第11讲 平面直角坐标系(基础课程讲义例题练习含答案)
平面直角坐标系例题讲解及答案
平面直角坐标系一. 重点、难点:1. 重点:认识并画出平面直角坐标系;建立适当的直角坐标系,描述物体的位置,能根据点的位置写出坐标,根据坐标描出点的位置。
2. 难点:根据具体问题建立合适的平面直角坐标系,确定点的位置或描述点的坐标。
二. 教学知识要点:1. 平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,这样就组成了平面直角坐标系。
说明:一般把一条画成水平的,取向右的方向为正方向,称它为x 轴或横轴。
一条画成铅直的且取向上的方向为正方向,称它为y 轴或纵轴。
2. 坐标轴上的点及各种对称点的坐标特征。
(1)坐标轴上的点的坐标特征:x 轴上的点,纵坐标为0,可记为(x ,0)y 轴上的点,横坐标为0,可记为(0,y )原点O 的坐标为(0,0)(2)对称点的坐标特征:点P (a ,b )关于x 轴的对称点坐标为P 1(a ,-b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,b )点P (a ,b )关于y 轴的对称点坐标为P 1(-a ,-b )(3)平行于坐标轴的直线的坐标特征:平行于x 轴的直线上的任意两点,纵坐标相同。
平行于y 轴的直线上的任意两点,横坐标相同。
3. 坐标平面内的点与有序实数对的一一对应关系有序实数对(x ,y )与平面内的点构成一一对应的关系。
4. 坐标平移公式若M 点的坐标为(x ,y ),将M 点平移到M'点的坐标为(x',y'),则 其中,当a >0时,M 点向右平移a 个单位到M'当a <0时,M 点向左平移|a|个单位到M'当b >0时,M 点向上平移b 个单位到M'当b <0时,M 点向下平移|b|个单位到M'【典型例题】例1. 已知两点A (0,2),B (4,1),点P 是x 轴上一点,求PA +PB 的最小值。
解:如图1,作B 点关于x 轴的对称点B',连AB',交x 轴于点P ,又作B'C ⊥y 轴于Cx x a y y b ''=+=+⎧⎨⎩图1 图2 图3由平面几何知识知,这时PA +PB 最小,且等于AB'的长度∵B 与B'关于x 轴对称∴B'的坐标为(4,-1)∴PA +PB 的最小值为5说明:若在Rt △ABC 中,两直角边长为a ,b ,斜边长为c ,则有c 2=a 2+b 2。
平面直角坐标系典型例题含答案
平面直角坐标系典型例题含答案平面直角坐标系是数学中非常重要的概念之一。
在平面直角坐标系中,有序数对是有顺序的两个数a与b组成的数对,记作(a,b)。
需要注意的是,a与b的先后顺序对位置有影响。
平面直角坐标系的定义是在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
平面直角坐标系中点的坐标通常表示为有序实数对(a,b),其中a叫横坐标,b叫做纵坐标。
如果在平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,那么点A的坐标就是(a,b)。
各象限内的点与坐标轴上的点的坐标特征如下:点P(x,y)在第一象限时,x和y均为正数;在第二象限时,x为负数,y为正数;在第三象限时,x和y均为负数;在第四象限时,x为正数,y为负数。
坐标轴上点P(x,y)的坐标特点也很简单,如果P在X轴上,那么它的纵坐标为0;如果P在Y轴上,那么它的横坐标为0;如果P在原点上,那么它的坐标为(0,0)。
特殊位置点的特殊坐标也需要掌握。
如果连线平行于坐标轴的点,那么平行于X轴的点纵坐标相同,横坐标不同,平行于Y轴的点横坐标相同,纵坐标不同。
如果点在象限角平分线上,那么在第一和第三象限,纵横坐标相同;在第二和第四象限,纵横坐标互为相反数。
对称点的坐标特征也需要掌握。
平面内任一点P(m,n)的关于X轴的对称点坐标为(m,-n),关于Y轴的对称点坐标为(-m,n),关于原点的对称点坐标为(-m,-n)。
点到坐标轴的距离也是重要的知识点之一。
点P(x,y)到X 轴距离为y,到Y轴的距离为x。
最后,点的平移坐标变化规律可以简单记为“左减右加,上加下减”。
在解题时,需要注意点的坐标与象限的关系。
例如,如果点P(-2,3)在第二象限,那么它的横坐标为负数,纵坐标为正数。
如果点P(a,a-2)在第四象限,那么a的取值范围为a<0.如果点P(-2,x^2+1)在第三象限,那么它的横坐标为负数,纵坐标为负数。
沪科版八年级上册数学第11章 平面直角坐标系 含答案
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、将以A(﹣2,7),B(﹣2,2)为端点的线段AB向右平移2个单位得线段A 1B1,以下点在线段A1B1上的是()A.(0,3)B.(﹣2,1)C.(0,8)D.(﹣2,0)2、如图,过A、B、C三点作一圆弧,点B与下列格点连线中,能够与该弧所在的圆相切的是()A.(0,3)B.(1,3)C.(2,3)D.(4,3)3、如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(1,4)C.(2,1)D.(4,1)4、在平面直角坐标系中,对于点,我们把点叫做点伴随点已知点的伴随点为,点的伴随点为,点的伴随点为,这样依次得到点,若点的坐标为,点的坐标为()A. B. C. D.5、如图,正方形ABCO的边长为4,点E在线段AB上运动,AE=BF,且AF与OE 相交于点P,直线y=x-3与x轴、y轴交于M、N两点,连接PN,PM,则△PMN面积的最大值().A. B.12 C. D.156、已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A. B. C. D.7、在平面直角坐标系中,有一个长方形ABCD,AB=4,BC=3且AB∥x轴,BC∥y 轴,把这个长方形首先向左平移7个单位,再向上平移5个单位,然后沿着y轴翻折得长方形A1B1C1D1,在这个过程中A与A1, B与B1, C与C1, D与D 1分别表示始末位置长方形中相同位置的顶点,已知A1坐标是(5,1),那么A点坐标是()A. B. C. D.8、已知点A的坐标为(3,-2),则点A向右平移 3个单位后的坐标为()A.(0,-2)B.(6,-2)C.(3,1)D.(3,-5)9、将下面的某一点向下平移1个单位后,它在函数y=x2+2x﹣3的图象上,这个点是( )A.(1,1)B.(2,﹣3)C.(1,﹣3)D.(2,﹣1)10、如图,在平面直角坐标系中,点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O'A'B',点A的对应点A'在直线y=x上一点,则点B与其对应点B'间的距离为()A. B.3 C.4 D.511、在平面直角坐标系中,点P(-2,5)关于x轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限12、在第一象限的点是()。
沪科版八年级上册数学第11章 平面直角坐标系 含答案
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,A点的位置可以用坐标(0,-1)表示,则点C位置的坐标可以表示为()A.(-1,-3)B.(-3,-3)C.(-2,-2)D.(2,-2)2、如图,点A(-1,2),则点B的坐标为()A. B. C. D.3、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C"的坐标为( )A.( ,0)B.(2,0)C.( ,0)D.(3,0)4、将字母“E”沿垂直方向向下平移3㎝的作图中,第一步应在字母“E”上找出的关键点的个数为()A.4个B.5个C.6个D.7个5、点P(3,-1)关于x轴对称的点在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6、平面直角坐标系中,⊙O是以原点O为圆心,4为半径的圆,则点A(2,﹣2)的位置在()A.⊙O内B.⊙O上C.⊙O外D.不能确定7、如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是( )A.(5,2)B.(2,4)C.(1,4)D.(6,2)8、已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2008的值为()A.1B.-1C.72007D.-720079、函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称D.函数图象关于y轴对称10、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD .