2017版高考数学一轮总复习第3章导数及其应用第1节导数的概念及运算高考AB卷理
2017版高考数学人教A版(全国)一轮复习 课件 第三章 导数及其应用 第1讲
第二十一页,编辑于星期六:二十点 八分。
[微题型 2] 求参数值(或范围) 【例 2-2】 (1)(2015·全国Ⅱ卷)已知曲线 y=x+ln x 在点(1,
1)处的切线与曲线 y=ax2+(a+2)x+1 相切,则 a= ________. (2)(2016·兰州一模)已知函数 f(x)=ex-mx+1 的图象为曲线 C,若曲线 C 存在与直线 y=ex 垂直的切线,则实数 m 的 取值范围为________. 解析 (1)令 f(x)=x+ln x,求导得 f′(x)=1+1x,f′(1)=2, 又 f(1)=1,所以曲线 y=x+ln x 在点(1,1)处的切线方程 为 y-1=2(x-1),即 y=2x-1.设直线 y=2x-1 与曲线 y =ax2+(a+2)x+1 的切点为 P(x0,y0),
第十五页,编辑于星期六:二十点 八分。
法二 y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′ =[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2) =(x+2+x+1)(x+3)+(x+1)(x+2) =(2x+3)(x+3)+(x+1)(x+2) =3x2+12x+11. (2)∵y=sin 2x-cos 2x=-12sin x, ∴y′=-12sin x′=-12(sin x)′=-12cos x.
A.34π
π
π
π
B.3
C.4
D.6k
第二十页,编辑于星期六:二十点 八分。
解析 (1)f′(x)=3x2-4x+1,∴f′(-1)=8,∴过点 P(-1,2) 的切线方程为 y-2=8(x+1),即 y=8x+10. ∴与坐标轴围成的三角形面积 S=12×10×54=245.故选 C. (2)f′(x)=(ex)′sin x+ex(sin x)′=ex(sin x+cos x), ∴f′(0)=e0(sin 0+cos 0)=1,设函数 f(x)=exsin x 在点(0,f(0)) 处的倾斜角为 α,∴tan α=1,∴α=π4.故选 C.
2017高考数学(理)一轮复习配套课件:第三章导数及其应用3.3
类型二 极值与最值的进一步讨论
(2015·山东改编)设函数 f(x)=ln(x+1)+a(x2-x), 其中 a∈R,讨论函数 f(x)极值点的个数.
解:f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞), f′(x)=x+1 1+a(2x-1) =a(2x-1)x+(1x+1)+1 =2ax2+xa+x+1 1-a, 当 a=0 时,f′(x)=x+1 1>0,函数 f(x)在(-1,+∞)为增函数, 无极值点.
第二十页,编辑于星期六:二十一点 四十七分。
(2)由 f′(x)=0 可得 x=a,a>0,
①当 0<a≤1 时,f′(x)≥0 在[1,2]上恒成立,
所以 y=f(x)在[1,2]上递增,所以 f(x)在[1,2]上的最小值为 f(1)=2a3+2.
②当 1<a<2 时,
x
(1,a)
a
(a,2)
解:(1)∵f′(0)=e0=1,f(0)=1, ∴切线方程为 y-1=1·(x-0),即 x-y+1=0.
第二十二页,编辑于星期六:二十一点 四十七 分。
(2)证法一:设 g(x)=ex-ex, 曲线 y=ex 与 y=ex 的公共点的个数等于函数 g(x)=ex-ex 零点的个数. ∵g′(x)=ex-e,令 g′(x)=0,得 x=1, ∴g(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增, ∴g(x)的最小值 g(1)=e1-e=0, g(x)=ex-ex≥0(仅当 x=1 时,等号成立). ∴曲线 y=f(x)与直线 y=ex 有唯一公共点.
( 2015·云南第一次检测 ) 已 知 f(x) = ex(x3+mx2-2x+2).
2017版高考数学一轮复习 第三章 导数及其应用 第1讲 导数的概念及运算课件 理
3.基本初等函数的导数公式
基本初等函数
f(x)=c(c为常数) f(x)=xα(α是实数) f(x)=sin x
导函数
f′(x)=______ 0
αx f′(x)=_______ cos x f′(x)=_______
α -1
f(x)=cos x
f(x)=ex f(x)=ax(a>0,a≠1) f(x)=ln x
规律方法
(1) 熟记基本初等函数的导数公式及运算法则是
导数计算的前提,求导之前,应利用代数、三角恒等式等 变形对函数进行化简,然后求导,这样可以减少运算量提 高运算速度,减少差错.
