高中物理动能定理经典例题
高中物理动能定理解析例题
高中物理动能定理解析例题(一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?4a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?4b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少?5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .6、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. S 2S 1LV 0V 0vmB7. 如图8-30所示,长为L ,质量为m1的木板A 置于光滑水平面上,在A 板上表面左端有一质量为m2的物块B ,B 与A 的摩擦因数为μ,A 和B 一起以相同的速度v 向右运动,在A 与竖直墙壁碰撞过程中无机械能损失,要使B 一直不从A 上掉下来,v 必须满足什么条件(用m1、m2、L 、μ表示)?倘若V0已知,木板B 的长度L 应满足什么条件(用m1、m2、V0、μ表示)?(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +2a 、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
动能定理的典型例题
“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
动能定理的应用20个经典例题
A.动能 B.速度 C.速率 D.重力所做的功
例4、质量为m的物体放在动摩擦因数为 μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后 撤去外力,物体还能运动多远?
F
例5、如图所示,半径为R的光滑半圆轨 道和光滑水平面相连,一物体以某一 初速度在水平面上向左滑行,那么物 体初速度多大时才能通过半圆轨道最 高点?
例7、质量m=2kg的物块位于高h=0.7m的水平桌 面上,物块与桌面之间的动摩擦因数μ=0.2,现用 F=20N的水平推力使物块从静止开始滑动L1=0.5m 后 撤去推力,物块又在桌面上滑动了L2=1.5m后离开桌 面做平抛运动。求: (1)物块离开桌面时的速度 (2)物块落地时的速度(g=10m/s)
例1、一质为2kg的物体做自由落体来自动,经过A 点时的速度为10m/s,到达B点时的速度是 20m/s,求: (1) 经过A、B两点时的动能分别是多少? (2) 从A到B动能变化了多少? (3) 从A到B的过程中重力做了多少功? (4) 从A到B的过程中重力做功与动能的变化 关系如何?
解(1)由
3、动能具有瞬时性,是状态量,v是瞬时速度(注意:v为合 速度或实际速度,一般都以地面为参考系)。
我们对动能定理的理解
1、动能定理的普适性:对任何过程的恒力、变力;匀变速、非匀变速; 直线运动、曲线运动;运动全程、运动过程某一阶段或瞬间过程都能运 用;(只要不涉及加速度和时间,就可考虑用动能定理解决动力学问题)
解法二:对物体运动的前后两段分别用动能定理W合 =△Ek,则有
1 2 Fs1 - fs1 = mv 1 -0 2
1 2 - fs2 = 0 - mv 1 2
①
②
将上两式相加,得
Fs1 - fs1 - fs2 = 0 ③
动能定理应用典型例题及解析
动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理应用典型例题及解析
动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。
第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。
根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。
1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。
3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。
4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。
因此,第二个物体碰撞后向前运动的速度为4/3m/s。
高考物理动能定理的综合应用题20套(带答案)含解析(1)
高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高中物理动能与动能定理题20套(带答案)含解析
,化简为 ,结合图象可得: ,
解得: ;
第二空:由 ,解得: ;
第三空:由于弹簧弹力远大于摩擦力和重力沿斜面的分量,所以摩擦力和重力沿斜面的分量
忽略不计,根据能量守恒可得: ;
第四空:考虑摩擦力和重力沿斜面的分量,根据动能定理可得: ,
②弹簧放在挡板P和滑块之间,当弹簧为原长时,遮光板中心对准斜面上的A点;
③光电门固定于斜面上的B点,并与数字计时器相连;
④压缩弹簧,然后用销钉把滑块固定,此时遮光板中心对准斜面上的O点;
⑤用刻度尺测量A、B两点间的距离L;
⑥拔去锁定滑块的销钉,记录滑块经过光电门时数字计时器显示的时间△t;
⑦移动光电门位置,多次重复步骤④⑤⑥。
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。
高中物理动能与动能定理题20套(带答案)含解析
一、高中物理精讲专题测试动能与动能定理
【物理】物理动能与动能定理题20套(带答案)
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
完整版)高中物理动能定理典型练习题(含答案)
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
高考物理动能定理的综合应用题20套(带答案)