若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(- ,- )D.(2,1)11、点在直角坐标系的x轴上,则P点坐标为()A. B. C. D.12、在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0)B.(−1,0)C.(7,0)和(−1,0)D.以上都不对13、如图,已知等边的边长为1,作于点,在轴上取点,使,以为边作等边;作于点,在轴上取点,使,以为边作等边;作于点,在轴上取点,使,以为边作等边;…,且点,,,,…,都在第一象限,如此下去,则点的纵坐标为()A. B. C. D.14、若点A(m-3,1-3m)在第三象限,则m的取值范围是( ).A. B.m<3 C.m>3 D.15、若a+b<0,ab>0,则P(-a,b)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,半径为1的⊙P在射线AB上运动,且A(﹣3,0)B(0,3),那么当⊙P与坐标轴相切时,圆心P的坐标是________17、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B坐标为(4,3),则tan∠AOB的值为________.18、点P(-2,-5)到x轴的距离是________.19、分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6)关于x轴对称的点的坐标________,关于y轴对称的点的坐标________;(-4,-2)关于x轴对称的点的坐标________,关于y轴对称的点的坐标________.20、若点M(a+5,a﹣3)在y轴上,则点M的坐标为________.21、在平面直角坐标系XOY中,有A(3,2),B(-1,-4),P是x轴上的一点,Q是Y轴上的一点,若以点A,B,P,Q四个点为顶点的四边形是平行四边形,则Q点的坐标是________。
专题11 平面直角坐标系(归纳与讲解)(解析版)
专题11平面直角坐标系【专题目录】技巧1:点的坐标变化规律探究问题技巧2:巧用坐标求图形的面积技巧3:活用有序数对表示点的位置技巧4:巧用直角坐标系中点的坐标特征解相关问题【题型】一、用有序数对表示位置【题型】二、求点的坐标【题型】三、距离与点坐标的关系【题型】四、象限角的平分线上的点的坐标【题型】五、与坐标轴平行的直线上的点的坐标特征【题型】六、点的坐标的规律探索【题型】七、函数图象的应用【考纲要求】1、会画平面直角坐标系,并能根据点的坐标描出点的位置,掌握坐标平面内点的坐标特征.2、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.3、能确定函数自变量的取值范围,并会求函数值.【考点总结】一、平面直角坐标系【考点总结】二、函数有关的概念及图象【注意】1、坐标轴上的点不属于任何象限点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
2、确定出数自变量力的取值范围的方法 (1)整式:取全体实数 (2)有分母:取值使分母不为零(3)有二次根式:取值使被开方数不小于0 (4)有很多情况:取它们的公共部分 (5)在实际问题中:取值要符合实际意义 【技巧归纳】技巧1:点的坐标变化规律探究问题【类型】一、沿坐标轴运动的点的坐标规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 019秒时,点P 的坐标是( )(第1题)A .(2 018,0)B .(2 019,-1)C .(2 019,1)D .(2 020,0)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2 017次运动后,动点P 的坐标是________,经过第2 018次运动后,动点P 的坐标是________.3.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是________; (2)在第2 017分钟时,这个粒子所在位置的坐标是________.【类型】二、绕原点呈“回”字形运动的点的坐标规律探究4.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x ,y),其中x ,y 均为整数,如数5对应的坐标为(-1,1),则数2 018对应的坐标的( )A .(16,22)B .(-15,-22)C .(15,-22)D .(16,-22) 【类型】三、图形变换的点的坐标规律探究5.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2 018的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)6.(探究题)如图,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则点A 4的坐标是________,点B 4的坐标是________;(2)若按(1)题中的规律,将三角形OAB 进行n(n 为正整数)次变换,得到三角形OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________. 参考答案1.B 点拨:半径为1个单位长度的圆的周长的一半为12×2π×1=π,因为点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,所以点P 1秒走12个半圆.当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0);当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0); ….因为2 019÷4=504……3,所以第2 019秒时,点P 的坐标是(2 019,-1). 2.(2 017,1);(2 018,0) 3.(1)6分钟 (2)(44,7)4.C 点拨:以原点为中心,数阵图形成多层正方形(不完整),观察图形得出下表:正方形在第四象限的顶点 因为442<2 018<452=(2×22+1)2=2 025, 所以数2 025对应的坐标为(22,-22). 所以数2 018对应的坐标为(15,-22).5.D 点拨:设P 1(x ,y),因为点A(1,-1),点P(0,2)关于A 的对称点为P 1,所以x2=1,y +22=-1,解得x =2,y =-4,所以P 1(2,-4).同理可得P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,所以每6个点循环一次.因为2 018÷6=336……2,所以点P 2 018的坐标是(-4,2).故选D . 6.(1)(16,3);(32,0)(2)(2n ,3);(2n +1,0) 技巧2:巧用坐标求图形的面积 【类型】一、直接求图形的面积1.如图,已知A(-2,0),B(4,0),C(-4,4),求三角形ABC 的面积.【类型】二、利用补形法求图形的面积2.已知在四边形ABCD中,A(-3,0),B(3,0),C(3,2),D(1,3),画出图形,求四边形ABCD 的面积.3.如图,已知点A(-3,1),B(1,-3),C(3,4),求三角形ABC的面积.【类型】三、利用分割法求图形的面积4.在如图所示的平面直角坐标系中,四边形OABC各顶点分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的面积.【类型】四、已知三角形的面积求点的坐标5.已知点O(0,0),点A(-3,2),点B在y轴的正半轴上,若三角形AOB的面积为12,则点B 的坐标为()A.(0,8) B.(0,4) C.(8,0) D.(0,-8)6.已知点A(-4,0),B(6,0),C(3,m),如果三角形ABC的面积是12,求m的值.7.已知A(-2,0),B(4,0),C(x,y).(1)若点C在第二象限,且|x|=4,|y|=4,求点C的坐标,并求三角形ABC的面积;(2)若点C在第四象限,且三角形ABC的面积为9,|x|=3,求点C的坐标.参考答案1.解:因为C点坐标为(-4,4),所以三角形ABC 的AB 边上的高为4. 又由题易知AB =6, 所以S 三角形ABC =12×6×4=12.2.解:如图所示.过点D 作DE 垂直于BC ,交BC 的延长线于点E ,则四边形DABE 为直角梯形. S 四边形ABCD =S 梯形DABE -S 三角形C DE =12×(2+6)×3-12×1×2=11.3.解:方法一:如图,作长方形CDEF ,则S 三角形ABC =S 长方形CDEF -S 三角形ACD -S 三角形ABE -S 三角形BCF =CD·DE -12·AD·CD -12AE·BE -12BF·CF =6×7-12×3×6-12×4×4-12×2×7=18.