(2)①如函数为根式形式,可先化为分数指数幂,再求导.
②复合函数求导,应先确定复合关系,由外向内逐层求导, 必要时可换元处理.
(1)f′(x0)与(f(x0))′表示的意义相同.( × )
(2)求f′(x0)时,可先求f(x0)再求f′(x0).( × ) (3)曲线的切线与曲线不一定只有一个公共点.( √ ) (4)若f(x)=e2x,则f′(x)=e2x.( × )
1 2 2.某汽车的路程函数是 s(t)=2t -2gt (g=10 m/s2),则当 t=x来自(-∞,0)+
0
(0,1)
-
1
(1,+∞)
+
g′(x)
g(x)
0 t+3
0 t+1
所以 g(0)=t+3 是 g(x)的极大值;g(1)=t+1 是 g(x)的极小值. 当 g(0)=t+3≤0,即 t≤-3 时,此时 g(x)在区间(-∞,1]和 (1,+∞)上分别至多有 1 个零点,所以 g(x)至多有 2 个零点. 当 g(1)=t+1≥0,即 t≥-1 时,此时 g(x)在区间(-∞,0)和 [0,+∞)上分别至多有 1 个零点,所以 g(x)至多有 2 个零点.
高考数学一轮总复习第三章一元函数的导数及其应用 1导数的概念意义及运算课件
解:(1)切线方程可化为 .当时,.又 ,于是解得 故 .
(2)证明:设 为曲线上任一点,由,知曲线在点处的切线方程为 ,即 .令,得 ,从而得切线与直线的交点坐标为, .令,得 ,
从而得切线与直线的交点坐标为 .所以点处的切线与直线, 所围成的三角形的面积为 .故曲线上任一点处的切线与直线, 所围成的三角形的面积为定值,且此定值为6.
变式1(1) 若函数,则 的值为__.
解:.令,得,所以 ,则.故填 .
(2)设函数,且,则 ( )
A.0 B. C.3 D.
解:因为 ,所以 ,所以,解得 .故选B.
√
(3)设函数在内可导,且,则 ___.
2
解:(方法一)令,则,所以,即 .所以,所以 .(方法二)等式两边同时求导,得.令,得 .故填2.
复合函数
常用结论
1.导数的两条性质 (1)奇函数的导数是偶函数,偶函数的导数是奇函数. (2)可导函数的导数为,若为增函数,则 的图象是下凹的;反之,若为减函数,则 的图象是上凸的.
2.几类重要的切线方程 (1)是曲线的切线,是曲线的切线, ,是曲线 的切线,如图1.
命题角度3 根据切线情况求参数
例4 (2022年新课标Ⅰ卷)若曲线有两条过坐标原点的切线,则 的取值范围是___________________.
解:因为,所以 .设切点为,则,切线斜率 .切线方程为 .因为切线过原点,所以 ,整理得 .
因为切线有两条,所以 .解得或 .另解:由切线斜率,与 联立,可得 .所以的取值范围是 .故填 .
变式3(1) 若函数与 的图象在一个公共点处的切线相同,则实数 ________.
3.1导数的概念及运算课件高三数学一轮复习
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. (4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值 为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方 程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切 线可以不止一条,(4)错.
f′(x)=___e_x__
1
f′(x)=__x_l_n_a__
1
f′(x)=__x___
4.导数的运算法则
若 f′(x),g′(x)存在,则有: [f(x)±g(x)]′=______f′_(_x_)±_g_′_(_x_) _______; [f(x)g(x)]′=____f′_(_x_)g_(_x_)_+__f(_x_)_g_′(_x_)____; gf((xx))′=__f_′(__x_)__g_(__x[_g)_(_-_x_)f_(_]_2x_)__g_′_(__x_)__ (g(x)≠0); [cf(x)]′=_____c_f_′(_x_)_____.
训练1 (1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图
象如图所示,则该函数的图象是( B )
解析 由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率 先增大后减小,故选B.
(2)曲线f(x)=2ln x在x=t处的切线l过原点,则l的方程是( )
A.f(x)=x2
B.f(x)=e-x
C.f(x)=ln x
D.f(x)=tan x
解析 若f(x)=x2,则f′(x)=2x,令x2=2x,得x=0或x=2,方程显然有解, 故A符合要求; 若f(x)=e-x,则f′(x)=-e-x,令e-x=-e-x,此方程无解,故B不符合要求;
2017版高考数学一轮总复习第3章导数及其应用第一节导数的概念及其运算课件文
⑤分式形式:观察函数的结构特征,先化为整式函数或较为
简单的分式函数,再求导.
