC(SAS),△BC=CD.6.(2020•无锡)如图,已知AB△CD,AB=CD,BE=CF.求证:(1)△ABF△△DCE;(2)AF△DE.【分析】(1)先由平行线的性质得△B=△C,从而利用SAS判定△ABF△△DCE;(2)根据全等三角形的性质得△AFB=△DEC,由等角的补角相等可得△AFE=△DEF,再由平行线的判定可得结论.【解答】证明:(1)△AB△CD,△△B=△C,△BE=CF,△BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,△{AB=CD ∠B=∠C BF=CE,△△ABF△△DCE(SAS);(2)△△ABF△△DCE,△△AFB=△DEC,△△AFE=△DEF,△AF△DE.7.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD△△ACE;(2)判断△BOC的形状,并说明理由.【分析】(1)由“SAS”可证△ABD△△ACE;(2)由全等三角形的性质可得△ABD=△ACE,由等腰三角形的性质可得△ABC=△ACB,可求△OBC=△OCB,可得BO=CO,即可得结论.【解答】证明:(1)△AB=AC,△BAD=△CAE,AD=AE,△△ABD△△ACE(SAS);(2)△BOC是等腰三角形,理由如下:△△ABD△△ACE,△△ABD=△ACE,△AB=AC,△△ABC=△ACB,△△ABC﹣△ABD=△ACB﹣△ACE,△△OBC=△OCB,△BO=CO,△△BOC是等腰三角形.。

新冀教版九上数学第26章 解直角三角形【创新说课稿】锐角三角函数的计算

新冀教版九上数学第26章 解直角三角形【创新说课稿】锐角三角函数的计算

锐角三角函数的计算一、说教材1、教学内容的地位、作用《锐角三角函数的计算》选自冀教版九年级数学上册第二十六章《解直角三角形》,本节主要让学生熟记特殊角的三角函数值;运用特殊角的三角函数值进行加、减、乘、除运算;并能根据函数值说出对应的锐角度数。

学好本节内容能使学生灵活运用锐角三角函数解决实际生活中的问题。

2、教学目标与要求为了更好培养学生的数学探索能力和数学意识,提高学生分析问题和解决问题的能力,制定如下教学目标:(1)知识目标:熟记30°、45°、60°角的三角函数值。

(2)能力目标:让学生经历30°、45°、60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法。

(3)情感目标:通过本节课的学习让学生体会锐角三角函数的数学美,从而培养学生的数学应用意识。

3、教学重点与难点教学重点:熟记30°、45°、60°角的三角函数值 教学难点:根据函数值说出对应的锐角度数 二、说教法与学法1、说教法创设学生熟悉的情境引导学生小组合作探究,并主动参与教学活动,从而使学生熟记30°、45°、60°角的三角函数值,掌握特殊角的三角函数的运用。