方法二:如图,过点B 作EF ∥x 轴,并分别过点A 和点C 作EF 的垂线,垂足分别为点E ,F.易知AE =4,BE =4,BF =2,CF =7,EF =6,所以S 三角形ABC =S 梯形AEFC -S 三角形ABE -S 三角形BFC =12(AE +CF)·EF -12AE·BE -12BF·CF =12×(4+7)×6-12×4×4-12×2×7=18. 方法三:如图,过点A 作DE ∥y 轴,并分别过点C 和点B 作DE 的垂线,垂足分别为点D ,E. 易知AE =4,BE =4,AD =3,CD =6,DE =7,所以S 三角形ABC =S 梯形BEDC -S 三角形ABE -S 三角形ADC=12(BE +CD)·DE -12AE·BE -12AD·CD =12×(4+6)×7-12×4×4-12×3×6=18.4.解:如图,过点A 作AD ⊥x 轴,垂足为点D ,过点B 作BE ⊥AD ,垂足为点E.易知D(-4,0),E(-4,8),且BE =-4-(-12)=8,AE =10-8=2,CD =-4-(-14)=10,所以S 四边形OABC =S 三角形AOD +S 三角形ABE +S 梯形DEBC =12OD·AD +12AE·BE +12(BE +CD)·DE =12×4×10+12×2×8+12×(8+10)×8=20+8+72=100.点拨:本题的解题技巧在于把不规则的四边形OABC 分割为几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用分割法,还可以用补形法. 5.A6.解:AB =6-(-4)=10.根据三角形的面积公式,得12AB·|m|=12,即12×10·|m|=12,解得|m|=2.4. 因为点C(3,m),所以点C 在第一象限或第四象限. 当点C 在第一象限时,m >0, 则m =2.4;当点C 在第四象限时,m <0,则m =-2.4.综上所述,m 的值为-2.4或2.4.7.解:(1)因为点C 在第二象限,且|x|=4,|y|=4,所以点C 的坐标为(-4,4). 又易知AB =6,所以S 三角形ABC =12×6×4=12.(2)由题意可知AB =6.因为点C 在第四象限,|x|=3,所以x =3.因为S 三角形ABC =12×6×|y|=9,所以|y|=3.所以y =-3.所以点C 的坐标为(3,-3). 技巧3:活用有序数对表示点的位置 【类型】一、利用有序数对表示座位号1.如图,王明同学的座位是1组2排,如果用有序数对(1,2)表示,那么张敏同学和石玲同学的座位怎样用有序数对表示?【类型】二、利用有序数对表示棋子位置2.五子棋深受广大棋友的喜爱,其规则是:在正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙对弈时的部分示意图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记为(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【类型】三、利用有序数对表示地理位置3.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置,根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?【类型】四、利用有序数对表示运动路径4.如图,小军家的位置点A在经5路和纬4路的十字路口,用有序数对(5,4)表示;点B是学校的位置,点C是小芸家的位置,如果用(5,4)→(5,5)→(5,6)→(6,6)→(7,6)→(8,6)表示小军家到学校的一条路径.(1)请你用有序数对表示出学校和小芸家的位置;(2)请你写出小军家到学校的其他几条路径.(写3条)参考答案1.解:张敏同学的座位可以表示为(3,3),石玲同学的座位可以表示为(4,5).2.解:甲必须在(1,7)或(5,3)处落子,因为若甲不先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则下一步不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.3.解:(1)湖心岛的位置可表示为(2.5,5);光岳楼的位置可表示为(4,4);山陕会馆的位置可表示为(7,3).(2)不是同一个位置,因为前面一个数字代表横向,后一个数字代表纵向,交换数字的位置后,就会表示不同的位置.4.解:(1)学校和小芸家的位置分别可表示为(8,6),(3,3).(2)答案不唯一,如:①(5,4)→(5,5)→(6,5)→(7,5)→(8,5)→(8,6);②(5,4)→(6,4)→(7,4)→(8,4)→(8,5)→(8,6);③(5,4)→(6,4)→(6,5)→(7,5)→(8,5)→(8,6).技巧4:巧用直角坐标系中点的坐标特征解相关问题【类型】一、象限内的点的坐标1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定2.在平面直角坐标系中,若点P(m,m-2)在第一象限内,则m的取值范围是________.【类型】二、坐标轴上的点的坐标3.若点M的坐标为(-a2,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上4.已知点P(a-1,a2-9)在y轴上,则点P的坐标为________.【类型】三、平面直角坐标系中一些特殊点的坐标5.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的角平分线上?(2)点P在第一、三象限的角平分线上?6.已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.【类型】四、点的坐标与点到x轴、y轴的距离之间的关系7.已知点A(3a,2b)在x轴上方,y轴的左侧,则点A到x轴、y轴的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a8.已知点P到x轴和y轴的距离分别是2和5,求点P的坐标.【类型】五、关于坐标轴对称的点9.点P(-3,4)关于x轴对称的点的坐标是()A.(-4,3)B.(3,-4)C.(-3,-4) D.(3,4)10.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.11.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).【类型】六、关于特殊直线对称的点12.点P(3,5)关于第一、三象限的角平分线对称的点为点P1,关于第二、四象限的角平分线对称的点为点P2,则点P1,P2的坐标分别为()A.(3,5),(5,3)B.(5,3),(-5,-3)C.(5,3),(3,5) D.(-5,-3),(5,3) 13.点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________;若点M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________.参考答案1.B2.m>2点拨:第一象限内的点的横、纵坐标必须同时为正,所以m>2.3.C点拨:由-a2可确定a=0,所以-a2=0. 又|b|+1>0,所以点M(-a2,|b|+1)在y轴正半轴上.4.(0,-8)5.解:(1)根据题意,得2m-5+m-1=0,解得m=2.所以当m=2时,点P在第二、四象限的角平分线上.(2)根据题意,得2m-5=m-1,解得m=4.所以当m=4时,点P在第一、三象限的角平分线上.点拨:第一、三象限的角平分线上的点的横、纵坐标相等,第二、四象限的角平分线上的点的横、纵坐标互为相反数.6.解:因为AB∥x轴,所以m=4.因为A,B不重合,所以n≠-3.点拨:与x轴平行的直线上的点的纵坐标相等.7.C点拨:由点A(3a,2b)在x轴上方,y轴的左侧可知点A在第二象限,故3a是负数,2b是正数,所以点A到x轴、y轴的距离分别为2b,-3a.8.解:设点P的坐标为(x, y),依题意,得|x|=5,|y|=2,所以x=±5,y=±2.所以点P的坐标为(5,2)或(5,-2)或(-5,2)或(-5,-2).点拨:(1)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.(2)写点P的坐标时,横、纵坐标的前后顺序不能随意改变.(3)找全满足条件的点P的坐标,不要遗漏.9.C10.-611.-2;312.B点拨:任意点A(a,b)关于第一、三象限的角平分线对称的点的坐标为(b,a),关于第二、四象限的角平分线对称的点的坐标为(-b,-a).13.