第 2 课时 图形的旋转(最新教案)

合集下载

四年级下册数学《图形的旋转》教案

四年级下册数学《图形的旋转》教案

四年级下册数学《图形的旋转》教案
一、教学目标
1. 了解图形的旋转概念和基本术语;
2. 掌握图形旋转的方法和步骤;
3. 能够在坐标纸上进行简单的图形旋转练习;
4. 培养学生观察和分析问题的能力。

二、教学准备
1. 教材:四年级下册数学教材;
2. 教具:坐标纸、图形卡片、直尺、铅笔等。

三、教学过程
1. 导入:通过展示一些常见的旋转图形,激发学生对图形旋转的兴趣,并引入本节课的主题。

2. 观察与讨论:让学生观察不同图形的旋转结果,并讨论旋转前后的变化。

3. 概念解释:向学生介绍图形的旋转概念和基本术语,如旋转中心、旋转角度等。

4. 方法演示:通过示范,向学生展示图形旋转的方法和步骤。

5. 练习与巩固:让学生在坐标纸上进行简单的图形旋转练习,加深对概念和方法的理解。

6. 拓展应用:引导学生思考图形旋转在日常生活中的应用,并展示一些实际例子。

7. 总结:对本节课的要点进行总结,并鼓励学生继续在实践中探索图形旋转的应用。

四、教学反思
本节课通过观察、讨论、演示和实践等多种教学方法,帮助学生理解了图形的旋转概念和基本术语,并掌握了图形旋转的方法和步骤。

通过拓展应用的环节,培养了学生观察和分析问题的能力。

然而,在教学过程中,一些学生对旋转角度的概念理解较困难,需要更多的实例和练习来加深理解。

因此,在以后的教学中,可以增加更多的实践环节,让学生通过实际操作来体验和巩固所学内容。

《图形的旋转(二)》教案

《图形的旋转(二)》教案
-在计算旋转体的体积时,引导学生理解旋转体的生成过程,如何将旋转体分解为基本几何体,并应用相应的体积公式进行计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转(二)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,风扇的旋转、车轮的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
-在探讨旋转对称图形时,详细讲解旋转对称轴的定义,通过具体图形让学生找出旋转对称轴,并分析旋转对称角度的特点。
-在应用旋转知识解决实际问题时,如设计旋转图案,引导学生运用旋转性质,创造出具有美感的图案。
2.教学难点
-难点在于理解旋转过程中图形上对应点之间的位置关系和距离关系保持不变。
-确定旋转对称图形的旋转对称轴和旋转对称角度,特别是对于非标准的旋转对称图形。
-在解决实际问题时,如何将旋转运动与几何计算相结合,如计算旋转体的体积。
举例解释:
-在解释旋转过程中点与点的关系时,利用模型或动态图示,让学生直观地看到旋转前后点与点之间的距离和位置保持不变。
-对于旋转对称轴和角度的判定,提供多种类型的图形,让学生通过观察、实践和讨论,总结出判定方法,特别是对于复杂的图形,如何找到隐藏的对称性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行旋转,这个点称为旋转中心,旋转的角度和方向决定了旋转后的图形位置。它是几何变换中的重要组成部分,有助于我们更好地理解物体的空间关系。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个旋转对称图形的旋转过程,了解旋转在实际中的应用,以及它如何帮助我们解决问题。

2023-2024学年四年级下学期数学1.2图形的旋转(教案)

2023-2024学年四年级下学期数学1.2图形的旋转(教案)

教案标题:2023-2024学年四年级下学期数学1.2图形的旋转一、教学目标1. 让学生理解图形旋转的概念,掌握图形旋转的基本方法。

2. 培养学生的观察能力、动手操作能力和空间想象能力。

3. 培养学生运用图形旋转知识解决实际问题的能力。

二、教学内容1. 图形旋转的概念2. 图形旋转的基本方法3. 图形旋转的性质4. 图形旋转在生活中的应用三、教学重点与难点1. 教学重点:图形旋转的概念、基本方法和性质。