高考物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。
小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。
(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。
(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。
【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。
(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。
物理动能与动能定理题20套(带答案)及解析
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
高中物理-动能定理典型练习题(含答案)
图 5-3-5动能定理典型练习题 典型例题讲解1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度 的变化是矢量,它完全可以只是由于速度方向的变化而引起•例如匀速圆周运动 .速度变化的快 慢是指加速度,加速度大小与速度大小之间无必然的联系 【答案】D 2•物体由高岀地面 H 高处由静 进入沙坑h 停止(如图5-3-4所 的多少倍? 止自由落下,不考虑空气阻力,落至沙坑表面 示).求物体在沙坑中受到的平均阻力是其重力【解析】选物体为研究对象, 先研究自由落体过程,只有重 图 5-3-4力做功,设物体质量为 m ,落到沙坑表面时速度为V ,根据动能定理有 mgH 1mv 2 0 ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 1mgh Fh 0 mv 2 ② 由①②两式解得 F H h mg h 另解:研究物体运动的全过程,根据动能定理有 mg(H h) Fh 0 0 0 解得H h mg h 3.如图5-3-5所示,物体沿一曲面从 A 点无初速度滑下,滑至曲面的最低点 B 时,下滑高度为 【解析】设物体克服摩擦力 5m ,若物体的质量为 Ikg ,物体克服阻力所做的功为多 到B 点时的速度为6m/s ,则在下滑过程中, 少?(g 取 10m/s 2)所做的功为W ,对物体由A运动到B 用动能定理得即物体克服阻力所做的功为 32J.课后创新演练1•一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水 平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为 4m/s ,则在这段时间内水平力所做的功为( A )A • 0B • 8JC • 16JD • 32J2.两物体质量之比为 1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为(C ) A • 1:3B • 3:1C • 1:9D • 9:13 • 一个物体由静止沿长为 L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) 1 — A • B • ( 2 1)L4C •LD •L224•如图5-3-6所示,质量为 M 的木块放在光滑的水平面上, 质量为m 的子弹以速度 v o 沿水平射中木块,并最终留在木块中与木块一起以速度v 运动•已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s •若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是1f ( L + s ) = — mv o25•如图5-3-7所示,质量为 m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定 滑轮由地面以速度 v o 向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向为(D ) A • mv 。
高中物理动能定理练习题及讲解
高中物理动能定理练习题及讲解### 高中物理动能定理练习题及讲解动能定理是物理学中描述物体动能变化的重要定理,它表明物体动能的变化等于作用在物体上的外力所做的功。
以下是几道关于动能定理的练习题,以及相应的讲解。
#### 练习题一一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10秒后速度减为0。
求汽车受到的平均阻力。
解答:设汽车受到的平均阻力为 \( F \) 。
根据动能定理,汽车动能的变化等于阻力做的功,即:\[ \Delta E_k = -W = -F \cdot s \]其中 \( \Delta E_k \) 为动能的变化量,\( W \) 为阻力做的功,\( s \) 为汽车的位移。
汽车的初始动能为 \( \frac{1}{2}mv^2 \),其中 \( m \) 为质量,\( v \) 为速度。
因此,动能的变化量为:\[ \Delta E_k = \frac{1}{2}m(0^2 - v^2) = -\frac{1}{2}mv^2 \]由于汽车速度从 \( v \) 减为0,所以 \( \Delta E_k = -\frac{1}{2} \times 1000 \times 20^2 \) J。
根据动能定理,我们有:\[ -\frac{1}{2} \times 1000 \times 20^2 = -F \cdot s \]汽车的位移 \( s \) 可以通过速度-时间公式 \( v = at \) 计算,其中 \( a \) 为加速度。
由于汽车做匀减速运动,\( a =\frac{\Delta v}{\Delta t} = \frac{0 - 20}{10} = -2 \) m/s²。