(9,4-m);17点拨:点A(a,b)关于过点(k,0)且垂直于x轴的直线对称的点的坐标为(2k-a,b),关于过点(0,k)且平行于x轴的直线对称的点的坐标为(a,2k-b).【题型讲解】【题型】一、用有序数对表示位置例1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.【题型】二、求点的坐标例2、如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:①O ,D 两点的坐标分别是()0,0,()0,6,①OD =6,①四边形OBCD 是正方形,①OB ①BC ,OB =BC =6 ①C 点的坐标为:()6,6, 故选:D .【题型】三、距离与点坐标的关系例3、在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-【答案】C 【解析】 由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .【题型】四、象限角的平分线上的点的坐标例4、若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(-2,2)或(2,-2)【答案】C 【解析】已知点M 在第一、三象限的角平分线上,点M 到x 轴的距离为2,所以点M 到y 轴的距离也为2.当点M 在第一象限时,点M 的坐标为(2,2);点M 在第三象限时,点M 的坐标为(-2,-2).所以,点M 的坐标为(2,2)或(-2,-2).故选C . 【题型】五、与坐标轴平行的直线上的点的坐标特征例5、已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ①y 轴,则a 的值是( ) A .1 B .3C .﹣1D .5【答案】B 【详解】 解:①AB①y 轴,①点A 横坐标与点A 横坐标相同,为1, 可得:a -2=1,a=3 故选:B .【题型】六、点的坐标的规律探索例6、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0, 故选C .【题型】七、函数图象的应用例7、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).【答案】C【分析】利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题. 【详解】本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.平面直角坐标系(达标训练)一、单选题1.在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( ) A .1 B .-3C .4D .4或-4【答案】B【分析】根据第二象限的坐标特征判断即可; 【详解】解:①点A (a ,2)在第二象限内, ①a <0, A .不符合题意;B .符合题意;C .不符合题意;D .不符合题意; 故选: B .【点睛】本题考查了象限的坐标特征,掌握第二象限内点的横坐标为负数,纵坐标为正数是解题关键. 2.若点(),1A a a -在x 轴上,则点()1,2B a a +-在第( )象限. A .一 B .二 C .三 D .四【答案】D【分析】由点A 在x 轴上求得a 的值,进而求得点B 坐标,进而得到答案. 【详解】解:点(),1A a a -在x 轴上, 10a ∴-=,即1a =,则点B 坐标为()2,1-, ∴点B 在第四象限,故选:D .【点睛】本题主要考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点. 3.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋①的位置用有序数对(−3,0)表示,则白棋①的位置可用有序数对表示为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-【答案】C【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋①的坐标即可.【详解】解:建立平面直角坐标系如图,白棋①的坐标为(-2,1).故选:C.【点睛】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD①AC,①①1=①A=40°①港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.5.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修,如图所示的图像反映了他骑车上学的整个过程,则下列结论正确的是()A .修车花了25分钟B .小明家距离学校1000米C .修好车后骑行的速度是200米/分钟D .修好车后花了15分钟到达学校【答案】C【分析】根据横坐标,可得时间;根据函数图像的纵坐标,可得路程.【详解】解:A .由横坐标看出,小明修车时间为25-10=15(分钟),故本选项不符合题意; B .由纵坐标看出,小明家离学校的距离2000米,故本选项不合题意;C .小明修好车后骑行到学校的平均速度是:(2000-1000)÷5=200(米/分钟),故本选项符合题意;D .由横坐标看出,小明修好车后花了30-25=5(分钟)到达学校,故本选项不合题意. 故选:D .【点睛】本题考查了函数图像,观察函数图像得出相应的时间,函数图像的纵坐标得出路程是解题关键.二、填空题6.已知点()29,62A m m --在第三象限.则m 的取值范围是______. 【答案】3<m <4.5【分析】在第三象限内的点的横纵坐标均为负数,列式求值即可. 【详解】解:①点A (2m −9,6−2m )在第三象限, ①2m −9<0且6−2m <0, ①3<m <4.5, 故答案为: 3<m <4.5【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.7.如图,两只福娃的发尖所处的位置的坐标分别为M (-2,2)、N (1,-1), 则A 、B 、C 三个点中为坐标系原点的是____.【答案】A【分析】利用平移规律,从M(-2,2)向右平移2个单位长度,向下平移2个单位长度,可得A是坐标原点.【详解】解:①M(-2,2),①A是坐标原点.故答案为A.【点睛】本题考查了平面直角坐标系,利用平移逆向推理是解题关键.三、解答题8.某学校STEAM社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x,纵坐标表示精密电子称的读数y,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为72克时是几点钟? 【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【分析】(1)根据表中各点对应横、纵坐标,描点即可.(2)通过连线可知这些点大致分布在同一直线上,满足一次函数表达式,所以可假设一次函数表达式,利用待定系数法求解函数表达式.(3)根据(2)中的表达式可求出当9x =时,精密电子秤的读数.(4)根据(2)中的表达式可求出当72y =时,漏沙的时间,然后根据起始时间可求出读数为72克的时间. (1) 解:如图所示(2)解:如图所示,连线可得,这些点在同一线上,并且符合一次函数图像. 设一次函数表达式为:y kx b =+将点(0,6),(2,18)代入解析式中可得6218b k b =⎧⎨+=⎩解得66a b =⎧⎨=⎩∴函数表达式为:66y x =+(3)解:由(2)可知函数表达式为:66y x =+ ∴当9x =时,60y =∴漏沙时间为9小时,精密电子称的读数为60克.(4)解:由(2)可知函数表达式为:66y x =+ ∴当72y =时,11x =起始时间是上午7:30∴经过11小时的漏沙时间为下午6:30.【点睛】本题考查一次函数的实际应用,要求掌握描点法画函数图象,待定系数法求解析式,会求函数自变量或函数值是解决本题的关键.平面直角坐标系(提升测评)一、单选题1.如图,小石同学在正方形网格图中建立平面直角坐标系后,点A 的坐标为(1,1)-,点B 的坐标为(2,0),则点C 的坐标为( )A .(1,2)-B .(2,1)-C .(1,2)--D .(1,1)-【答案】A【分析】利用已知点A 、B 的坐标确定平面直角坐标系,进而可得答案. 【详解】解:根据题意,建立如图所示的直角坐标系, ①点C 的坐标为(1,﹣2). 故选:A .【点睛】此题主要考查了点的坐标的确定,属于基本题型,正确得出原点位置是解题关键. 2.如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D .