2、说学法通过学生之间的探索及交流活动,归纳本节特殊角的三角函数值的记忆方法,并能灵活特殊角的三角函数值解决问题。

三、说学情九年级(4)班的大部分学生能自觉学习、能较好地配合教师上课;但也有一小部分男同学厌学、不积极参与教学活动,对本班的学习气氛有较大的影响。

本节课创设问题情境,让学生从简单问题中掌握特殊角的三角函数值的基本应用。

四、说教学程序 一、新课引入1、在Rt △ACB 中, ∠C=90°,∠A=30 ° 若BC=1,则AB=____,AC= ____,∠B=_____CBB2、在Rt △ACB 中,若∠A =45°,BC=1,则AB=____,AC= ____,∠B=_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第26讲 解三角形夯实基础 【p 55】【学习目标】掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力. 【基础检测】1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若a =2,c =2 3,cos A =32且b <c ,则b =( ) A .3 B .2 2 C .2 D .3【解析】由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4.又b <c ,∴b =2. 【答案】C2.在△ABC 中,内角A, B, C 所对的边分别是a, b, c ,若B =30°, c =23,b =2,则C =( )A .π3B .π3或2π3C .π4D .π4或5π4【解析】由正弦定理b sin B =c sin C 得212=23sin Csin C =32,∴C =π3或2π3. 【答案】B3.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( )A .π6B .π4C .π3D .3π4【解析】由sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,代入整理得c -b c -a =ac +bc 2-b 2=ac -a 2,所以a 2+c 2-b 2=ac ,即cos B =12,所以B =π3.【答案】C4.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,该三角形的面积为2,则b 的值为( )A . 3B .322 C .2 2 D .23【解析】由锐角三角形中sin A =223得:cos A =13,面积12bc sin A =2,所以bc =3,根据余弦定理cos A =b 2+c 2-a 22bc ,所以13=b 2+⎝⎛⎭⎫3b 2-46,整理得:b 2+9b 2=6,解得:b 2=3,所以b = 3.【答案】A5.如图,有一段河流,河的一侧是以O 为圆心的扇形区域OCD ,河的另一侧是一段笔直的河岸l ,岸边有一高为15米的烟囱AB(不计B 离河岸的距离),设OB 与圆弧CD ︵的交点为E.经测量,扇形区域和河岸处于同一水平面,在点O 和点E 处测得烟囱AB 的仰角分别为30°和60°.若CE 的长为103米,则BC =________米.【解析】在△EAB 中,因为∠AEB =60°,所以BE =53, 在△OAB 中,因为∠AOB =30°,所以BO =153,所以在△OCE 中,OE =CE =OC =103, 从而∠BOC =60°, 在△OBC 中, BC =BO 2+CO 2-2BO·CO·cos 60°=521. 【答案】521 【知识要点】 1.正弦定理、余弦定理2.三角形的面积:S △ABC =__12ab sin __C__=__12ac sin __B__=__12bc sin __A__=abc 4R =12(a +b +c)·r(R 为三角形外接圆半径,r 为内切圆半径).3.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线__上方__时叫仰角,目标视线在水平视线__下方__时叫俯角(如图(a )).图(a ) 图(b ) 4.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图(b )). 5.方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度.典 例 剖 析 【p 56】考点1 利用正弦定理解三角形例1已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且asin B -bcos A =0.(1)求角A 的大小;(2)若a =25,b =2,求△ABC 的面积.【解析】(1)在△ABC 中,由正弦定理得sin Asin B -sin Bcos A =0, 即sin B (sin A -cos A )=0, 又角B 为三角形内角,sin B ≠0,所以sin A -cos A =0,即2sin ⎝⎛⎭⎫A -π4=0,又因为A ∈(0,π),所以A =π4.(2)法一:在△ABC 中,由余弦定理得: a 2=b 2+c 2-2bc·cos A ,则20=4+c 2-4c·⎝⎛⎭⎫22.即c 2-22c -16=0, 解得c =-22(舍)或c =42,又S =12bcsin A ,所以S =12×2×42×22=4.法二:∵a =25,b =2,由(1)知A =π4,∴由a sin A =b sin B 得sin B =bsin A a =2·2225=110,∵sin B =110<12=sin A ,∴B 为锐角.∴cos B =310, ∴sin C =sin ⎝⎛⎭⎫34π-B =12(cos B +sin B )=12·410=25. ∴S △ABC =12absin C =12·25·2·25=4.考点2 利用余弦定理解三角形例2(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bcos B =acos C +ccos A ,则B =________.【解析】法一:由2bcos B =acos C +ccos A 及余弦定理,得 2b ·a 2+c 2-b 22ac =a·a 2+b 2-c 22ab +c·b 2+c 2-a 22bc ,整理得,a 2+c 2-b 2=ac , 所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B<π,所以B =π3.法二:由正弦定理得2sin Bcos B =sin Acos C +sin Ccos A =sin (A +C )=sin B , 又0<B<π,所以sin B>0,cos A =12,B =π3.【答案】π3(2)△ABC 中, cos ∠ABC =13,AB =2,点D 在线段AC 上,且AD =2DC ,BD =433,则BC 的长为________.【解析】在△ABC 中,设BC =a ,AC =3b , 则由余弦定理可得9b 2=a 2+4-43a ,①在△ABD 和△DBC 中,由余弦定理可得cos ∠ADB =4b 2+163-41633b , cos ∠BDC =b 2+163-a 2833b .因为cos ∠ADB =-cos ∠BDC ,所以有4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6,②由①②可得a =3,b =1,即BC =3. 【答案】3【点评】解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.考点3 与三角形面积有关的问题例3△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A -3cos A =0,a =7,b =5.