2. 教学难点:图形旋转的性质及其在实际问题中的应用。

四、教学过程1. 导入新课通过展示生活中的旋转现象,如时钟的时针、分针、秒针的运动,引导学生观察并思考这些现象的共同特点,从而引出图形旋转的概念。

2. 探究新知(1)让学生通过实际操作,体验图形旋转的过程,总结出图形旋转的基本方法。

(2)引导学生观察图形旋转前后的变化,发现图形旋转的性质,如大小、形状不变,位置、方向发生变化等。

(3)通过实例讲解,让学生了解图形旋转在生活中的应用,如风车、旋转木马等。

3. 巩固练习设计不同层次的练习题,让学生运用所学知识解决实际问题,巩固所学内容。

4. 总结提高让学生回顾本节课所学内容,总结图形旋转的概念、基本方法和性质,并引导学生将所学知识运用到实际生活中。

五、课后作业1. 完成课后练习题。

2. 观察生活中的旋转现象,与同学分享并解释其原理。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生的学习兴趣和需求,不断优化教学内容和方法,激发学生的学习积极性。

本教案遵循了教学内容、教学方法与学生认知发展相适应的原则,注重培养学生的观察能力、动手操作能力和空间想象能力,体现了素质教育的要求。

在实际教学过程中,教师可根据学生的实际情况,适当调整教学进度和难度,以确保教学质量。

重点关注的细节:图形旋转的性质图形旋转的性质是本节课的教学难点,也是学生掌握图形旋转知识的关键。

小学五年级上学期数学《图形的旋转(二)》(第二课时 )教学设计

小学五年级上学期数学《图形的旋转(二)》(第二课时 )教学设计
(1)学生独立思考,并画一画。
(2)集体订正,并抽生展示画法。
(预设:因为O点是旋转中心,所以它是不动的,把经过旋转中心的线段两条边OA和OC确定为关键线段,利用三角尺作OA的垂线段,注意OA有4格,它的垂线段也是4格的长度。再作OC的垂线段,长度和OC相等,然后根据这两条边画出另外两条边。再把旋转后的图形向右平移4格,这时我们先把4个顶点确定为关键点,把它们分别向右平移4格,连接各点。)
图形的旋转(第二课时)教学设计
课程基本信息
学科
数学
年级
五年级上册
学期
秋季
课题
图形的旋转(第二课时)
教科书
书名:义务教育教务科·数学出版社:西南大学出版社
教学目标
1.进一步理解旋转三要素和旋转的基本Байду номын сангаас征。
2.探索在方格纸上画旋转图形的方法,能够画出简单图形在方格纸上旋转90度后的图形。
3.运用旋转设计简单图案和解决问题。
教学内容
教学重点:
1.探索在方格纸上画旋转图形的方法。
2.能够画出简单图形在方格纸上旋转90度后的图形。
教学难点:
1.能够画出简单图形在方格纸上旋转90度后的图形,运用旋转解决问题。
教学过程
一.复习引入。
1.师:关于旋转,你知道些什么呢?
①一个物体或图形围绕一个点或轴转动就叫做旋转。
②图形的旋转时要注意旋转三要素,旋转中心、旋转方向、旋转角度。
(4)总结:把经过旋转中心的线段都确定为关键线段。通过关键线段的旋转来画出旋转后的图形。
2.画一画。画出例3中指针逆时针方向旋转90度以后的图形。
(1)学生练习画一画。
(2)集体订正,学生展示画法 。
【首先,O点不动,把线段OA确定为关键线段。借助三角尺时,让三角尺的直角顶点与O点重合,一条直角边与OA重合。然后作OA的垂线,因为OA有4格,可以确定出A'。最后根据OA'的位置确定出另外两个点,按原图形的顺序连接各点。】

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。

本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。

教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。

但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。

因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。

三. 教学目标1.理解旋转的定义,掌握旋转的性质。

2.学会对图形进行旋转,并能运用旋转解决一些实际问题。

3.培养学生的空间想象能力和抽象思维能力。

4.提高学生的合作交流能力和问题解决能力。

四. 教学重难点1.旋转的性质的理解和运用。

2.对图形进行旋转的方法和技巧。

五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。

2.利用多媒体辅助教学,直观展示图形的旋转过程。

3.采用合作交流的方式,让学生在实践中掌握旋转的方法。

4.通过解决实际问题,培养学生运用旋转解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.旋转的相关教具和模型。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。

2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。

同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。

3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。

然后,各组汇报实验结果,共同总结旋转的性质。

4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)《图形的旋转》教案篇1平移、旋转和轴对称是最基本的三种变换,一个图形不转变它的外形和大小,从一个位置变换到另一个位置,不外乎经过这三种变换。