因此,\( s = \frac{1}{2}at^2 = \frac{1}{2} \times (-2) \times 10^2 \) m。
将 \( s \) 的值代入动能定理的公式中,我们可以求得 \( F \)。
(完整版)高中物理动能定理经典计算题和答案
动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O PQ l h H 2-7-2轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
高考物理动能定理的综合应用题20套(带答案)含解析
高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。
高中物理动能与动能定理题20套(带答案)
高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
动能定理典型例题
动能定理典型例题【例题】1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力。
2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。
拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度静止在水平面上,求物体在水平面上滑动的位移。
4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端的速度。
拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少?拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。
类型题题型一:应用动能定理求解变力做功1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为()A.mgLcos0 B.FLsinθC.FLθ∙D.(1cos).-mgLθ2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面上以速度V向右匀速运动的人拉着,设人从地面上由平台的边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少?3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R过程中拉力对小球做的功多大?4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C 点刚好停止。
高中物理 必修2【动能定理及其应用】典型题(带解析)
高中物理 必修2 【动能定理及其应用】典型题1.滑雪运动深受人民群众喜爱.某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变解析:选C .运动员做的是匀速圆周运动,具有向心加速度,所以其所受的合外力不为零,A 错误;运动员在匀速下滑的过程中,所受的摩擦力始终与重力沿滑道切线方向的分力大小相等,由于该分力大小一直在改变,所以摩擦力大小也一直在改变,B 错误;运动员的动能没有改变,根据动能定理,合外力做功为零,C 正确;整个过程中存在摩擦力做功,所以机械能不守恒,D 错误.2.如图所示,已知物体与三块材料不同的地毯间的动摩擦因数分别为μ、2μ和3μ,三块材料不同的地毯长度均为l ,并排铺在水平地面上,该物体以一定的初速度v 0从a 点滑上第一块,则物体恰好滑到第三块的末尾d 点停下来,物体在运动中地毯保持静止,若让物体从d 点以相同的初速度水平向左运动,则物体运动到某一点时的速度大小与该物体向右运动到该位置的速度大小相等,则这一点是( )A .a 点B .b 点C .c 点D .d 点解析:选C .对物体从a 运动到c ,由动能定理,-μmgl -2μmgl =12m v 21-12m v 20,对物体从d 运动到c ,由动能定理,-3μmgl =12m v 22-12m v 20,解得v 2=v 1,选项C 正确. 3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )解析:选A .竖直上抛运动的速度v 与时间t 的关系为v =v 0-gt ,由于E k =12m v 2=12m (v 0-gt )2,故E k t 图象应是A .4.打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F 拉动绳端B ,使物体从A 点(与钉子接触处)由静止开始运动,上升一段高度后撤去F ,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m =1 kg ,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k 与上升高度h 的关系图象如图乙所示.(g 取10 m/s 2,不计空气阻力)(1)求物体上升到0.4 m 高度处F 的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J 的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f 与深度x 的关系图象如图丙所示,求钉子能够插入的最大深度.解析:(1)撤去F 前,根据动能定理,有 (F -mg )h =E k -0由题图乙得,斜率为k =F -mg =20 N ,得F =30 N 又由题图乙得,h =0.4 m 时,E k =8 J 则v =4 m/s ,P =F v =120 W.(2)碰撞后,对钉子,有-F -f x ′=0-E k ′已知E k ′=20 J ,F -f =k ′x ′2又由题图丙得k ′=105 N/m ,解得:x ′=0.02 m. 答案:(1)120 W (2)0.02 m5.