中职数学双曲线的标准方程35页PPT
合集下载
双曲线及其标准方程ppt课件
x2
y2
变式.给出曲线方程
+
=1.
4+k 1-k
(1)若该方程表示双曲线,求实数k的取值范围;
(2)若该方程表示焦点在y轴上的双曲线,求实数k的取值范围.
y2 x2
例 5.已知双曲线 C 的方程是 - =1,其上下焦点分别是 F2,
16 20
F1,点 M 在双曲线 C 上,且|MF1|=9,则|MF2|=________.
归纳总结
y
图形
y
P
P
x
O
F1
F1 O F2
方程
焦点
a,b,c之间的关系
F2
x
x2 y2
2 1(a 0, b 0)
2
a
b
y2 x2
2 1(a 0, b 0)
2
a
b
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
c2=a2+b2
a,b大小不定
椭圆与双曲线的区别
O
焦点在对应轴上
x2 y2
2 1(a 0, b 0)
2
a
b
① 方程用“-”号连接;
y
F2
F1
y2 x2
2 1(a 0, b 0)
2
a
b
② c2=a2+b2 ;
③分母是a2, b2, 且a>0, b>0,但a, b大小不定;
④ 如果x2的系数是正的,则焦点在x轴上;
如果y2的系数是正的,则焦点在y轴上.
x
F1 O
F2
结论:已知F1,F2分别是双曲线C:
中职双曲线的定义及标准方程PPT课件
(二次项系数为正,焦整点理版课在件 相应的轴上)
11
双曲线与椭圆之间的区别与联系
定义
方程
焦点
a.b.c 的关 系
椭圆
双曲线
|MF1|+|MF2|=2a
||MF1|-|MF2||=2a
x2 a2
by22
1(ab0)
x2 a2
by22
1(a0,b0)
y2 a2
x2 b2
1(ab0)
y2 a2
bx22
1(a0,b0)
F(±c,0) F(±c,0) F(0,±c) F(0,±c)
a>b>0,
a>0,b>0,但a不 一定大于b,
a2=b2+c整2理版课件
c2=a2+b2
12
1、已知双曲线的焦点为F1(-5,0), F2(5,0)双 曲线上一点到焦点的距离差的绝对值等 于6,则 x2 y2 1 (1)双曲线的标准方程为__9____1_6_______
5.化简
整理版课件
9
y
M 代数式化简得:
F1 O F2
x (c2 a 2 )x2 a 2y2 a 2(c2 a 2 )
可令:c2-a2=b2
代入上式得:b2x2-a2y2=a2b2
即:a x2 2b y22 ( 1a0,b0)
其中c2=整a理2版+课b件 2
此即为焦 点在x轴 上的双曲 线的标准 方程
(2)双曲线上一点P, |PF1|=10,则|P
F2|=__4_或__1_6___
整理版课件
13
2.如果方程x2 y2 1表示双曲线, 2m m1
求m的取值范围.