以上都不对 【答案】A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A . 【详解】解:要想路线最短,就只应向右及向下走, 故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.3.道路两旁种植行道树,选择行道树的因素有很多,比如:树形要美、树冠要大、存活率要高、落叶要少…现在只考虑树冠大小、存活率高低两个因素,可以用如下方法将实际问题数学化:设树冠直径为d ,存活率为h .如图,在平面直角坐标系中画出点(d ,h ),其中甲树种、乙树种、丙树种对应的坐标分别为A (d 1,h 1)、B (d 2,h 2)、C (d 3,h 3),根据坐标的信息分析,下列说法正确的是( )A .乙树种优于甲树种,甲树种优于丙树种B .乙树种优于丙树种,丙树种优于甲树种C .甲树种优于乙树种,乙树种优于丙树种D .丙树种优于甲树种,甲树种优于乙树种 【答案】B【分析】根据图象,比较A 、B 、C 三点的存活率和树冠直径即可得出答案. 【详解】根据题意和图象可得,213h h h >>,231d d d >>, ①乙树种是最优的,①甲树种的存活率略高于丙树种,基本相等,但丙树种的树冠直径远远大于甲树种的树冠直径, ①丙树种优于甲树种,①乙树种优于丙树种,丙树种优于甲树种, 故选:B .【点睛】本题考查规律型:点的坐标,准确读出坐标中的信息是解题的关键.4.点A 在第二象限,距离x 轴3个单位长度,距离y 轴5个单位长度,则点A 的坐标为( ) A .()5,3- B .()3,5-C .()5,3-D .()3,5-【答案】A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标. 【详解】解:①点A 在第二象限, ①点的横坐标为负数,纵坐标为正数,①点距离x 轴3个单位长度,距离y 轴5个单位长度, ①点的坐标为(-5,3). 故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°)【答案】C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A (5,30°),B (2,90°),D (4,240°),E (3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数, 由题意可知A 、B 、D 、E 的坐标可表示为:A (5,30°),故A 不正确;B (2,90°),故B 不正确;D (4,240°),故C 正确;E (3,300°),故D 不正确.故选择:C .【点睛】本题考查新定义坐标问题,仔细分析题中的C 、F 两例,掌握定义的含义,抓住表示一个点,。
平面直角坐标系(讲义及答案)
平面直角坐标系(讲义及答案)平面直角坐标系(讲义)➢课前预习1. 在电影票上,“3 排6座”与“6 排3座”(填“是”或“不是”)同一个座位,所以在电影院选择座位需要个数据.2.如图,在数轴上有A,B,C,D 四个点,回答下列问题C A B D-5 -4 -3 -2 -1 0 1 2 3 4 5(1)点C关于点A的对称点表示的数是;点D关于点B 的对称点表示的数是.(2)点C向右平移3个单位后表示的数是;点B向左平移2个单位后表示的数是.(3)点A关于点B的对称点向左平移2个单位后表示的数是.3.如图是某市的部分简图,每个小正方形的边长均为500 米,我们用(2,6)表示文化宫的位置,请回答下列问题:(1)说出体育场与超市的位置;(2)小明家在火车站以东 1 000米,再往北500米处;小聪家在超市以北500 米,再往西 1 500米处,在图中标出小明和小聪家的位置.(3)上周六,小华的活动路线是(1,8)→(2,6)→(7,7)→(7,2),说一说他这一天去了哪些地方.➢ 精讲精练1.写出图中的多边形 ABCDEF 各个顶点的坐标,并指出它们所在的象限.解:A ( , ),第_ 象限; B ( , ), 第 象 限 ; C ( , ), 第 象 限 ; D ( , ), 第 象 限 ; E ( ), 象限; F ( ), 象限.2.在平面直角坐标系中, 点(-2,-3)在第 象限;点(,)在第 象限;点( -1,1- )在第 象限;点(-2,a 2+1)在第 象限.3. 若 a <b <0,则点 A (a -b ,b )在第 象限.4. 在平面直角坐标系中,若点 P (a ,b )在第二象限,则点Q (1-a ,-b )在第 象限.5.在平面直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)A (-3,5),B (-7,3),C (1,3),A (-3,5); (2)D (-6,3),E (-6,0),F (0,0),G (0,3).6 5 4 3 观察所描出的图形,解答下列问题: ①坐标轴上的点有 ,且 x 轴上的点 坐标等于零,y 轴上的点 坐标等于零. ②线段 B C 与 x 轴 ,点 B 和点 C 坐标相同,线段 BC 上其他点的 坐标都相同. ③线段 D E 轴 ,点 E 坐标相同,线段 D E 上其他点的 坐标都相同.y21 - 7 - 6 - 5 - 4 - 3 -2 - 1O 1 x6.若点M(a+3,4-a)在x轴上,则点M的坐标为.7.若过A(1,m),B(n,-3)两点的直线与x轴平行,且A B=4,则m= ,n= .8.如图,正方形A BCD 在平面直角坐标系中,其中三个顶点的坐标分别为(-2,-2),(-2,3),(3,-2),则第四个顶点的坐标为.第8题图第9题图9.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-“马”位于点(2,-2),则“兵”位于点( ,).10.如图,长方形ABCD 的长与宽分别是6,4,建立适当的平面直角坐标系,并写出各个顶点的坐标.D CA B11.如图,对于边长为4 的等边三角形ABC,建立适当的平面直角坐标系,写出各个顶点的坐标.CA B12.已知点P(-3,2),它到x轴的距离为,到y轴的距离为,到原点的距离为.13.在平面直角坐标系中,第二象限内有一点P,若点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为.14.点M在x轴的上方,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为()A.(4,3) B.(-4,3)或(4,3)C.(3,4) D.(-3,4)或(3,4)15.若点A(x,4)到原点的距离为5,则x= .16.如图,△ABC 在平面直角坐标系中,则S△ABC= .17.已知点A(0,4),点B在x轴上,若A B 与坐标轴围成的三角形的面积为2,则点B的坐标为.18.(1)作图,将△ABC 各顶点的横坐标保持不变,纵坐标乘以-1,顺次连接这些点,所得三角形与△ABC 关于轴对称;(2)如图,△DEF 与△ABC 关于轴对称,它们相应顶点的横坐标、纵坐标.19.如果点A(a,b)与点B 关于x 轴对称,点B 与点C(2,3)关于y 轴对称,那么a= ,b= ,点A和点C的位置关系是.20.若点A(a,4),点B(3,b)关于x 轴对称,则(a+b)2 016 的值为21.若点P(b-3,-2b)在y轴上,则点P关于x轴对称的点的坐标为.22.若点A(a,b)沿x轴向左平移2个单位长度,再沿y轴向上平移1单位长度得到点A′(1,2),则点A的坐标为.23.如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标分别为()A.(-1,-1),(2,3),(5,1)B.(-1,1),(3,2),(5,1)C.(-1,1),(2,3),(5,1)D.(1,-1),(2,2),(5,1)24.如图,把图1 中的△ABC 经过一定的变换得到图2 中的△A′B′C′,如果图1中△ABC 上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为.图1 图2【参考答案】➢课前预习1. 不是,两2. (1)0;-2 (2)-1;-1 (3)23. (1)体育场(1,8),超市(7,2)(2)略(3)他这一天去的地方:体育场、文化宫、宾馆、超市➢知识点睛1.两2.互相垂直,公共原点,数轴x 轴,横轴,y 轴,纵轴,x 轴,y 轴3.作垂线,横坐标,纵坐标,有序实数对4. 四,(-,+),(-,-),(+,-)6. (1)纵;横(2)纵;横(3)相同,互为相反数,互为相反数,相同(4)左右,上下➢精讲精练1. (-1,3),二;(-2,-1),三;(-1,-2),三;(3,-2),四(3,1),第一;(2,3),第一2.三;一;四;二3.三4.四5.图形略①E,F,G,纵,横②平行,纵,纵③平行,横,横6. (7,0)7. -3,-3 或58. (3,3)9. (-3,1)10.略11.略12. 2,3,13. (-5,4)14. D15. 3 或-316. 917. (1,0)或(-1,0)18.(1)x;(2)y,互为相反数,相同19.-2,-3,关于原点中心对称20. 121. (0,6)22. (3,1)23. A24. (a+3,b+1)第 10 页。