这三种变换只要教会同学每一种变换的要素即可。

平移的要素要有三个:1、基本图形——是什么图形发生了平移?2、方向:向什么方向发生了平移;3、距离:平移了多远?旋转的要素要有四个:1、基本图形——是什么图形发生了旋转?2、旋转中心——是绕哪个点旋转的;3、方向:向什么方向发生了旋转,是顺时针还是逆时针?4、角度:旋转了多大的角度?(一般旋转90度和180度)如下图中的图形是绕点O,顺时针依次旋转了90度。

轴对称的要素要有二个:1、基本图形——是以什么图形为基本图形进行变换?2、对称轴——以哪条线为对称轴作变换?无论平移还是旋转运动,我们关注的是其运动过程,也就是说要看这个图形是经过一个什么样的过程变换到另一个位置的。

因此,在教学中要让同学充分体会到变换中的要素,一是要借助于操作将思索与操作结合起来,如:多让同学思索,操作并记录学习过程,然后汇报沟通总结阅历。

在操作时给同学充分的时间,让同学根据“想一想、做一做、折一折、画一画、剪一剪,在想一想”的过程进行讨论,在进行小组沟通活动,老师进行随堂观看指导有困难的同学,最终听同学自己小结的时候,留意同学用语言来表达时的完整性,准时订正错误的说法。

从而使同学的空间想象力和思维力量得到充分的熬炼。

二要借助于方格纸进行操作和学习。

方格纸呈现了平行和垂直的网络线,即可以看出变换的方向,又可以看出变换的角度和距离,直观便利,便于同学理解图中的各种关系。

《图形的旋转》教案篇2各位领导、老师:大家午安,今日我所说课的内容是《图形的旋转》。

这一课我将从三个方面说起,首先是教材,其次是教法与学法,最终是重要的教学过程。

首先我来说教材,教材我分了两个环节,第一个环节是:教材分析与教学目标。

图形的旋转:选自北师大版学校数学四班级上册,第四单元《图形的变换》。

23.1 图形的旋转(2)教学设计

23.1 图形的旋转(2)教学设计

23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标1.知识与技能理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形? 分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F 是E 的对应点∴4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.三、巩固练习 教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.。

(上)图形的旋转(2)(最新)人教版九年级数学全一册课件(17张)-公开课

(上)图形的旋转(2)(最新)人教版九年级数学全一册课件(17张)-公开课
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
小结:旋转变换是将已知图形绕某一点旋转,构造出新的图 形,可以等量转移图形的相关量,从而将一些分散的条件集 中.

【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
(2)如图是边长为 1 的小正方形组成的方格纸,△ABC 的三个 顶点都在格点上(每个小方格的顶点叫做格点),请画出△ABC 绕点 O 顺时针旋转 90°后的△A1B1C1.
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)

【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
精典范例
对点训练
1.如图,将 Rt△ABC 绕点 O 顺时针旋转 60°后得到 Rt△A′B′C′,则∠COC′的度数为 60°.
知识点二:旋转作图的方法 (1)确定旋转中心、旋转方向、旋转 角; (2)作出关键点经旋转后的对应点; (3)按照原图形的顺序连接这些对应点.
2.(1)以点O为旋转中心,将△ABC顺时针方向旋转180°,得到 △A1B1C1,在图中画出△A1B1C1;

八年级数学下册-3.2 图形的旋转 第2课时 旋转作图 教案

八年级数学下册-3.2 图形的旋转    第2课时 旋转作图  教案

第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.。

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。

2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。

3、培养同学对电脑绘图的兴趣。

[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。

二、复制功能的学习。

师:要完成那么多的小花的绘制,我们得先画出一朵花。

活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。

1、教师先示范,同学动手一起画一朵花。

(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。

3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。

4、选“编辑”菜单的“复制”,再点“粘贴”。

5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。

6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。

让同学动手,教师指导,让好的同学进行演示。

三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。

2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。

完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。

《图形的旋转》教案设计

《图形的旋转》教案设计

《图形的旋转》教案设计《图形的旋转》教案设计「篇一」【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。

