2.3.1变量间的相关关系导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 1 页 2.3.1变量间的相关关系学案 一、目标:明确事物间的相互关系,认识现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。 二、教学过程 预习检测 1.什么叫散点图: 叫做散点图。 2.三种关系: ①如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即 ②如果所有的样本点都落在某一函数曲线附近,变量之间就有 ③如果所有的样本点都落在某一直线附近,变量之间就有 3.正、负相关的概念。 如果散点图中的点分布在从左下角到右上角的区域内,称为 如果散点图中的点分布在从左上角到右下角的区域内,称为
4.线性相关的概念:
教学实图:人体的脂肪百分比和年龄
如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做_ ,回归直线对应的方程叫回归直线方程,它的方程简称 。设回归方程为a x b y +=,则有1122211()()()________________
n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a ====⎧---⎪⎪==⎨--⎪⎪=⎩∑∑∑∑ , 其中1n i i x x ==∑,1n i i y y ==∑
,b 是回归方程的_______,a 是_______。 线性回归方程过点( ) 三、概念巩固:
1.下列关系中,是带有随机性相关关系的是 ① 正方形的边长面积之间的关系;② 水稻产量与施肥量之间的关系
③ 人的身高与年龄之间的关系④ 降雪量与交通事故的发生率之间的关系。
2.下列关系不属于相关关系的是 ( )
A 人的年龄和身高
B 球的表面积与体积。
C 家庭的收入与支出。
D 人的年龄与身体脂肪含量。
3.下列两个变量之间的关系,不是函数关系的是 ( )。
A ,角度和它的余弦值。
B 正方形的边长和面积。
B .正n 边形的边数和内角和。 D 人的年龄和身高。
4. 在下列各图中,每个图的两个变量具有相关关系的图是( )
(2) (3) (4) A :(1)(2) B :(1)(3) C :(2)(4) D :(2)(3) 5.变量与变量之间的关系有两类:一类是 ,另一类是 四、典型例题分析:(利用线性回归方程对总体进行估计) 例1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据
(1) (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a x b y +=; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 以下例题在练习册上完成:
例2、目标检测P25/4. 例3、目标检测P25/5. 例4、目标检测P25/6. 例5、目标检测P26/2