【例1】 求下列函数的导数:
(1)y=x2cos x; 1 2 1 (2)y=x-x x -x2; ln x (3)y= x .
(1)y′=(x2)′cos x+x2(cos x)′=2xcos x-x2sin x. 1 3 -1 -3 3 2 (2)∵y=x -x-x +x ,∴y′=3x -1+ 2- 4. x x 1 (ln x)′x-x′ln x x ·x-ln x 1-ln x (3)y′= = = x2 . x2 x2 解
解 易知点 O(0,0)在曲线 y=x3-3x2+2x 上. (1)当 O(0,0)是切点时,由 y′=3x2-6x+2,得 y′|x=0=2, 即直线 l 的斜率为 2,故直线 l 的方程为 y=2x.
y=2x, 2 由 得 x -2x+a=0, 2 y=x +a,
依题意 Δ=4-4a=0,得 a=1.
(3)函数f(x)的导函数
称函数f′(x)为f(x)的导函数,导函数有时也记作y′.
2.导数的计算 (1)基本初等函数的导数公式
原函数 f(x)=C(C 为常数) f(x)=x (α∈Q ) f(x)=sin x f(x)=cos x f(x)=ax
α
导函数 f′(x)=0
1 ax f′(x)=
[点评]
(2)中函数若直接求导,计算繁琐,且容易出错,应
先化简再求导.
利用导数求切线方的解题方略
若已知曲线过点P(x0,y0),求曲线过点P(x0,y0)的切线,则 需分点P(x0,y0)是切点和不是切点两种情况求解. (1)点P(x0,y0)是切点时: 第一步:求导数f′(x);
【6份】2017高考数学北师大版(理)一轮复习第3章 导数及其应用
【6份】2017高考数学北师大版(理)一轮复习第3章导数及其应用目录1.导数与导函数的概念(1)当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=limx1→x0f(x1)-f(x0)x1-x0=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=limΔx→0 f(x+Δx)-f(x)Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数. 2.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.相y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A.0B.3C.4D.-73答案 B【详细分析】∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )答案 D【详细分析】由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2【详细分析】因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.已知函数f (x )=x (x -1)·(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 答案 -120【详细分析】f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+ x [(x -1)(x -2)(x -3)(x -4)(x -5)]′, ∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5) =-120.5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P的坐标为________. 答案 (1,1)【详细分析】y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2 (x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).题型一 导数的运算例1 求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ; (4)y =ln xx 2+1;(5)y =ln(2x -5).解 (1)∵y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , ∴y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln3+3x e x -2x ln2 =(ln3+1)·(3e)x -2x ln2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2016+ln x ),若f ′(x 0)=2017,则x 0等于( )A.e 2B.1C.ln2D.e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A.-1 B.-2 C.2D.0答案 (1)B (2)B【详细分析】(1)f ′(x )=2016+ln x +x ×1x =2017+ln x ,故由f ′(x 0)=2017得2017+ln x 0=2017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2, ∴f ′(-1)=-2.题型二 导数的几何意义命题点1 已知切点的切线方程问题例2 (1)函数f (x )=ln x -2xx 的图像在点(1,-2)处的切线方程为( )A.2x -y -4=0B.2x +y =0C.x -y -3=0D.x +y +1=0(2)曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.答案 (1)C (2)13【详细分析】(1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0. (2)∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A (23,23),∴三角形的面积S =12×1×23=13.命题点2 未知切点的切线方程问题例3 (1)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ) A.2x -y +3=0 B.2x -y -3=0 C.2x -y +1=0D.2x -y -1=0(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0答案 (1)D (2)B【详细分析】(1)对y =x 2求导得y ′=2x .设切点坐标为(x 0,x 20),则切线斜率为k =2x 0.由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B.命题点3 和切线有关的参数问题例4 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )A.-1B.-3C.-4D.-2答案 D【详细分析】∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D.命题点4 导数与函数图像的关系例5 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图像为下图中的( )答案 D【详细分析】函数的定义域为[0,+∞),当x ↔[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图像是上升的,且图像是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图像是上升的,且图像是上凸的; 当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图像为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.(1)已知函数f (x )=3x +cos2x +sin2x ,a =f ′(π4),f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A.3x -y -2=0 B.4x -3y +1=0C.3x -y -2=0或3x -4y +1=0D.3x -y -2=0或4x -3y +1=0(2)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 答案 (1)C (2)-e【详细分析】(1)由f (x )=3x +cos2x +sin2x 得f ′(x )=3-2sin2x +2cos2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3. 又b =a 3,则b =1,∴切点P 的坐标为(1,1).故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1), 即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∴切线方程为y -x 30=3x 20(x -x 0),∵P (a ,b )在曲线y =x 3上,且a =1,∴b =1.