【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。

【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。

轴对称是图形变换的一种方法。

2、学生对于旋转的度数的把握。

【教学设计】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。

师:同学们的交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。

(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。

下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。

如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。

(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。

最新人教版五年级数学下册《旋转(2)》精品教案

最新人教版五年级数学下册《旋转(2)》精品教案

第 5单元图形的运动(三)第2课时旋转(2)【教学内容】教材第84页例2、3,第85~86页练习二十一第4~6题。

【教学目标】1.进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90°。

2.让学生初步学会运用对称、平移和旋转的方法在方格纸上设计图案。

3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。

【教学重难点】重难点:理解、掌握在方格纸上旋转90°的特征和性质;能识别在旋转过程中旋转图形的对应点、对应线段和对应角。

【教学过程】一、复习导入1.要想把旋转现象描述清楚,应该怎么说?2.钟表上分针从12转到6,转了多少度?这时时针转了多少度?二、新课讲授1.探索旋转图形的特征和性质。

(1)教师用课件出示教材第84页例2三角形绕点O顺时针旋转90°的图形。

教师:刚才观察三角形的旋转过程你发现了什么?你怎样判断三角形是绕点O顺时针旋转了90°?组织学生观察,并在小组中交流讨论。

(2)三角形旋转后,三角形有什么变化?教师再次演示风车旋转的过程,让学生观察。

然后组织学生在小组中交流讨论并汇报。

(教师注意引导)小结:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O顺时针旋转了90°,而且,每条线段,每个顶点,都绕点O顺时针旋转了90°。

(3)揭示旋转的特征和性质。

教师:从画面中,我们能清楚地看到三角形旋转后,位置都发生了变化,那什么是没有变化的呢?(①三角形的形状没有变;②点O的位置没有变;③对应线段的长度没有变;④对应线段的夹角没有变。

)如果我们将三角形在旋转后的基础上,继续绕点O顺时针旋转180°,那么三角形应该转到什么位置?2.学习画出旋转后的图形。

(1)教师出示教材第84页例3。

教师:怎样画出三角形绕O点顺时针旋转90°后的图形呢?组织学生先在小组中讨论交流:是怎样旋转的?应该怎样画出旋转后的图形?学生汇报时可能会说出:①先画出点A′,OA′垂直于OA,点A′与O的距离是6格;②再用同样的方法画出点B′;③然后把点OA′,OB′,A′B′连接起来。

九年级数学旋转教案5篇最新

九年级数学旋转教案5篇最新

九年级数学旋转教案5篇最新让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值,是每个教师的责任。

今天小编在这里整理了一些九年级数学旋转教案5篇最新,我们一起来看看吧!九年级数学旋转教案1第二课时旋转教学内容:教材第5~6页例3和例题4。

教学目标:1、通过生活事例,使学生初步了解图形的旋转变换。

结合生活实际,能初步感知旋转现象,探索它的特征和性质。

、通过动手操作,使学生会在方格纸上将一个简单图形旋转90。

3.初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4.欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点: 1.理解图形旋转变换的含义。

2.探索图形旋转的特征和性质。

教学难点:能在方格纸上将一个简单图形旋转90度。

教学准备:课件教学过程:一、创设游戏情境,引入新课师:同学们,大家玩过“俄罗斯方块”的游戏吗?出示课件:师:如果现在让你来玩,你准备怎么操作?(把黄色的图形顺时针旋转90。

,放在右边的角落。

) 师:用手示范一下怎样就是顺时针旋转呢? 师:(用手做出示范)那与之相反的是什么旋转呢?(逆时针旋转。

) (出示动画:黄色图形顺时针旋转90。

后下落) 出示:“俄罗斯方块”游戏画面二师:这次又怎么操作呢?(把紫色的图形逆时针旋转90。

,放在左边角落里。

)(出示动画:紫色图形逆时针旋转90。

后下落) 出示:“俄罗斯方块”游戏画面三:师:这次谁来玩?(把蓝色的图形顺时针或逆时针旋转90。

) (出示动画:蓝色图形逆时针旋转90。

后下落)1.揭示课题师:刚才,我们在玩游戏的过程中,大家反复地提到一个词“旋转”这节课,我们就来研究“旋转”。

板书课题。

2.联系生活师:生活中,你还见过哪些旋转现象?(风扇、陀螺、旋转木马、钟表、车轮……) 同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。

《图形的旋转》教案

《图形的旋转》教案

《图形的旋转》教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《图形的旋转》教案《图形的旋转》教案(通用15篇)作为一名老师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

《图形的旋转》教案(9篇)

《图形的旋转》教案(9篇)