如图所示,光滑的轨道ABO 的AB 部分与水平部分BO 相切,轨道右侧是一个半径为R 的四分之一的圆弧轨道,O 点为圆心,C 为圆弧上的一点,OC 与水平方向的夹角为37°.现将一质量为m 的小球从轨道AB 上某点由静止释放.已知重力加速度为g ,不计空气阻力.⎝⎛⎭⎫sin 37°=35,cos 37°=45(1)若小球恰能击中C 点,求刚释放小球的位置距离BO 平面的高度; (2)改变释放点的位置,求小球落到轨道时动能的最小值.解析:(1)设小球经过O 点的速度为v 0,从O 点到C 点做平抛运动,则有 R cos 37°=v 0t ,R sin 37°=12gt 2从A 点到O 点,由动能定理得 mgh =12m v 2联立可得,刚释放小球的位置距离BO 平面的高度 h =415R .(2)设小球落到轨道上的点与O 点的连线与水平方向的夹角为θ,小球做平抛运动, R cos θ=v 0′t ′ R sin θ=12gt ′2对此过程,由动能定理得mgR sin θ=E k -12m v 0′2解得E k =mgR ⎝⎛⎭⎫34sin θ+14sin θ 当sin θ=33时,小球落到轨道时的动能最小,最小值为E k =32mgR . 答案:(1)4R 15 (2)3mgR26.一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,如图所示,那么在这段时间内,其中一个力做的功为( )A .16m v 2B .14m v 2C .13m v 2D .12m v 2解析:选B .在合力F 的方向上,由动能定理得W =Fl =12m v 2,某个分力的功为W 1=12W =14m v 2,B 正确. 7.(多选)如图所示,某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面.物体上升的高度为h ,到达斜面顶端的速度为v ,则在此过程中( )A .物体所受的合力做功为mgh +12m v 2B .物体所受的合力做功为12m v 2C .人对物体做的功为mghD .人对物体做的功大于mgh解析:选BD .对物体应用动能定理可得W 合=W 人-mgh =12m v 2,故W 人=mgh +12m v 2,B 、D 选项正确.8.质量为m 的小球在竖直向上的拉力作用下从静止开始运动,其v -t 图象如图所示(竖直向上为正方向,DE 段为直线).已知重力加速度大小为g ,下列说法正确的是( )A .t 3~t 4时间内,小球竖直向下做匀减速直线运动B .t 0~t 2时间内,合力对小球先做正功后做负功C .0~t 2时间内,小球的平均速度一定为v 22D .t 3~t 4时间内,拉力做的功为m v 3+v 42[(v 4-v 3)+g (t 4-t 3)]解析:选D .根据题意,竖直向上为正方向,故在t 3~t 4时间内,小球竖直向上做匀减速直线运动,故选项A 错误;t 0~t 2时间内,小球速度一直增大,根据动能定理可知,合力对小球一直做正功,故选项B 错误;0~t 2时间内,小球的平均速度等于位移与时间的比值,不一定为v 22,故选项C 错误;根据动能定理,在t 3~t 4时间内:W F -mg v 3+v 42·(t 4-t 3)=12m v 24-12m v 23,整理可得:W F=m v 3+v 42[(v 4-v 3)+g (t 4-t 3)],故选项D 正确. 9.如图所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1 m .质量m =0.2 kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5 m/s ,g 取10 m/s 2.(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2 m ,求物块沿曲面上滑过程所产生的热量. 解析:(1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得, -μmgs -W 克弹=0-12m v 20W 克弹=E p代入数据解得E p =1.7 J.(2)对小物块从B 点开始运动至返回B 点的过程,由动能定理得, -μmg ·2s =12m v 2B -12m v 20 代入数据解得v B =3 m/s. (3)对小物块沿曲面的上滑过程, 由动能定理得-W 克f -mgh =0-12m v 2B产生的热量Q =W 克f =0.5 J.答案:(1)1.7 J (2)3 m/s (3)0.5 J10.如图甲所示,轻弹簧左端固定在竖直墙上,右端点在O 点位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功; (2)O 点和O ′点间的距离x 1;(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离x 2是多少?解析:(1)物块A 从P 点出发又回到P 点的过程,根据动能定理得 克服摩擦力所做的功为W f =12m v 20.(2)物块A 从P 点出发又回到P 点的过程,根据动能定理得 -2μmg (x 1+x 0)=0-12m v 20解得x 1=v 204μg -x 0.(3)A 、B 在弹簧处于原长处分离,设此时它们的共同速度是v 1,弹出过程弹力做功为W F只有物块A 时,从O ′到P 有 W F -μmg (x 1+x 0)=0-0 A 、B 共同从O ′到O 有 W F -2μmgx 1=12×2m v 21 分离后对A 有12m v 21=μmgx 2联立以上各式可得x 2=x 0-v 208μg.答案:(1)12m v 20 (2)v 204μg -x 0 (3)x 0-v 208μg。
高考物理《动能和动能定理》真题练习含答案
高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1【解析】(1)由于小孩无碰撞进入圆弧轨道,即小
孩落到A点时速度方向沿A点切线方向,则
,
又
,联立以上两式解得v0=3 m/s.