∴1-x 30=3x 20(1-x 0), ∴2x 30-3x 20+1=0, ∴2x 30-2x 20-x 20+1=0,∴(x 0-1)2(2x 0+1)=0, ∴切点为⎝⎛⎭⎫-12,-18, ∴此时的切线方程为y +18=34⎝⎛⎭⎫x +12,即3x -4y +1=0.综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0,故选C. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.4.求曲线的切线方程条件审视不准致误典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.易错分析 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况. 规范解答解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.[4分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =|0x x y' ==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .[7分]由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[10分]综上,a =1或a =164.[12分]温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.[失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e答案 B【详细分析】由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1, 则f ′(1)=-1.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A.eB.-eC.1eD.-1e答案 C【详细分析】y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则0|x x y' =1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ↔N +,则f 2016(x )等于( ) A.-sin x -cos x B.sin x -cos x C.-sin x +cos x D.sin x +cos x答案 B【详细分析】∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x =f 1(x ), ∴f n (x )是以4为周期的函数, ∴f 2016(x )=f 4(x )=sin x -cos x ,故选B.4.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A.0 B.1 C.2 D.3 答案 D【详细分析】令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A.-1B.0C.2D.4答案 B【详细分析】由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A.x +4y -2=0B.x -4y +2=0C.4x +2y -1=0D.4x -2y -1=0答案 A【详细分析】y ′=-e x (e x +1)2=-1e x+1e x +2, 因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x +1ex +2≥4,故y ′=-1e x +1e x +2≥-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值, 此时切点的坐标为(0,12),切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.7.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知函数f (x )=x 2-1和函数g (x )=2ln x ,那么函数f (x )和函数g (x )的隔离直线方程为____________.答案 y =2x -2【详细分析】由题意得函数f (x )和函数g (x )的隔离直线为它们在交点(1,0)处的公切线.因为f ′(1)=2=g ′(1)=k ,所以切线方程为y =2(x -1).8.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________. 答案 9【详细分析】先设切点为M (x 0,y 0), 则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.9.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 组 专项能力提升 (时间:15分钟)11.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图像的切线平行,则实数a 的值为( ) A.14B.12C.1D.4答案 A【详细分析】由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得1211()1244a -⨯=,可得a =14,经检验,a =14满足题意.12.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ↔[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为( ) A.⎝⎛⎭⎫32,2 B.⎝⎛⎭⎫32,134 C.⎝⎛⎭⎫52,134 D.⎝⎛⎭⎫52,2答案 B【详细分析】设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1=-⎝⎛⎭⎫x 0-322+134, ∴P 点坐标为⎝⎛⎭⎫32,134时,S 普通梯形最大.13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)【详细分析】∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.14.已知曲线f (x )=x n +1(n ↔N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2016x 1+log 2016x 2+…+log 2016x 2015的值为________. 答案 -1【详细分析】f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1,∴x 1·x 2·…·x 2015=12×23×34×…×20142015×20152016=12016,则log 2016x 1+log 2016x 2+…+log 2016x 2015=log 2016(x 1x 2…x 2015)=-1.15.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由. 解 (1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).∵g′(x0)=6x0+6,∴切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.1.函数的单调性如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的.2.函数的极值如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值.如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)1.函数f(x)=x2-2ln x的单调递减区间是()A.(0,1)B.(1,+∞)C.(-∞,1)D.(-1,1)答案 A【详细分析】∵f′(x)=2x-2x=2(x+1)(x-1)x(x>0).∴当x∈(0,1)时,f′(x)<0,f(x)为减函数;当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.2.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x ↔R),则不等式f(x)<2x+1的解集为()A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案 A【详细分析】令g (x )=f (x )-2x -1,∴g ′(x )=f ′(x )-2<0, ∴g (x )在R 上为减函数,且g (1)=f (1)-2-1=0. 由g (x )<0=g (1),得x >1,故选A.3.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A.当k =1时,f (x )在x =1处取到极小值 B.当k =1时,f (x )在x =1处取到极大值 C.当k =2时,f (x )在x =1处取到极小值 D.