变式一: 方程 x2 y2 1 表示双曲线时,则
《双曲线方程》课件
解决与双曲线相关的几何问题
双曲线方程在解决与双曲线相关的几何问题中发挥了重要作用,如求双曲线的交点、判断点是否在双曲线上等。
在物理学中的应用
描述光和声的传播路径
在物理学中,双曲线方程可以用来描述光和声波的传播路径,特别是在处理折 射和反射等问题时。
研究行星和卫星的运动轨迹
在天文学中,双曲线方程可以用来描述行星和卫星的逃逸轨道,即它们的运动 轨迹在离开引力场时的轨迹。
几何法
通过几何图形,利用双曲线的性质和定义,求解出未知数。
参数法
引入参数,将双曲线方程化为参数方程,从而求解出未知数。
双曲线方程在实际问题中的应用案例
光学问题
双曲线方程可以用于描述光的反射和折射规律,解决 光学问题。
物理问题
双曲线方程可以用于描述物体的运动轨迹,解决物理 问题。
工程问题
双曲线方程可以用于描述机械运动、振动等现象,解 决工程问题。
与双曲线几何意义的联系与区别
联系
双曲线方程描述了双曲线的几何形状,包括 其分支、焦点和渐近线等。
区别
双曲线方程是代数形式,而双曲线的几何意 义则是直观表现。通过对方程的分析可以得 出双曲线的几何性质,如离心率、实轴和虚 轴等。
05
双曲线方程的扩展知识
双曲线方程的变形与转化
参数方程与直角坐标方程的转换
双曲线方程
• 双曲线方程的概述 • 双曲线方程的推导 • 双曲线方程的应用 • 双曲线方程与其他知识点的联系 • 双曲线方程的扩展知识
01
双曲线方程的概述
双曲线的定义
定义
双曲线是一种特殊的二次曲线,它由 一个固定的点(称为焦点)和一条固 定的直线(称为准线)的距离限制形 成。
描述
双曲线方程在解决与双曲线相关的几何问题中发挥了重要作用,如求双曲线的交点、判断点是否在双曲线上等。
在物理学中的应用
描述光和声的传播路径
在物理学中,双曲线方程可以用来描述光和声波的传播路径,特别是在处理折 射和反射等问题时。
研究行星和卫星的运动轨迹
在天文学中,双曲线方程可以用来描述行星和卫星的逃逸轨道,即它们的运动 轨迹在离开引力场时的轨迹。
几何法
通过几何图形,利用双曲线的性质和定义,求解出未知数。
参数法
引入参数,将双曲线方程化为参数方程,从而求解出未知数。
双曲线方程在实际问题中的应用案例
光学问题
双曲线方程可以用于描述光的反射和折射规律,解决 光学问题。
物理问题
双曲线方程可以用于描述物体的运动轨迹,解决物理 问题。
工程问题
双曲线方程可以用于描述机械运动、振动等现象,解 决工程问题。
与双曲线几何意义的联系与区别
联系
双曲线方程描述了双曲线的几何形状,包括 其分支、焦点和渐近线等。
区别
双曲线方程是代数形式,而双曲线的几何意 义则是直观表现。通过对方程的分析可以得 出双曲线的几何性质,如离心率、实轴和虚 轴等。
05
双曲线方程的扩展知识
双曲线方程的变形与转化
参数方程与直角坐标方程的转换
双曲线方程
• 双曲线方程的概述 • 双曲线方程的推导 • 双曲线方程的应用 • 双曲线方程与其他知识点的联系 • 双曲线方程的扩展知识
01
双曲线方程的概述
双曲线的定义
定义
双曲线是一种特殊的二次曲线,它由 一个固定的点(称为焦点)和一条固 定的直线(称为准线)的距离限制形 成。
描述
双曲线及其标准方程完整版课件
2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
双曲线及其标准方程PPT课件(公开课)ppt文档
M
2、|MF2| - | MF 1| =2a (2a< |F1F2| )
F1
F2
3、若常数2a=0
F1
F2
4、若常数2a = | F1F2 |
F1
F2
5、若常数2a>| F1F2 |
轨迹不存在
变式1 已知两定点F1(-5,0),F2(5,0),平面上一动 点P,|PF1|-|PF2|= 6,求点P的轨迹方程.
解: 由题知点P的轨迹是双曲线的右支,
根据双曲线的焦点在 x 轴上,设它的标准方程为:
x2 y2 a2b2 1 (a0,b0)
∵ 2a = 6, c=5 ∴ a = 3, c = 5
双曲线及其标准方程PPT课件(公开课)
1、复习
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹是 椭圆 .
动
画
Y Mx,y
2. 引入问题:
O
F 1c,0
F 2 c,0 X
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
平面上动点M到两定点距离的差为常数的轨迹是什么 ?
