勾股定理的第一节课PPT课件.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库
勾股定理的证明
两千多年来,人们对勾股定理的证明颇 感兴趣,因为这个定理太贴近人们的生活实 际,以至于古往今来,下至平民百姓,上至帝王 总统都愿意探讨,研究它的证明.因此不断出 现新的证法.
1.传说中毕达哥拉斯的证法
2.赵爽弦图证法
3.美国第20任总统茄菲尔德的证法
总统巧证勾股定理
学过几何的人都知道勾股定理。它是几何中一个比较重要的定理,应用十分 广泛。迄今为止,关于勾股定理的证明方法已有500余种。其中,美国第二十任 总统伽菲尔德的证法在数学史上被传为佳话。
2.勾股定理在西方被称为毕达哥拉斯定理,相 传是古希腊数学家兼哲学家毕达哥拉斯与 公元前550年首先发现的.但毕达哥拉斯对 勾股定理的证明已经失传.著名的希腊数学 家欧几里得在巨著(几何原本)中给出一个很 好的证明.
勾股定理的内容
如果直角三角形的 两条直角边长分别 为a,b,斜边长为c, 那么a2+b2=c2
总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案 是否定的。事情的经过是这样的;
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在 散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着 走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么, 时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去, 想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着 一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地 说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多 少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为 5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到: “那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你 能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
名题鉴赏
葛藤是自然界中一种聪明的植物,它自己腰杆不硬,为了享 受更多的阳光雨露,常常绕着树干盘旋而上,它还有一手绝 招,就是它绕树盘升的路线,总是沿最短路线螺旋前进!难 道植物也懂数学?
通过阅读以上信息,你能设计一种方法解决下列问题吗? 如果树的周长为3cm,绕一圈升高4cm,则它爬行的路线 是什么?
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经 过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
目前世界上许多科学家正在试图寻找其它 星球的“人”,为此向宇宙发出了许多信号, 如地球上人类的语言,音乐,各种图形等.我 国数学家华罗庚建议,发射一种反映勾股定 理的图形,如果宇宙人是“文明人”,那么他 们一定会识别这种语言的.
勾股定理的发现与证明
1.我国古代3000多年前,有一个叫商高的人 发现:把一根直尺折成直角,两端连接得一直 角三角形,勾广三,股修四,弦隅五.意思是说, 一个直角三角形较短直角边(勾)的长是3,长 的直角边(股)的长是4,那么斜边(弦)的长是5.
勾股定理的证明
两千多年来,人们对勾股定理的证明颇 感兴趣,因为这个定理太贴近人们的生活实 际,以至于古往今来,下至平民百姓,上至帝王 总统都愿意探讨,研究它的证明.因此不断出 现新的证法.
1.传说中毕达哥拉斯的证法
2.赵爽弦图证法
3.美国第20任总统茄菲尔德的证法
总统巧证勾股定理
学过几何的人都知道勾股定理。它是几何中一个比较重要的定理,应用十分 广泛。迄今为止,关于勾股定理的证明方法已有500余种。其中,美国第二十任 总统伽菲尔德的证法在数学史上被传为佳话。
2.勾股定理在西方被称为毕达哥拉斯定理,相 传是古希腊数学家兼哲学家毕达哥拉斯与 公元前550年首先发现的.但毕达哥拉斯对 勾股定理的证明已经失传.著名的希腊数学 家欧几里得在巨著(几何原本)中给出一个很 好的证明.
勾股定理的内容
如果直角三角形的 两条直角边长分别 为a,b,斜边长为c, 那么a2+b2=c2
总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案 是否定的。事情的经过是这样的;
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在 散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着 走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么, 时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去, 想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着 一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地 说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多 少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为 5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到: “那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你 能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
名题鉴赏
葛藤是自然界中一种聪明的植物,它自己腰杆不硬,为了享 受更多的阳光雨露,常常绕着树干盘旋而上,它还有一手绝 招,就是它绕树盘升的路线,总是沿最短路线螺旋前进!难 道植物也懂数学?
通过阅读以上信息,你能设计一种方法解决下列问题吗? 如果树的周长为3cm,绕一圈升高4cm,则它爬行的路线 是什么?
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经 过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
目前世界上许多科学家正在试图寻找其它 星球的“人”,为此向宇宙发出了许多信号, 如地球上人类的语言,音乐,各种图形等.我 国数学家华罗庚建议,发射一种反映勾股定 理的图形,如果宇宙人是“文明人”,那么他 们一定会识别这种语言的.
勾股定理的发现与证明
1.我国古代3000多年前,有一个叫商高的人 发现:把一根直尺折成直角,两端连接得一直 角三角形,勾广三,股修四,弦隅五.意思是说, 一个直角三角形较短直角边(勾)的长是3,长 的直角边(股)的长是4,那么斜边(弦)的长是5.