当k =2时,f (x )在x =1处取到极大值 答案 C【详细分析】当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2),显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值.故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.答案 1【详细分析】由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 5.设1<x <2,则ln x x ,(ln x x )2,ln x 2x 2的大小关系是__________________.(用“<”连接)答案 (ln x x )2<ln x x <ln x 2x2【详细分析】令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x >0,∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln xx <1,∴(ln x x )2<ln x x.又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0, ∴(ln x x )2<ln x x <ln x 2x2.课时1 导数与函数的单调性题型一 不含参数的函数的单调性例1 求函数f (x )=ln xx 的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln xx ,所以f ′(x )=1-ln x x2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.函数y =12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)答案 B【详细分析】y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1,∴递减区间为(0,1].题型二 含参数的函数的单调性例2 已知函数f (x )=ln(e x +1)-ax (a >0).(1)若函数y =f (x )的导函数是奇函数,求a 的值; (2)求函数y =f (x )的单调区间. 解 (1)函数f (x )的定义域为R . 由已知得f ′(x )=e xe x +1-a .∵函数y =f (x )的导函数是奇函数, ∴f ′(-x )=-f ′(x ),即e-xe -x +1-a =-e x e x +1+a ,解得a =12.(2)由(1)知f ′(x )=e x e x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴a ∈[1,+∞)时, 函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0得(1-a )(e x +1)>1, 即e x >-1+11-a ,解得x >ln a1-a .由f ′(x )<0得(1-a )(e x +1)<1, 即e x <-1+11-a ,解得x <ln a1-a .∴a ∈(0,1)时,函数y =f (x )在(ln a1-a ,+∞)上单调递增,在(-∞,ln a1-a)上单调递减.综上,当a ≥1时,f (x )在R 上单调递减;当0<a <1时,f (x )在⎝⎛⎭⎫ln a 1-a ,+∞上单调递增,在⎝⎛⎭⎫-∞,ln a1-a 上单调递减.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈(1-a2a ,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究:在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解? 解 方法一 ∵g ′(x )=x 2-ax +2, 且g (x )在(-2,-1)内为减函数,∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0, 解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x在(-2,-1)上恒成立,又y =x +2x ,x ∈(-2,-1)的值域为(-3,-2 2 ],∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x 的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是 (-∞,-3]∪[-22,+∞),故g (x )在(-2,-1)上不单调时,实数a 的取值范围是 (-3,-22).思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e x ln x -a e x (a ↔R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x -a +ln x )e x ,f ′(1)=(1-a )e ,由(1-a )e·1e =-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x ,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x -a +ln x ≤0,在x >0时恒成立. 所以a ≥1x +ln x ,在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x 2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值). 故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x -a +ln x ≥0,在x >0时恒成立,所以a ≤1x +ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (12分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图像在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号.规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图像在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,[6分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1,若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;[9分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[11分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[12分]温馨提醒(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f′(x)=0是否有根;②若f′(x)=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解先分a=0或a>0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f′(x)>0,f′(x)<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A组专项基础训练(时间:40分钟)1.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案 D【详细分析】函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=e x+(x-3)e x=(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2. 2.若f (x )=ln xx ,e<a <b ,则( )A.f (a )>f (b )B.f (a )=f (b )C.f (a )<f (b )D.f (a )f (b )>1答案 A【详细分析】f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,f (x )为减函数. ∴f (a )>f (b ).3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( ) A.(-∞,2) B.(-∞,2] C.(-∞,52)D.