(完整版)平面直角坐标系典型例题含答案(可编辑修改word版)
平面直角坐标系一-知识点复习1•有序数对:有顺序的两个数“与b组成的数对,记作(“小)。
注童“与b的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平而直角坐标系。
这个平而叫做坐标平面。
(2)平面g角坐标系中点的坐标:通常若平而宜角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,有序实数对(40)叫做点A的坐标,其中«叫横坐标,&叫做纵坐标。
3・各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标5・对称点的坐标特征:6・点到坐标轴的距离:点Pgy)到X 轴距离艸卜,到y 轴的距离制X 。
nP1拥O1 _//1............... -4r4—P ....... ■1;—m八一"f 0册• X 1 ■ 1 A关于X 轴对称关于y 轴对称关于原点对称▲AX二、典型例题讲解考点1:点的坐标与象限的矣系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.2•若点P (44-2)在第四象限,则“的取值范ffl 是(3•在平面直角坐标系中,点P (-2, F+j )所在的象限是( A.第一象限B.第二象限C.第三象限D.第四象限7.点的平移坐标变化规律:简单记为“左减右加,上加下减” A. — 2 < a < 0 B. 0 < « < 2 C. « > 2D. </ < 0A.B. C. D.四考点2:点在坐标轴上的特点1•点P 伽+ 3W+1)在X 轴上,则P 点坐标为( A ・(0-2) B. (2,0) C. (4,0) D. (0,-4) 2.已知点P (”2川-1)在y 轴上,则P 点的坐标是 3.若点P (X, y )的坐标满足xy=0 (xHy ),则点P 必在( )A.原点上B. X 轴上C. y 轴上D. X 轴上或y 轴上(除原点) 考点3:对称点的坐标 1•平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( A. (-3,2) B. (3-2) C. (-2,3) D. (2,3) 2. 已知点A 的坐标为(-2, 3),点B 与点A 关于X 轴对称,点C 与点B 关于y 轴对称,则点C关于X 轴对称的点的坐标为( ) A. (2, -3) B. (一2, 3) 3. 若坐标平面上点P (8, 1)与点Q A. a=4, b=-lB. a 二一4, b=l 考点4:点的平移1. 已知点A (-2, 4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点y , 则点A'的坐标是( ) A. (-5, 6) B. (1, 2) C. (1, 6) D. (-5, 2)2. 已知A (2,3),其关于X 轴的对称点是B,B 关于y 轴对称点是C,那么相当于将A 经过( 的平移到了 C. 向左平移4个单位, 向左平移4个单位, 向右平移4个单位,向下平移6个单位,C. (2, 3)D. (一2, -3) (-4, b)关于X 轴对称,贝y ( )C. a 二一4, b=-lD. a=4» b=lA .B .C . D. 3.再向上平移 再向下平移 再向上平移 再向右平移 个单位 个单位 个单位个单位如图,A, B 的坐标为(2, 0), 4 (0, 1),若将线段AB 平移至A1B1,贝Ija+b 的值为(51•点M (-3, -2)到y轴的距离是( )A- 3 B. 2 C. -3 D- -22•点P到X轴的距离是5,到y轴的距离是6,且点P在X轴的上方,则P点的坐标为•3.已知P (2-X, 3X-4)到两坐标轴的距离相等,则X的值为( )_A. ?B. -12考点6 :平行于X轴或y轴的直线的特点C・3 -或-123D. —或12C. B与C的纵坐标相同2.已知点A (m+1, -2)A. 2B. -43.已知点M (-2, 3),A. (-2, 0) 或(-5. 3)D. B与D的纵坐标相同(3, m-1),若直线AB〃x 轴,C. -1D. 3线段MN二3,且轴,则点X的坐标是( B. (1,3) C.和点B(1, 3)D. (一2, 0)或(-2, 6)考点7:角平分线的理解则m的值为(1.已知点A (3a+5, a-3)在二、四象限的角平分线上,则沪考点8:特定条件下点的坐标1. 如图,已知棋子“车〃的坐标为(.2, 3),棋子〃马〃的坐标为(1, 3),则棋子“炮〃的坐标考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A (-1, 0) , B (3, -1) , C (4, 3): (2) 顺次连接A, B, C,组成△ABC,求△ABC 的面积. 1-4I ——_i i ------------------------- i ————i ---- 1参考答案:(1)略 (2) &52.如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0, 2) (1, 0) (6, 2) (2, 4),求四边形ABCD 的面积•A ・(3, 2)B ・(3, 1) C. (2, 2) D- (.2, 2)-1电。
沪科版八年级上册数学第11章 平面直角坐标系 含答案
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,点(4,-5)关于x轴对称点的坐标为()A.(4,5)B.(-4,-5)C.(-4,5)D.(5,4)2、在平面直角坐标系中,将点A向右平移2个单位长度后得到点A′(3,2),则点A的坐标是A.(3,4)B.(3,0)C.(1,2)D.(5,2)3、点P(3,-5)关于x轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)4、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.-1B.1C.-5D.55、如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°6、如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排序,如(1,0),(2,0)(2,1),(1,1)(1,2)(2,2),…,根据这个规律,第2015个点的横坐标为()A.44B.45C.46D.477、已知,如图,E(-4,2),F(-1,-1)以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.(-2,1)B.(2,-1)C.(2,-1)或(-2,1)D.(8,-4)或(-8,4)8、如图已知点A(1,4),B(2,2)是反比例函数y=的图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)9、平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于( )A.y轴对称B.x轴对称C.原点对称D.直线y=x对称10、如图,⊙O的半径为2,点A的坐标为(2,2 ),直线AB为⊙O的切线,B 为切点,则B点的坐标为()A.(- )B.(- ,1)C.(- )D.(-1, )11、如图,在平面直角坐标系中,若干个半径为2个单位长度,圆心角为的扇形组成一条连续的曲线,点从原点出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2019秒时,点的坐标是()A. B. C. D.12、点P(3,-4)关于y轴对称的点的坐标为()A.(- 3,- 4)B.(3,- 4)C.(- 3,4)D.(4,- 3)13、已知点的坐标是,则点关于轴的对称点的坐标是()A. B. C. D.14、把点(2,﹣3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是()A.(5,﹣1)B.(﹣1,﹣5)C.(5,﹣5)D.(﹣1,﹣1)15、在坐标系中,已知A(2,0),B(﹣3,﹣4),C(0,0),则△ABC的面积为()A.4B.6C.8D.3二、填空题(共10题,共计30分)16、学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.17、如图,将正整数按如图所示规律排列下去,若用有序数对(m,n)表示m 排从左到右第n个数.