(1)求c ;(2)设D 为CB 延长线上一点,满足AD ⊥AC ,求△ABD 的面积. 【解析】(1)由已知得tan A =3A =π3,由余弦定理2bccos A =b 2+c 2-a 2,c 2-5c -24=0c =8(舍负).(2)法一:如图,△ABC 中,cos C =a 2+b 2-c 22ab =17tan C =43;Rt △ACD 中,tan C =ADAC=43AD =203,∴S △ABD =12AB·AD·sin ∠BAD =12×8×203×12=40 3.法二:S △ABC =12bcsin A =12ah h =2037,cos C =a 2+b 2-c 22ab =17AC CD =17BD =28,∴S △ABD =12BD·h =40 3.【点评】(1)对于面积公式S =12absin C =12acsin B =12bcsin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.考点4 三角形中的测量问题(高度、距离、角度)例4要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为________m.【解析】如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x. 在Rt △ADB 中,∠ADB =30°,所以BD =3x.在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC·CD·cos 120°, 即(3x )2=x 2+402-2·x·40·cos 120°,解得x =40,所以电视塔高为40 m. 【答案】40【点评】求解高度问题应注意:(1)在处理有关高度问题时,理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.例5如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M ,N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计能使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?【解析】设∠AMN =θ,在△AMN 中,MN sin 60°=AMsin (120°-θ).因为MN =2,所以AM =433sin (120°-θ).在△APM 中,cos ∠AMP =cos (60°+θ). AP 2=AM 2+MP 2-2AM·MP·cos ∠AMP =163sin 2(120°-θ)+4-2×2×433sin (120°-θ)·cos (60°+θ) =163sin 2(θ+60°)-1633sin (θ+60°)cos (θ+60°)+4 =83[1-cos (2θ+120°)]-833sin (2θ+120°)+4 =-83[3sin (2θ+120°)+cos (2θ+120°)]+203=203-163sin (2θ+150°),θ∈(0,120°). 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值2 3. 所以当∠AMN =60°时,符合要求. 【点评】求解距离问题应注意:(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.例6在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.【解析】如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇, 则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240xcos 120°, 解得x =2.故AC =28,BC =20.根据正弦定理得BC sin α=ACsin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.【点评】求解角度问题应注意:(1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.方 法 总 结 【p 57】1.利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).2.由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即A >Ba >bsin A >sin B.3.已知三角形两边及其一边的对角解三角形时,利用正弦定理求解时,要注意判断三角形解的情况(存在两解、一解和无解三种可能).而解的情况确定的一般方法是“大边对大角且三角形钝角至多一个”.4.利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其余角; (3)已知两边和其中一边的对角,求其他边和角;(4)由余弦值确定角的大小时,一定要依据角的范围及函数值的正负确定.走 进 高 考 【p 57】1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2 B.30 C.29 D .25 【解析】因为cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35. 所以由余弦定理得AB 2=BC 2+AC 2-2BC·ACcos C =1+25-2×1×5×⎝⎛⎭⎫-35=32, ∴AB =4 2. 【答案】A2.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6【解析】由三角形面积公式知:S △ABC =12absin C =a 2+b 2-c 24,由余弦定理得:a 2+b 2-c 2=2abcos C , ∴sin C =cos C ,∴C =π4. 【答案】C3.(2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC. 【解析】(1)在△ABD 中,由正弦定理得 BD sin ∠A =ABsin ∠ADB.由题设知,5sin 45°=2sin ∠ADB,所以sin ∠ADB =25.由题设知,∠ADB<90°, 所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得 BC 2=BD 2+DC 2-2·BD·DC·cos ∠BDC =25+8-2×5×22×25=25. 所以BC =5. 考 点 集 训 【p 206】A 组题1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63 D.63【解析】根据正弦定理a sin A =b sin B ,可得15sin 60°=10sin B , 解得sin B =33,又因为b <a ,则B <A ,故B 为锐角, 所以cos B =1-sin 2B =63. 【答案】D 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b (2sin B +sin A )+(2a +b )sin A =2c sin C ,则C =( )A.π6B.π3C.2π3D.5π6【解析】由正弦定理可得b (2sin B +sin A )+(2a +b )sin A =2c sin C b (2b +a )+(2a +b )a =2c 2,整理得a 2+b 2-c 2=-abcos C =a 2+b 2-c 22ab =-12,∵0<C <π,∴C =2π3. 【答案】C3.