(-∞,52]答案 D【详细分析】∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则1e xf (x 2)与2e xf (x 1)的大小关系为( )A.1e xf (x 2)>2e xf (x 1) B.1e xf (x 2)<2e xf (x 1) C.1e xf (x 2)=2e xf (x 1)D.1e xf (x 2)与2e xf (x 1)的大小关系不确定 答案 A【详细分析】设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即1212()()e ex x f x f x <, 所以1e xf (x 2)>2e xf (x 1).5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ↔(-∞,1)时,(x -1)f ′(x )<0,设a=f (0),b =f (12),c =f (3),则( )A.a <b <cB.c <b <aC.c <a <bD.b <c <a答案 C【详细分析】依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f (12),即有f (3)<f (0)<f (12),c <a <b .6.若函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________. 答案 (-∞,0)【详细分析】f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,则a <0.7.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________. 答案 [34,+∞)【详细分析】f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,由题意得,当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0, 解得a ≥34.8.已知函数f (x )=3xa-2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________________. 答案 (0,25]∪[1,+∞)【详细分析】f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x ,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3, 又a >0,所以0<a ≤25或a ≥1.9.已知函数f (x )=x 4+a x -ln x -32,其中a ↔R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].B 组 专项能力提升 (时间:25分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A.1<a ≤2B.a ≥4C.a ≤2D.0<a ≤3答案 A【详细分析】∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数, ∴a -1>0且a +1≤3,解得1<a ≤2.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ↔R 恒成立,则( ) A.f (1)<e f (0),f (2016)>e 2016f (0) B.f (1)>e f (0),f (2016)>e 2016f (0) C.f (1)>e f (0),f (2016)<e 2016f (0)D.f (1)<e f (0),f (2016)<e 2016f (0) 答案 D【详细分析】令g (x )=f (x )e x ,则g ′(x )=(f (x )e x )′=f ′(x )e x-f (x )e xe 2x=f ′(x )-f (x )e x<0,所以函数g (x )=f (x )e x 是单调减函数,所以g (1)<g (0),g (2016)<g (0), 即f (1)e 1<f (0)1,f (2016)e 2016<f (0)1, 故f (1)<e f (0),f (2016)<e 2016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________. 答案 (-19,+∞)【详细分析】对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞).14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)【详细分析】由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 15.已知函数f (x )=a ln x -ax -3(a ↔R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ↔[1,2],函数g (x )=x 3+x 2[f ′(x )+m2]在区间(t,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x,当a >0时,f (x )的增区间为(0,1), 减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+(m2+2)x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0时对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373.所以-373<m <-9.即实数m 的取值范围是(-373,-9).课时2 导数与函数的极值、最值题型一 用导数解决函数极值问题命题点1 根据函数图像判断极值例1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2) 答案 D【详细分析】由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.命题点2 求函数的极值例2 已知函数f (x )=ax 3-3x 2+1-3a (a ↔R 且a ≠0),求函数f (x )的极大值与极小值.解 由题设知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝⎛⎭⎫x -2a . 令f ′(x )=0得x =0或2a.当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:∴f (x )极大值=f (0)=1-3a ,f (x )极小值=f ⎝⎛⎭⎫2a =-4a 2-3a +1. 当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:。
推荐-高三数学一轮复习课件3.1 导数的概念及计算
考点一
考点二
考点三
导数的运算
例题求下列函数的导数:
(1)y= 1������+x3;(2)y=x2cos x;(3)y=l���n���2������;(4)y=ln(2x+1).
解: (1)y'= ������-12 + ������3 '
=-12 ������-32+3x2. (2)y'=(x2)'cos x+x2(cos x)' =2xcos x-x2sin x. (3)y'=1������·������2���-���24������ln������ = 1-2������3ln������. (4)y'=[ln(2x+1)]' =2������1+1 ·(2x+1)'=2������2+1.
知识梳理
-6-
知识梳 理
双击自 测
4.导函数 如果f(x)在开区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b) 内可导.这样,对开区间(a,b)内每一个值x,都对应一个确定的导数 f'(x).于是在区间(a,b)内 f'(x) 构成一个新的函数,我们把这个 函数称为函数y=f(x)的导函数,记为f'(x)或y'.
双击自 测
123456
2Δ.���若��� 函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy), 则 Δ������ 等于( C )
A.4
B.4x
C.4+2Δx D.4+2(Δx)2
一轮参考2017数学人教B版文一轮课件:3-1 导数的概念
解析
关闭
答案
-11知识梳理 双击自测
1 2 3 4 5 6
3.一质点沿直线运动,如果由始点起经过t s后的位移 13 32 为 s=3t - 2t +2t ,那么速度为零的时刻是( ) A.0 s B.1 s末 C.2 s末 D.1 s末和2 s末
关闭
∵s=3t3- 2t2+2t,∴v=s'=t2-3t+ 2,令 v=0,则 t2- 3t+2=0,解得 t1=1,t2= 2.故
-7知识梳理 双击自测
5.基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,α≠0) f(x)=sin x f(x)=cos x f(x)=ax f(x)=ex f(x)=logax f(x)=ln x
导函数 f'(x)=0 f'(x)=αxα-1 f'(x)=cos x f'(x)=-sin x f'(x)=axln a(a>0,且 a≠1) f'(x)=ex f'(x)= f'(x)=
选 D.
D
解析 答案
关闭
1
3
-12知识梳理 双击自测
1 2 3 4 5 6
4.若函数f(x)=ax4+bx2+c满足f'(1)=2,则f'(-1)等于( A.-1 B.-2 C.2 D.0
)
关闭
∵f'(x)=4ax3+2bx为奇函数,
∴f'(-1)=-f'(1)=-2.故选B.