(2)设小孩到最低点的速度为v,根据机械能守恒定律有
在最低点,根据牛顿第二定律,有
联立解得FN=1 290 N
由牛顿第三定律可知,小孩对轨道的压力大小为1 290 N.
答案:(1)3 m/s (2)1 290 N
20.考点:机械能守恒定律;牛顿第二定律;向心力.菁优网版权所有
专题:机械能守恒定律应用专题.
分析:(1)从A到B由动能定理可得B位置时的速度,之后做平抛运动,由平抛规律求解
(2)在B位置,由牛顿第二定律可求轻绳所受的最大拉力大小
解答:解:(1)设小球在B点速度为v,对小球从A到B由动能定理得:
mgh=
mv2①
绳子断后,小球做平抛运动,运动时间为t,则有:
H=
②
DC间距离:
s=vt
解得:s=
m≈1.414m
(2)在B位置,设绳子最大力量为F,由牛顿第二定律得:
F﹣mg=
④
联立①④得:F=20N
答(1)DC两点间的距离1.414m
(2)轻绳所受的最大拉力20N
安徽
运用动能定理求出小球经过第一个圆轨道的最高点时的速度,再对小球在第一个圆轨道的最高点进行受力分析,并利用牛顿第二定律求出轨道对小球作用力.
知道小球恰能通过圆形轨道的含义,并能找出在第二圆形轨道的最高点速度.运用动能定理研究某一运动过程求出B、C间距L.
知道要使小球不能脱离轨道的含义:1、小球恰能通过第三个圆轨道,2、轨道半径较大时,小球不能通过第三个圆轨道,但是还要不能脱离轨道,那么小球上升的高度就不能超过R3
应用动能定理研究整个过程求出两种情况下的问题.
解答:解:(1)设小球经过第一个圆轨道的最高点时的速度为v1根据动能定理得:
﹣μmgL1﹣2mgR1=
mv12﹣
mv02 ①
小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律有:
F+mg=m
②
由①、②得 F=10.0 N ③
(2)设小球在第二个圆轨道的最高点的速度为v2,由小球恰能通过第二圆形轨道有:
mg=m
④
﹣μmg(L1+L)﹣2mgR2=
mv22﹣
mv02 ⑤
由④、⑤得 L=12.5m ⑥
(3)要保证小球不脱离轨道,可分两种情况进行讨论:
I.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为
v3,应满足
mg=m
⑦
﹣μmg(L1+2L)﹣2mgR3=
mv32﹣
mv02 ⑧
由⑥、⑦、⑧得 R3=0.4m
II.轨道半径较大时,小球上升的最大高度为R3,根据动能定理
﹣μmg(L1+2L)﹣mgR3=0﹣
mv02
解得 R3=1.0m
为了保证圆轨道不重叠,R3最大值应满足
(R2+R3)2=L2+(R3﹣R2)2
解得 R3=27.9m
综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件
0<R3≤0.4m或 1.0m≤R3≤27.9m
当0<R3≤0.4m时,小球最终停留点与起始点A的距离为L′,则
﹣μmgL′=0﹣
mv02
L′=36.0m
当1.0m≤R3≤27.9m时,小球最终停留点与起始点A的距离为L〞,则
L″=L′﹣2(L′﹣L1﹣2L)=26.0m
答:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小为10.0N;
(2)如果小球恰能通过第二圆形轨道,B、C间距L应是12.5m;
(3)第三个圆轨道的半径须满足下面的条件 0<R3≤0.4m
或 1.0m≤R3≤27.9m
当0<R3≤0.4m时,小球最终停留点与起始点A的距离为36.0m
当1.0m≤R3≤27.9m时,小球最终停留点与起始点A的距离为26.0m.