《图形的旋转》教案(9篇)一、教学目标1、感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角。

2、经受用硬纸板画旋转后图形的过程,加深对图形旋转的感知,进展空间观念。

二、教学重点和难点1、重点:图形的旋转概念。

2、难点:图形的旋转概念。

三、教学过程师:在日常生活中我们常常能看到各种漂亮的图案,这些漂亮的图案是怎么设计出来的?让我们认真来看一看。

(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家认真看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子。

可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移)。

师:我们再来看一个图案。

(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最终形成了这个图案。

这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形。

这样作下去,就形成了这个图案。

可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称)。

师:下面我们再来看一个图案。

四、总结《图形的旋转》教案篇二教学分析:在生活中,有各种漂亮的图案,其中有许多图案是由简洁的图形经过平移或旋转得到的。

本活动所展现的正是简洁图形经过旋转形成简单图案的过程。

2024年新人教版五年级数学下册《第5单元第2课时 旋转(2)》课件

2024年新人教版五年级数学下册《第5单元第2课时  旋转(2)》课件

环节五
同学们,今天的数学 课你们有哪些收获呢?
环节二 2
动手操作:将三角尺像这样在方格纸上每次按顺时针 方向旋转90°,观察三角尺的位置是如何变化的。
旋转时点O的 位置不变。
每条直角边都绕点O按顺 时针方向旋转了 90°。
每个顶点到点O的距离 都没变。
你有什么发现?
图形旋转前后: 1.( 位置 )变了; 2.( 形状和大小 )没变。
做一做
长方形,你能发现什么? (教材P86 T6) 旋转90°
旋转180° 旋转360°
旋转90°
旋转180° 旋转360° 我发现:旋转90°时,长方形由水平方向变为竖直 方向;旋转180°、360°时,与原图形重合。
将下列图形按上面的方法试一试,你能发现什么?
我发现:这些图形绕它们的中心旋转一定的角度, 还与原来图形重合。
3.按要求画图。(教材P86 T5)
(1)把图①绕点O逆时针旋转90°,
得到图②。

(2)把图①绕点O顺时针旋转90°,

得到图③ 。

(3)把图②绕点O逆时针旋转90°,

得到图 ④。
(4)把图① 、图②、图③、图④
风车
都涂上红色,这个图形像什么?
发展性作业
4.如图,长方形的两条对称轴相交于点O。绕点O旋转
三角形AOB绕点O按逆
B′
时针方向旋转90°后的 A ′ 图形。(教材P84 下面的做一做)
OB
2. (教材P85 T4)
A′
(1)图形OABC绕点O顺时针旋转90°,在右图中 标出点A的对应点A' 。
(2)图形OABC绕点O( 顺 )时针旋转 180° , 得到图②。 (或逆 180° )

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)章节一:引言教学目标:1. 让学生了解图形的旋转概念。

2. 培养学生对图形旋转的兴趣。

教学内容:1. 介绍图形旋转的定义。

2. 通过实际操作,让学生感受图形旋转的过程。

教学方法:1. 讲授法:讲解图形旋转的定义和特点。

2. 演示法:通过实物演示,让学生直观地了解图形旋转的过程。

教学步骤:1. 引入新课:提问学生对图形的认识,引导学生思考图形可以发生哪些变化。

2. 讲解图形旋转的定义:讲解图形旋转的概念,让学生理解图形旋转的意义。

3. 演示图形旋转:通过实物演示,让学生直观地感受图形旋转的过程。

4. 学生实践:让学生自己动手操作,尝试旋转图形。

5. 总结:回顾本节课的内容,强调图形旋转的特点。

章节二:图形旋转的规律教学目标:1. 让学生了解图形旋转的规律。

2. 培养学生运用规律解决问题的能力。

教学内容:1. 介绍图形旋转的规律。

2. 通过实际操作,让学生感受图形旋转规律的应用。

教学方法:1. 讲授法:讲解图形旋转的规律。

2. 演示法:通过实物演示,让学生直观地了解图形旋转规律的应用。

教学步骤:1. 复习导入:回顾上一节课的内容,引导学生思考图形旋转的规律。

2. 讲解图形旋转的规律:讲解图形旋转的规律,让学生理解并掌握。

3. 演示图形旋转规律的应用:通过实物演示,让学生直观地感受图形旋转规律的应用。

4. 学生实践:让学生自己动手操作,尝试运用图形旋转规律解决问题。

5. 总结:回顾本节课的内容,强调图形旋转规律的重要性。

章节三:图形旋转的计算教学目标:1. 让学生了解图形旋转的计算方法。

2. 培养学生运用计算方法解决问题的能力。

教学内容:1. 介绍图形旋转的计算方法。

2. 通过实际操作,让学生感受图形旋转计算的过程。

教学方法:1. 讲授法:讲解图形旋转的计算方法。

2. 演示法:通过实物演示,让学生直观地了解图形旋转计算的过程。

教学步骤:1. 复习导入:回顾前两节课的内容,引导学生思考图形旋转的计算方法。

2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.1旋转(第2课时)