∴ a = 3, c = 5
∴ b2 = 52-32 =16
所以所求双曲线的标准方程为: x2 y2 1 9 16
走进高考
x2 y2
1.若双曲线 16 9 1 上的点P 到点
(5,0) 的距离是15,则点P 到点(5,0) 的
距离是( D ) A.7 B. 23 C. 5或25 D. 7或23
所以所求双曲线的标准方程为:
x2 y2 1 或
y2 x2 1
9 16
9 16
课堂练习
双曲线及其标准方程ppt课件
所以 2 mm 1 0 ,解得 m 2 或 m 1, 即实数 m 的取值范围是,2 1, .
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a
双曲线及其标准方程课件
音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。
双曲线及其标准方程ppt课件
C.(0,-5),(0,5)
D.(0,- 7),(0, 7)
双曲线的定义
2
1.设 F1,F2 分别是双曲线 x2-24=1 的左、右焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|, 则△PF1F2 的面积等于 ( )
A.4 2
B.8 3
C.24
D.48
2.已知动点 P(x,y)满足 ( + 2)2 + 2- ( -2)2 + 2=2,则动点 P 的轨迹是 ( )
这两个定点叫做双曲线的焦点. 两焦点的距离叫做双曲线的焦距.
y
M
F1 o F2 x
如何理解绝对值?若去掉绝对值则图像有何变化?
03 双曲线的标准方程
1. 建系:如图建立直角坐标系xOy,使x轴经 过点F1,F2,并且点O与线段F1F2中点重合.
y M
F1 O F2
x
2.设点:设M(x , y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0) 常数=2a
利用定义求轨迹方程
P P127 习题3.2 第5题
如图,圆O的半径为定长 ,A是圆O外一定点,P是圆上任
意一点,线段AP的垂直平分线l和直线OP相交于点Q,当
O
点P在圆O上运动时,点Q的轨迹是什么?为什么?
A Q
P115 习题3.1 第6题 如图,圆O的半径为定长 ,A是圆O内一定点,P是圆上 任意一点,线段AP的垂直平分线l和半径OP相交于点 Q,当点P在圆O上运动时,点Q的轨迹是什么?为什么?
A.椭圆 C.双曲线的左支
B.双曲线 D.双曲线的右支
双曲线的定义
22
【变式练习】
已知
P
是双曲线
中职教育数学《双曲线定义及标准方程》课件
它所表示的双曲线的焦点
在y轴上, 焦点是F1(0, c), F2 (0, c), 这里c2 a2 b2.
椭圆和双曲线的标准方程以及它们之间的关系
椭圆
双曲线
|MF1|+|MF2|=2aLeabharlann |MF1|-|MF2|=±2a
∵ a>c>0, ∴ 令a2-c2=b2(b>0)
x2 y2 a2 b2 1
y2 a2
定义:的平绝面对内值与等两于个常定数点(F21,a<F︱2F的1F距2|=离2c的) 差
的点的轨迹叫做双曲线.
① 两个定点F1、F2——焦点 ② |F1F2|=2c ——焦距.
注意:
(1)若2a=2c
两条射线
M
F1 o F2
(2)若2a>2c
无轨迹
(3)若2a=0
F1F2中垂线
1. 建系:以F1,F2所在的直线为x轴,线段 y
x2 b2
1
(a>b>0)
∵ c>a>0 ,
∴ 令c2-a2=b2(b>0)
x2 y2
a2 b2 1 (a>0,b>0 ,a
y2 x2
不一定大于b )
a2 b2 1
例题学习
例1、已知双曲线的焦点在x轴上,且焦距为14, 双曲线上一点到两个焦点的距离之差的绝对值为8,写出 双曲线的标准方程。
例2、求下列双曲线的焦点坐标和焦距。
的点的轨迹是什么呢?
P37图2-8
平面内与两定点的距离的差为非零常数的点
的轨迹是怎样的曲线呢?
①如图(A),
|MF1|-|MF2|=|F2F1|=2a
②如图(B),
|MF2|-|MF1|=2a
双曲线的定义及标准方程课件[可修改版ppt]
F1
F2
4、若常数2a>| F1F2 |
轨迹不存在
1. 建系.以F1,F2所在的直线为X轴,线
段如F1何F2求的这中优点美o为的原曲点线建的立方直程角?