如(4,3)表示9,则(15,4)表示________.18、如图,把一块三角板放在直角坐标系第一象限内,其中30°角的顶点A落在y轴上,直角顶点C落在x轴的(,0)处,∠ACO=60°,点D为AB边上中点,将△ABC沿x轴向右平移,当点A落在直线y=x﹣3上时,线段CD扫过的面积为________.19、已知点在y轴上,则点P坐标为________.20、已知点P在第三象限,到x轴的距离为3,到y轴的距离为5,则点P的坐标为________.21、如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是________.22、已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是________23、如果一只小兔从点A(200,300)先向东跑100米,再向南跑200米到达点B(300,100),那么另一只小兔从点A(200,300)先向北跑100米,再向东跑200米到达点C,则点C的坐标是________.24、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为________.25、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB上,且AE=1,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段,垂足为点H,在点P从点F(0,)运动到原点O的过程中,点H的运动路径长为________.三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、如图正方形OABC的边长等于2,且AO边与x轴正半轴的夹角为60º,O为原点坐标,求点B的坐标.28、如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.29、如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.30、如图,已知矩形ABCD四个顶点的坐标分别是A(2,-2),B(5,-2),C(5,-),D(2,-)(1)四边形的面积是多少?(2)将矩形ABCD向上平移个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、B5、C6、B7、C9、B10、D11、B12、A13、A14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、30、。
沪科版八年级上册数学第11章 平面直角坐标系含答案【参考答案】
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,点(-7,-2m+1)在第三象限,则m的取值范围是()A. B. C. D.2、在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a >1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度 C.图案向左平移了a个单位长度,并且向下平移了a个单位长度 D.图案向右平移了a个单位长度,并且向上平移了a个单位长度3、在平面直角坐标系中,点P(2,3)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4、如图,小手盖住的点的坐标可能为( )A.(-4,-6)B.(-6,3)C.(5,2)D.(3,-4)5、将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B的坐标是()A.(-1,-1)B.(3,3)C.(0,0)D.(-1,3)6、在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为5,且△ABC是直角三角形,则满足条件的C点有()A.4个B.5个C.6个D.8个7、在平面直角坐标系中,点M(﹣6,4)在()A.第一象限B.第二象限C.第三象限D.第四象限8、已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2007的值为()A.1B.﹣1C.7 2007D.﹣7 20079、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD的度数是()A.45°B.60°C.65°D.70°的坐标为(4,5),那么点P坐标是10、如果点P关于x轴的对称点P1()A.(﹣5,﹣4)B.(4,﹣5)C.(﹣4,﹣5)D.(﹣4,5)11、在平面直角坐标系中,点(4,-5)关于x轴对称点的坐标为()A.(4,5)B.(-4,-5)C.(-4,5)D.(5,4)12、若点A(1+m,2)和点B(-3,1-n)关于y轴对称,则的值为()A.-5B.-3C.1D.313、如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是()A.4B.6C.9D.1314、直角坐标系中,点A(-3,4)与点B(-3,-4)关于()A.原点中心对称B.y轴轴对称C.x轴轴对称D.以上都不对15、如图,点,,,在上,是的一条弦,则().A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=________.17、如图,∠C=90°,CB=CO,且点B坐标为(-2,0),则点C坐标为________.18、如图,在平面直角坐标系中,点A的坐标为(-1,),以原点O为中心,将点A顺时针旋转90°得到点A′,则点A′坐标为________.19、已知点M(2a﹣b,2b),点N(3,a)关于y轴对称,则a+b=________.20、在直角坐标系xoy中,O是坐标原点,抛物线与x轴交与A,B 两点(点A在点B的左侧),与y轴相交与点C,如果点M在y轴右侧的抛物线上,S△AMO =S△COB,那么点M的坐标是________ 。
沪科版八年级上册数学第11章 平面直角坐标系含答案
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、今年第4号台风“黑格比”于8月3日登陆温州,其中心位于苍南县东南方大约460公里的台湾以东洋面上,这句话中出现的下列各自然数不属于标号或排序的()A.460B.3C.4D.82、下列说法错误的是()A.平移和旋转都不改变图形的形状和大小B.平移和旋转能改变图形的位置C.平移和旋转都不改变图形的位置D.平移和旋转能改变图形的位置,而不改变图形的形状、大小3、在平面直角坐标系中,点与点关于y轴对称,则()A. ,B. ,C. ,D.,4、将抛物线y=﹣(x+1)2向左平移1个单位后,得到的抛物线的顶点坐标是()A.(﹣2,0)B.(0,0)C.(﹣1,﹣1)D.(﹣2,﹣1)5、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的()A.东南方向B.西南方向C.东北方向D.西北方向6、如图,在△ABO中,AB⊥OB,OB= ,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(-1,)B.(-1,)或(1,- )C.(-1,-) D.(-1,- )或(- ,1)7、点P(-2,5)关于x轴对称的点的坐标为()A.(2,-5)B.(5,-2)C.(-2,-5)D.(2,5)8、在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,)B.(,0)C.(0,2)D.(2,0)9、在平面直角坐标系中,点A(3,﹣1)关于y轴的对称点A′的坐标是()A.(﹣3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣1,3)10、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面的四个图中,能由下图经过平移得到的是()A. B. C. D.11、如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)12、在平面直角坐标系中,点到x轴的距离为A.3B.-2C.