2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.1旋转(第2课时)

第24章圆24.1 旋转第2课时中心对称教学目标1.认识中心对称和中心对称图形.2.通过观察、探索等过程,使学生更深刻地理解中心对称的性质,并体会图形之间的变换关系.3.运用讨论、交流等方式,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力.教学重难点重点:理解中心对称的概念,会识别中心对称图形.难点:会运用中心对称及中心对称图形的性质解决实际问题.教学过程复习巩固1.在这之前你学过哪些有关对称的知识?与大家交流一下.2.什么叫轴对称?3.旋转的性质:在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.导入新课我们学习了旋转的定义与性质,知道把一个图形绕一个定点按某个方向转动一定的角度,这样的图形运动称为旋转,如果把一个图形绕某一个定点旋转180°,这样的图形运动是本节课学习的内容.探究新知1.中心对称师生活动:小组讨论(师生互学).问题情境:(学生交流)观察下面两副图,每副图中的图(1)经过怎样的运动变化就可以与图(2)重合?你还能举出一些类似的例子吗?与同伴交流.学生回答:两副图中,图(1)以一定点旋转180°就可以与图(2)重合.【归纳总结】中心对称:把一个图形绕着某一个定点旋转180°,旋转前后的两个图形关于这个点对称叫做中心对称,这个点就叫做它们的对称中心. 教学反思(1)(2)(1)(2)【提示】1.只有一个对称中心;2.旋转角必须是180度;3.是两个图形,且旋转后能够重合. 师生活动:轴对称与中心对称的对比.师生活动:小组讨论(师生互学).问题情境:下图中△A ′B′C′与△ABC 关于点O 成中心对称,你能从图中找到哪些等量关系?(1)OA =OA′,OB =OB′,OC =OC′;(2)△ABC ≌△A′B′C′. 【归纳总结】 中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 师生活动:探究应用 (教师引导,学生互学)例1 如图,已知△ABC 和△A ′B ′C ′成中心对称,画出它们的对称中心.【探索分析】(引发学生思考)△ABC 和△A ′B ′C ′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.【解】(方法一)根据观察,B ,B ′及C ,C ′应是两组对应点,连接BB ′,CC ′,BB ′与CC ′相交于点O ,则O(方法二)B ,B ′是一对对应点,连接BB ′,找出BB ′的中点O ,则点O 即为对称中心.如图.【总结】(学生总结,老师点评)利用中心对称的特征,找准对应点.当两个图显,可采用测量的方法找对应点.3.中心对称作图例2 如图,点O 是线段AE 的中点,以点O 为对称中教学反思心,画出与五边形ABCDE 成中心对称的图形.【探索分析】要画出五边形ABCDE 关于点O 成中心对称的图形,只要画出A ,B ,C ,D ,E 五点关于点O 的对称点,再顺次连接各对应点即可.【解】如图,连接BO 并延长到B',使得OB'=OB ; 连接CO 并延长到点C',使得OC'=OC ; 连接DO 并延长到点D',使得OD'=OD ; 顺次连接AD',D'C',C'B',B'E .图形EB'C'D'A 就是以点O 为对称中心、与五边形ABCDE 成中心对称的图形.4.中心对称图形 问题情境:将下面的图形绕O 点旋转180°,你有什么发现?平行四边形 【解】旋转后与原图形完全重合.【思考】(学生交流)上面的课堂练习中,得到的图形,又具有什么特征? 【归纳总结】中心对称图形:把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.【注意】中心对称图形是指一个图形.判断下列图形是不是中心对称图形?如果是,那么对称中心在哪?师生活动:拓展延伸(学生自学).例3 如图,长方形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =2,BC =3,试教学反思求图中阴影部分的面积.【探索分析】由于矩形是中心对称图形,所以依题意可知△BOF 与△DOE 关于点O 成中心对称,则图中阴影部分的三个三角形可以转化到Rt △ADC 中,于是阴影部分的面积即可求得.【解】因为矩形ABCD 是中心对称图形, 所以△BOF 与△DOE 关于点O 成中心对称,所以图中阴影部分的三个三角形就可以转化到Rt △ADC 中. 又因为AB =2,BC =3,所以S Rt △ADC =12×3×2=3,即图中阴影部分的面积为3. 【总结】(学生总结,老师点评)利用中心对称的性质将阴影部分转化到一个直角三角形中来解决,使问题更简单.课堂练习1.观察下列四个平面图形,其中中心对称图形有( )① ② ③ ④第1题图A.2个B.1个C.4个D.3个2.如图所示,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A.20 cm 2B.15 cm 2C.10 cm 2D.25 cm 2第2题图 第3题图3 .在方格纸中选择标有序号的一个小正方形涂上颜色,与图中阴影部分构成中心对称图形,应选 .4.请你用无刻度的直尺画一条直线把下面的图形分成面积相等的两部分,你怎样画?第4题图 第5题图5.如图所示,线段AC ,BD 相交于点O ,且AB ∥CD ,AB =CD ,此图形是中心对称图形吗?试说明你的理由.6.世界上因为有了圆,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么的美丽与和谐,这正是因为圆具有轴对称性和中心对称性.请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 .教学反思② ③第6题图参考答案1. D 解析:题图①②③是中心对称图形.2. A 解析:根据题意可知,长方形的面积=10×4=40(cm 2),再根据中心对称的性质知,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积=12×40=20(cm 2). 故选A.3. ④4. 解:(答案不唯一)如图所示.① ② ③第4题答图点拨:对于这种由两个中心对称图形组成的复合图形平分面积时,可以把这个图形进行割补,然后找到它们的对称中心,再过对称中心作直线.5. 解:此图形是中心对称图形.理由如下:由AB ∥CD ,AB =CD ,可证得△AOB ≌△COD ,所以此图形是中心对称图形.6. 解:轴对称图形为①②③,中心对称图形为①③.布置作业教材第6页练习板书设计24.1 旋 转 第2课时 中心对称1.中心对称2.中心对称的性质 3中心对称图形4.中心对称图形的性质5.中心对称与中心对称图形的联系与区别 教学反思。