坐标系
2.设点.设M(x , y),双曲线的焦
yy
M
距为2c(c>0),F1(-c,0),F2(c,0) 常数为2a
FF1 1 O o FF22 xx
x2 y2 a2b2 1 (a0,b0)
C=5,a=4所,以所b求2=方c2-程a2=为5:2-42=3x22 42
y2 32
1
双曲线及标准方程
例1:已知两定点F1(-5,0),F2(5,0)求到这两点的距 离之差的绝对值为8的点的轨迹方程。
变式一:若两定点改为为F1(0,-5),F2(0,5) ,则轨迹如何?
迹叫做双曲线。
F1,F2 -----焦点
|F1F2| -----焦距=2c
||MF1| - |MF2|| = 2a
.
F1
M
o
.
F2
1、|MF 1 | - |MF2 | =2a
M
(2a< |F1F2 | )
2、|MF2 | - | MF 1| =2a
F1
F2
(2a< |F1F2| )
3、若常数2a = | F1F2 |
双曲线的定义及 标准方程课件
1、椭圆是如何定义的?
平面内与两定点F1、F2的距离的和等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹
2a与2c的大小关 系
2a 2c时是椭圆 2a 2c时是线段F1F2 2a 2c时轨迹不存在
2.椭圆的标准方程?
双曲线及其标准方程ppt课件
课后提升
1.必做题:P127页课本习题3.2第1,2,5题
2. 思考题(选做):定位问题
某中心接到其正东、正西、正北方向三个观测点的报告,正西、
正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其
它两个观测点晚4秒。已知各观测点到该中心的距离都是1020m,试
确定该巨响发生的位置。
(假定声音传播的速度为340m/s,相关各点均在同一平面内。)
−
= 令 = −
−
你能在y轴上找一点B,使得|OB|=b吗?
1
验证
设点
2
坐标法
4
化简
列式
3
绝对值
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导
重
点
4
5
类比推理,举一反三
列表对比,加深理解
教学过程分析
方程推导
在学生脑海里留下更加深刻的印象。
通过学生的自主学习、小组合作、师生互
动,让学生学会交流、表达、质疑、反思。
04
01
02
03
谢
大
谢
家
5.及时练习,巩固所学
6.回顾小结,思维提升
7.课后延伸,探究发现
教学过程分析
复习回顾,课题导入
复习回顾:
椭圆及其标准方程
创设情境
导入课题:双曲线及其标准方程
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导
4
类比推理,举一反三
5
双曲线的标准方程 PPT
e c e 1
a
(5)渐近线:
ya x b
-b o b x -a
双曲线的几何性质 ——对比记忆
双 曲 线
性 质
图 象
范 围
对 称 性
顶 点
渐 近 线
离 心 率
x2 a2
y2 b2
1
(a 0,b 0)
xa
或
x a
关于 x轴
(a,0)
ybx a
e
c
y轴
a
y2 x2 1 a2 b2 (a 0,b 0)
双曲线的 离心率.
(2)e的范围: c>a>0 e >1
(3)e的含义:
e越大,双曲线开口越大.
二、讨论双曲线 y2
a2
x2 b2
1(a
0, b
0)简单几何性质
(1)范围: y a, y a
y
(2)对称性: 关于x轴、y轴、原点都对称
a
(3)顶点: (0,-a)、(0,a)
(4)离心率:
双曲线的标准方程:
形式一: x2 y2 1(a 0,b 0) a2 b2
(焦点在x轴上,F(1 -c, 0)、F(2 c, 0))
形式二:
y2 a2
x2 b2
1
(a
0,b
0)
(焦点在y轴上,F(1 0, -c)、F(2 0, c))
c2=a2+b2
一、探究双曲线 x2
a2
y2 b2
1
(a
Байду номын сангаас
0, b
0)的简单几何性质
1、范围
y
x a, x a
-a o a
x