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A ,B 两船的距离为( )A .2 3 kmB .3 2 km C.15 km D.13 km 【解析】由题意可得∠ACB =( 90°-25°)+85°=150°, 又 AC =2,BC =3,由余弦定理可得AB 2=AC 2+BC 2-2AC ·BC cos 150°=13, ∴AB =13. 【答案】D 4.已知△ABC 中,a 、b 分别是角A 、B 所对的边,且a =x (x >0),b =2,A =60°,若三角形有两解,则x 的取值范围是( )A .x > 3B .0<x <2 C.3<x <2 D.3<x ≤2【解析】根据正弦定理a sin A =b sin B =c sin C=2R , 可得x sin 60°=2sin B,所以sin B =3x , ∵A =60°,∴0<B <120°,要使三角形有两解需满足60°<B <120°,且B ≠90°,即32<sin B <1,解得3<x <2 . 【答案】C 5.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =a sin B ,且c =2b ,则a b=________. 【解析】由题知,2b ·2sin A cos A =a sin B ,由正弦定理得4ab ·cos A =ab ,即cos A =14, 又∵cos A =b 2+c 2-a 22bc =5b 2-a 24b 2=14,∴a 2=4b 2,a =2b . 【答案】2 6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________.【解析】因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A =3sin 60°,解得sin A =12,因为0°<A <180°, 所以A =30°或150°(舍去),此时C =90°, 所以S △ABC =12ab =32. 【答案】327.如图,在△ABC 中,点D 在AC 边上,且AD =3DC ,AB =7, ∠ADB =π3,∠C =π6. (1)求DC 的值; (2)求tan ∠ABC 的值.【解析】(1)如图所示, ∠DBC =∠ADB -∠C =π3-π6=π6, 故∠DBC =∠C, DB =DC .设DC =x ,则DB =x, DA =3x .在△ADB 中,由余弦定理AB 2=DA 2+DB 2-2DA ·DB ·cos ∠ADB ,即7=()3x 2+x 2-2·3x ·x ·12=7x 2,解得x =1,DC =1. (2)在△ADB 中,由AD >AB ,得∠ABD >∠ADB =π3, 故∠ABC =∠ABD +∠DBC >π3+π6=π2, 在△ABC 中,由正弦定理AC sin ∠ABC =AB sin ∠ACB , 即4sin ∠ABC =712,故sin ∠ABC =27, 由∠ABC ∈⎝⎛⎭⎫π2,π,得cos ∠ABC =-37,tan ∠ABC =-23=-23 3. 8.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ; (2)若c =7,△ABC 的面积为332,求△ABC 的周长. 【解析】(1)2cos C ()a cos B +b cos A =c ,由正弦定理得:2cos C sin ()A +B =sin C ,∵A +B +C =π,∴sin(A +B )=sin C >0, ∴cos C =12, ∵C ∈(0,π),∴C =π3. (2)由余弦定理得:c 2=a 2+b 2-2ab cos C ,即()a +b 2-3ab =7,又S =12ab sin C =34ab =332,ab =6, ∴()a +b 2-18=7,a +b =5,∴△ABC 周长为a +b +c =5+7.B 组题1.设△ABC 的面积为S 1,它的外接圆面积为S 2,若△ABC 的三个内角大小满足A ∶B ∶C =3∶4∶5,则S 1S 2的值为( ) A.2512π B.2524π C.3+32π D.3+34π【解析】设三角形的三内角分别为3x ,4x ,5x ,外接圆的半径为R ,由三角形内角和定理可得三内角分别为A =π4,B =π3,C =5π12,则由正弦定理可得a =2R sin A ,b =2R sin B ,c =2R sin C ,故S 1=12ab sin C =12(2R )2×22×32×6+24=3+34R 2,即S 1S 2=3+34π. 【答案】D 2.如图,无人机在离地面高200 m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN =60°,则山的高度MN 为________ m.【解析】由条件,∠MAD =15°,所以∠NMA =75°,∠CMA =45°,∠MAC =15°+45°=60°,所以∠ACM =180°-60°-45°=75°,∠ACB =45°,这样在△ACB 中,AC =2002,在△ACM 中,AC sin 45°=MC sin 60°,解得MC =2003,△MNC 中,MN =MC sin 60°=2003×32=300. 【答案】3003.如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD =2DC ,BD =433,则BE =________. 【解析】由条件得cos ∠ABC =13,sin ∠ABC =223. 在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①. 因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3.S △ABC =12·AC ·AB sin A =12×3×2×223=22, S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE . S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE . 由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE , ∴BE =45 6. 【答案】456 4.如图所示,摄影爱好者S 在某公园发现A 处的正前方B 处有一立柱,测得立柱顶端O 的仰角和立柱底部B 的俯角均为π6.设S 的眼睛到地面的距离为3米. (1)求摄影爱好者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN 绕中点O 在S 与立柱所在的平面内旋转.摄影爱好者有一视角范围为π3的镜头,在彩杆转动的任意时刻,摄影爱好者是否都可以将彩杆全部摄入画面?说明理由. 【解析】(1)过S 作SC 垂直OB 于C ,连结SB ,SO ,则∠CSB =π6,∠ASB =π3. 又SA =3,故在Rt △SAB 中,可求得BA =3,即摄影爱好者到立柱的水平距离为3米.由SC =3,∠CSO =π6,在Rt △SCO 中,可求得OC = 3. 因为BC =SA =3,故OB =23,即立柱高为23米.(2)连接SM ,SN ,设SN =a ,SM =b .由(1)知SO =23,在△SOM 和△SON 中,cos ∠SOM =-cos ∠SON ,即(23)2+1-b 22×23×1=-(23)2+1-a 22×23×1,可得a 2+b 2=26. 在△MSN 中,cos ∠MSN =a 2+b 2-222ab =11ab ≥22a 2+b 2=1113>12,当且仅当a =b 时等号成立.又∠MSN ∈(0,π),则0<∠MSN <π3. 故摄影爱好者S 可以将彩杆全部摄入画面.。

相关文档
最新文档