图形的旋转 第 2 课时

图形的旋转  第 2 课时

课题:图形的旋转第 2 课时总第课时教学目标:1.进一步认识图形的旋转,认识绕点顺时针或逆时针旋转90 的含义,能在方格纸上画出把简单图形旋转90 后的图形。

2.通过学习活动,进一步增强学生的空间观念,发展形象思维。

3.在认识旋转的过程中,产生对图形变化的兴趣,并进一步感受旋转在生活中的应用。

教学重点:掌握图形旋转的三个要素。

教学难点:在方格纸上画出把简单图形顺时针或逆时针旋转90 后的图形。

教学准备:课件教学过程:一、情境引入1.播放有关风车和摩天轮的课件。

提问:游乐场的摩天轮和风车的运动是一种什么现象?追问:你能说说它们是怎样旋转的吗?它们都是绕着中间的点顺着旋转的。

2.导入新课。

对于旋转,你还想了解什么知识?今天我们要继续研究旋转的相关知识。

(板书课题)二、交流共享1.认识顺时针或逆时针旋转90 的含义。

(1)创设情境,提出问题。

播放课件:某一高速公路收费站,各种车辆进出场面的录像。

为了维持秩序,收费站口设置了转杆。

引出问题:图中的转杆打开和关闭分别是怎样的运动?它们的运动有什么相同点和不同点?(2)模拟操作,认识含义。

同桌合作,拿出活动角模拟转杆打开和关闭,讨论顺时针和逆时针旋转。

结合学具演示交流,明确转杆打开和关闭都属于旋转。

小结:与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。

转杆打开是逆时针旋转,转杆关闭是顺时针旋转。

(3)深入探讨:转杆打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?引导学生结合例题2的转杆图进行思考。