B
解析
关闭
答案
-13知识梳理 双击自测
题型
命题角度分析 导数是高中数学 的重要内容,是近 年来高考的热点 之一.高考中对本 节知识的考查主 要是考查导数的 概念及其运算法 则,对导数概念的 考查要求了解其 实际背景,
高考数学一轮复习 第三章 导数及其应用 第一节 导数的概念及运算讲义(含解析)-高三全册数学教案
第一节 导数的概念及运算突破点一 导数的运算[基本知识]1.导数的概念称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0f x 0+Δx -f x 0Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx=li m Δx →0 f x 0+Δx -f x 0Δx .称函数f ′(x )=li m Δx →0 f x +Δx -f x Δx为f (x )的导函数. 2.基本初等函数的导数公式 基本初等函数 导函数f (x )=c (c 为常数)f ′(x )=0 f (x )=sin xf ′(x )=cos_x f (x )=e xf ′(x )=e xf (x )=ln xf ′(x )=1x 基本初等函数 导函数 f (x )=x α(α∈Q *)f ′(x )=αx α-1 f (x )=cos xf ′(x )=-sin_x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln_a f (x )=log a x (a >0,a ≠1) f ′(x )=1x ln a 3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x[g x ]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)f ′(x 0)与(f (x 0))′的计算结果相同.( )(2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( )(3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 答案:(1)× (2)× (3)√二、填空题1.函数y =x cos x -sin x 的导数为________.答案:-x sin x2.已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3.答案:33.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.解析:∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22, 得f ′⎝ ⎛⎭⎪⎫π4=2-1.∴f (x )=(2-1)cos x +sin x .∴f ⎝ ⎛⎭⎪⎫π4=1. 答案:1[典例感悟]1.已知函数f (x )=xex ,则其导函数f ′(x )=( ) A.1+x ex B.1-x e x C .1+x D .1-x 解析:选B 函数f (x )=x e x ,则其导函数f ′(x )=e x -x e x e2x =1-xex ,故选B. 2.(2019·枣庄三中质检)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .1C .-1D .e解析:选 C 由题可得f ′(x )=2f ′(1)+1x,则f ′(1)=2f ′(1)+1,解得f ′(1)=-1,所以选C.3.函数f (x )=x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝⎛⎭⎪⎫2x +π2,则其导函数f ′(x )=________.解析:∵f (x )=x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴f ′(x )=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x . 答案:-12sin 4x -2x cos 4x [方法技巧]导数运算的常见形式及其求解方法1.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.2.(2019·长沙长郡中学一模)等比数列{a n }中,a 1=2,a 8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=( ) A.26B.29C.212D.215解析:选 C f′(x)=(x-a1)(x-a2)…(x-a8)+x[(x -a1)(x-a2)·…·(x-a8)]′,所以f′(0)=a1a2a3…a8=(a1a8)4=(2×4)4=212.故选C.突破点二导数的几何意义[基本知识]函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y =f(x)上点P(x0,y0)处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).特别地,如果曲线y=f(x)在点(x0,y0)处的切线垂直于x轴,则此时导数f′(x0)不存在,由切线定义可知,切线方程为x=x0.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)曲线的切线与曲线不一定只有一个公共点.( )(2)求曲线过点P的切线时P点一定是切点.( )答案:(1)√(2)×二、填空题1.已知函数f(x)=ax ln x+b(a,b∈R),若f(x)的图象在x =1处的切线方程为2x-y=0,则a+b=________.解析:由题意,得f′(x)=a ln x+a,所以f′(1)=a,因为函数f(x)的图象在x=1处的切线方程为2x-y=0,所以a=2,又f(1)=b,则2×1-b=0,所以b=2,故a+b=4.答案:42.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.解析:∵y ′=1x ln 2,∴切线的斜率k =1ln 2,∴切线方程为y =1ln 2(x -1),∴所求三角形的面积S =12×1×1ln 2=12ln 2=12log 2e.答案:12log 2e 3.设函数f (x )=g ⎝ ⎛⎭⎪⎫x 2+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________.解析:由已知得g ′(1)=-9,g (1)=-8,又f ′(x )=12g ′⎝ ⎛⎭⎪⎫x 2+2x , ∴f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4, ∴所求切线方程为y +4=-12(x -2),即x +2y +6=0. 答案:x +2y +6=0[全析考法]考法一 求切线方程“过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.