-3D.213、如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3B.4﹣C.4D.6﹣214、在平面直角坐标系中,点,所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限15、如下图所示,下列各组图形中,•一个图形经过平移能得到另一个图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、点A(﹣3,4)到y轴的距离为________,到原点的距离为________.17、剧院里5排2号可以用(5,2)表示,则(7,4)表示________.18、已知抛物线,将该抛物线沿轴翻折后的新抛物线的解析式为________.19、如下图所示,A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示A到B的一条路线,用同样的方式写出另外一条由A到B的一条路线:(3,1)→________→________ →________ →(1,3).20、在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是________.21、点P(3, )与点q(b,2)关于y轴对称, 则a=________, b=________22、观察中国象棋的棋盘,其中“马”的位置可以用一个数对(3,5)来表示,则表示“兵”点位置的数对是________.23、在平面直角坐标系中,与点A(5,﹣1)关于y轴对称的点的坐标是________.24、点A(﹣4,1)关于y轴的对称点坐标为________,关于原点对称的点的坐标为________25、如图,在平面直角坐标系中,的三个顶点的坐标分别是、、,如果沿着边旋转,则所得旋转体的体积是________(结果保留).三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,sinα= ,求t的值.28、如图,在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O (0,0),A(-3,0),B(0,2),求平行四边形第四个顶点C的坐标.29、如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.30、如果点B 到x轴的距离与它到y轴的距离相等,求点B的坐标.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、B5、B6、B7、C8、A9、A10、A11、A12、D13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系(基础)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位). 要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.2.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【思路点拨】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【答案】D.【解析】由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B 正确;D(4,240°),故C正确;E(3,300°),故D错误.【总结升华】本题考查了学生的阅读理解能力,由已知条件正确确定点的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念3.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】(春•临沂期末)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).4.(春•荣昌县期末)如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C点和B点作x轴和y轴的平行线,如图,然后利用S四边形ABCO=S矩形OHEF ﹣S△ABH﹣S△CBE﹣S△OCF进行计算.【答案与解析】解:分别过C点和B点作x轴和y轴的平行线,如图,则E(5,3),所以S四边形ABCO=S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征5.(春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P 的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).【巩固练习】一、选择题1.为确定一个平面上点的位置,可用的数据个数为( ).A.1个 B.2个 C.3个 D.4个2.下列说法正确的是( ).A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置D.(m,n)和(n,m)表示的位置不同3.(2016•大连)在平面直角坐标系中,点M(1,5)所在的象限是( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若点P(m,n)在第三象限,则点Q(-m,-n)在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限5.知点P(m+3,2m+4)在y轴上,那么点P的坐标是( ).A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)6.(•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)二、填空题7.已知有序数对(2x-1,5-3y)表示出的点为(5,2),则x=________,y=________.8.某宾馆一大楼客房是按一定规律编号的,例如房间403号是指该大楼中第4层第3个房间,则房间815号是指第________层第________个房间;第6层第1个房间编号为________.9. 点P(-3,4)到x轴的距离是________,到y轴的距离是________.10.指出下列各点所在象限或坐标轴:点A(5,-3)在_______,点B(-2,-1)在_______,点C(0,-3)在_______,点D(4,0)在_______,点E(0,0)在_______.11.(•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.12.(•安溪县模拟)若点(3﹣x,x﹣1)在第二象限,则x的取值范围是.三、解答题13.在图中建立适当的平面直角坐标系,使A、B两点的坐标分别为(-4,1)和(-1,4),写出点C、D的坐标,并指出它们所在的象限.14.(春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?15. 已知A,B,C,D的坐标依次为(4,0),(0,3),(-4,0),(0,-3),在平面直角坐标系中描出各点,并求四边形ABCD的面积.【答案与解析】一、选择题1. 【答案】B.2. 【答案】B.3. 【答案】B;【解析】四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).4. 【答案】A;【解析】因为点P(m,n)在第三象限,所以m,n均为负,则它们的相反数均为正.5. 【答案】B;【解析】m+3=0,∴m=-3,将其代入得:2m+4=-2,∴P(0,-2).6. 【答案】B;【解析】解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选B.二、填空题7. 【答案】3,1;【解析】由2x-1=5,得x=3;由5-3y=2,得y=1.8. 【答案】8, 15, 601;9. 【答案】4, 3;【解析】到x轴的距离为:│4│=4,到y轴的距离为:│-3│=3.10.【答案】第四象限,第三象限,y轴的负半轴上,x轴的正半轴上,坐标原点.11.【答案】(﹣3,4)【解析】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).12.【答案】x>3;【解析】解:∵点(3﹣x,x﹣1)在第二象限,∴,解不等式①得,x>3,解不等式②得,x>1,所以不等式组的解集是x>3.故答案为:x>3.三、解答题13.【解析】解:建立平面直角坐标系如图:得C(-1,-2)、D(2,1).由图可知,点C在第三象限,点D在第一象限.14.【解析】解:∵M(a ,b )为平面直角坐标系中的点. (1)当a >0,b <0时,点M 位于第四象限;(2)当ab >0时,即a ,b 同号,故点M 位于第一、三象限;(3)当a 为任意实数,且b <0时,点M 位于第三、四象限和纵轴的负半轴. 15.【解析】 解:描点如下:14443242ABCD AOB S S ==⨯⨯⨯=四边形三角形 .。