学生观察、交流,得出:转杆打开是绕O顺时针旋转90 ;转杆关闭是绕O 逆时针旋转90 。

(4)全体活动,深化理解。

听口令做动作:让学生先平伸右臂,用动作表示顺时针旋转和逆时针旋转,再平伸左臂做一次,亲身体验顺时针、逆时针旋转。

2.在方格纸上进行图形的旋转。

(1)课件出示教材第3页例题3图。

(2)指名说说:你是怎样理解题目的要求的?引导学生进行审题:中心点:点A;旋转方向:逆时针;旋转角度:90 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 2 课时图形的旋转
教学目标:
1.进一步认识图形的旋转,认识绕点顺时针或逆时针旋转90ο的含义,能在方格纸上画出把简单图形旋转90ο后的图形。

2.通过学习活动,进一步增强学生的空间观念,发展形象思维。

3.在认识旋转的过程中,产生对图形变化的兴趣,并进一步感受旋转在生活中的应用。

教学重点:掌握图形旋转的三个要素。

教学难点:在方格纸上画出把简单图形顺时针或逆时针旋转90ο后的图形。

教学准备:课件
教学过程:
一、情境引入
1.播放有关风车和摩天轮的课件。

提问:游乐场的摩天轮和风车的运动是一种什么现象?
追问:你能说说它们是怎样旋转的吗?
它们都是绕着中间的点顺着旋转的。

2.导入新课。

对于旋转,你还想了解什么知识?今天我们要继续研究旋转的相关知识。

(板书课题)
二、交流共享
1.认识顺时针或逆时针旋转90ο的含义。

(1)创设情境,提出问题。

播放课件:某一高速公路收费站,各种车辆进出场面的录像。

为了维持秩序,收费站口设置了转杆。

引出问题:图中的转杆打开和关闭分别是怎样的运动?它们的运动有什么相同点和不同点?
(2)模拟操作,认识含义。

同桌合作,拿出活动角模拟转杆打开和关闭,讨论顺时针和逆时针旋转。

结合学具演示交流,明确转杆打开和关闭都属于旋转。

小结:与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。

转杆打开是逆时针旋转,转杆关闭是顺时针旋转。

(3)深入探讨:转杆打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?
引导学生结合例题2的转杆图进行思考。

学生观察、交流,得出:转杆打开是绕O顺时针旋转90ο;转杆关闭是绕O 逆时针旋转90ο。

(4)全体活动,深化理解。

听口令做动作:让学生先平伸右臂,用动作表示顺时针旋转和逆时针旋转,再平伸左臂做一次,亲身体验顺时针、逆时针旋转。

2.在方格纸上进行图形的旋转。

(1)课件出示教材第3页例题3图。

(2)指名说说:你是怎样理解题目的要求的?
引导学生进行审题:中心点:点A;旋转方向:逆时针;旋转角度:90ο。

(3)动手操作。

学生利用课前准备的三角形纸片在方格纸上进行旋转操作。

教师巡视,了解学生的操作情况。

指名学生利用实物投影进行旋转演示,鼓励学生发表不同见解。

(4)在方格纸上画出旋转后的图形。

提问:如果不借助具体的实物,该怎样画出三角形逆时针旋转90ο后的图形?(出示教材第4页上方情境图)
学生可能有如下方法:
①先把三角形的一条直角边绕点A逆时针旋转90ο,再画出另外的线段,最后连成相应的图形。

②先把三角形的两条直角边绕点A逆时针旋转90ο,再连成相应的图形。

③借助手、笔等工具一转后再画一画。

让学生在方格纸上尝试画图。

(5)组织交流。

投影展示学生画的图,让学生说说是怎样画出来的。

(6)师生共同小结。

提问:我们在方格纸上进行旋转操作时,要注意什么?
引导学生通过交流得出:要先找出一条线作为标准,再按“定点、定向、定角度”三个步骤进行操作。

三、反馈完善
1.完成教材第4页“练一练”第1题。

这道题是利用钟面的时针、台秤的指针、转盘的指针等实例来巩固旋转的方向和角度。

教学时切不可草率对待这些习题,它们都是旋转平面图形不可缺少的基础知识。

引导学生独立完成,指名口答,集体订正。

2.完成教材第4页“练一练”第2题。

这道题实际上是例题3的补充,它是将一个长方形绕点A顺时针旋转90ο。

教学时可以为不同学生设置不同要求,如空间想象能力较强的学生,可以直接在方格纸上画出旋转90ο后的长方形;而直接画图有困难的学生可以照样子先做一个长方形,按旋转的要求在方格纸上转一下,再离开实物画出旋转后的图形。

四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?。

相关文档
最新文档