天津
解答:解:(1)设B在绳被拉断后瞬时的速率为vB,到达C点的速率为vC,
根据B恰能到达最高点C有:
F向=mBg=mB
﹣﹣﹣﹣﹣①
对绳断后到B运动到最高点C这一过程应用动能定理:
﹣2mBgR=
mBvc2﹣
mBvB2﹣﹣﹣﹣﹣﹣﹣﹣﹣②
由①②解得:vB=5m/s.
答:(1)绳拉断后B的速度VB的大小是5m/s;
山东
解答:解:(1)设小物体运动到P点时速度大小为vp,对小物体有a 运动到P过程中应用动能定理得:
﹣μmgL﹣2mgR=
mvp2﹣
mva2
小物体自P点做平抛运动,设运动时间为t,水平射程为x,则
根据平抛运动规律得:
2R=
gt2 ,
x=vt,
联立以上三式代入数据解得:x=0.8m.
(2)设小物体运动到数字“0”的最高点时速度大小为v,对小物体由a运动到数字“0”的最高点过程中应用动能定理得:﹣μmgL﹣2mgR=
mv2﹣
mva2
设在数字“0”的最高点管道对小物体的作用力为F,在数字“0”的最高点,小物体需要的向心力F向=
=0.4N,
由于重力mg=0.1N<F向
所以F向=mg+F
代入数据解得F=0.3N,方向竖直向下.
答:(1)小物体从P点抛出后的水平射程是0.8m.
(2)小物体经过数字“0”的最高点时管道对小物体作用力的大小是0.3N,方向为竖直向下..
浙江
解答:解:(1)小滑块沿斜面滑下,根据动能定理:
得:μ=0.5
(2)小滑块从B点到C点,做平抛运动
竖直方向:
,
得t=0.6s;
水平方向:x=v1t=1.2m;
(3)平抛过程,根据机械能守恒,有:
得:
答:(1)滑块与斜面间的动摩擦因数μ为0.5;(2)小滑块落地点C与B 点的水平距离x为1.2m;(3)小滑块落地时的速度大小为2
m/s.
2014?盐城一模
答:解:(1)物块A加速度为零时,弹簧弹力等于拉力,物块B的加速度为:aB=
=
(2)弹簧第一次恢复原长时,物块B移动的距离为x,则A的位移也是x,F 作用的位移也是x
由动能定理知:Fx=
解得:x=
(3)对A、B在水平方向受力分析如图,F1为弹簧的拉力;
当加速度大小相同为a时,
对A有:F﹣F1=ma,
对B有:F1=ma,
两物体运动的v﹣t图象如图所示,在整个过程中,A的合力(加速度)先减小,而B的合力(加速度)先增大,在达到共同加速度之前A的合力(加速度)一直大于B的合力(加速度),之后A的合力(加速度)一直小于B的合力(加速度).
tl时刻,两物体加速度相等,斜率相同,速度差最大,t1时刻之后,A的速度仍大于B的速度,弹簧仍在伸长,弹簧势能仍在增加,t2时刻两物体的速度相等,A速度达到最大值,两实线之间围成的面积有最大值,即两物体的相对位移最大,此时弹簧被拉到最长,此时弹簧的弹性势能最大.
答:(1)物块A加速度为零时,物块B的加速度
;
(2)弹簧第一次恢复原长时,物块B移动的距离:
+
;
(3)在弹簧第一次恢复原长前,当A、B的速度相等时,弹簧的型变量最大,此时弹簧的弹性势能最大.。