[解] (1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.[方法技巧]求切线方程问题的2种类型及方法(1)求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程:点P(x0,y0)为切点,切线斜率为k=f′(x0),有唯一的一条切线,对应的切线方程为y-y0=f′(x0)(x-x0).(2)求“过”曲线y=f(x)上一点P(x0,y0)的切线方程:切线经过点P,点P可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A(x1,y1),则以A为切点的切线方程为y-y1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧ y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.考法二 求切点坐标[例2] (2019·柳州一模)已知函数f (x )=e 2x -1,直线l 过点(0,-e)且与曲线y =f (x )相切,则切点的横坐标为( )A .1B .-1C .2D .e -1 [解析] 设切点为(x 0,e2x 0-1),∵f ′(x )=2e 2x -1,∴2e 2x 0-1=e 2x 0-1+e x 0,化简得2x 0-1=e2-2x 0.令y =2x -1-e 2-2x ,则y ′=2+2e 2-2x>0.∵x =1时,y =0,∴x 0=1.故选A. [答案] A[方法技巧]求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法三 求参数值或范围[例3] (1)已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3(2)(2019·乐山调研)已知曲线f (x )=e 2x -2e x +ax -1存在两条斜率为3的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎪⎫3,72 B .(3,+∞) C.⎝ ⎛⎭⎪⎫-∞,72 D .(0,3)[解析] (1)由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12=1,解得b =1,所以f (x )=a ln x +x 2,故f ′(x )=a x +2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2,因为切线与直线x -y +1=0垂直,所以a +2=-1,即a =-3.(2)由题得f ′(x )=2e 2x -2e x +a ,则方程2e 2x -2e x+a =3有两个不同的正解,令t =e x (t >0),且g (t )=2t 2-2t +a -3,则由图像可知,有g (0)>0且Δ>0,即a -3>0且4-8(a -3)>0,解得3<a <72.故选A. [答案] (1)D (2)A[方法技巧]利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.[提醒] (1)注意曲线上横坐标的取值范围;(2)谨记切点既在切线上又在曲线上.[集训冲关]1.[考法一](2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=x解析:选D ∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又∵f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.2.[考法二]曲线f(x)=x3-x+3在点P处的切线平行于直线y =2x-1,则P点的坐标为( )A.(1,3) B.(-1,3)C.(1,3)和(-1,3) D.(1,-3)解析:选C f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.3.[考法三]设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处切线l 2,使得l 1⊥l 2,则实数a 的取值范围为( )A .[-1,2]B .[3,+∞)C.⎣⎢⎡⎦⎥⎤-23,13D.⎣⎢⎡⎦⎥⎤-13,23 解析:选D f ′(x )=-e x -1,∵e x+1>1,∴1e x +1∈(0,1).又g ′(x )=3a -2sin x , ∵-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a,2+3a ],要使曲线f (x )上任意一点的切线l 1,总存在曲线g (x )上一点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧ -2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.故选D. 4.[考法三](2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________.解析:∵y ′=(ax +a +1)e x ,∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3.答案:-3。
【高优指导】2017高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课件 理 北师大版
=
(2������ +1)������ 2
.
答案
-17考点1 考点2 知识方法 易错易混
考点2导数几何意义的应用(多维探究) 类型一 过函数图像上一点求切线方程 关闭 2 3-4x2+5x-4. 例解 2已知函数 f ( x ) =x :(1)∵f'(x)=3x -8x+5, (1)∴ 求曲线 (x )在点 (2))处的切线方程; f'(2)=f1, 又 f(2)(2, =-f 2, (2)∴ 求经过点 A(2, 的曲线 f(x)的切线方程 曲线在点 (2,-f2) (2)) 处的切线方程为 y+2.=x-2, 即 :x-y4=0. 思考 求函数的切线方程要注意什么 ? 3 2 (2)设曲线与经过点 A(2,-2)的切线相切于点 P(x0,������0 -4������0 +5x0-4), 2 ∵f'(x0)=3������0 -8x0+5, 2 ∴切线方程为 y-(-2)=(3������0 -8x0+5)(x-2), 3 2 又切线过点 P(x0,������0 -4������0 +5x0-4), 3 2 2 ∴������0 -4������0 +5x0- 2=(3������0 -8x0+5)(x0-2), 整理得 (x0-2)2(x0-1)=0,解得 x0=2 或 1, ∴经过 A(2,-2)的曲线 f(x)的切线方程为 x-y-4=0,或 y+2=0.
= im
������(������0 +Δ������)-������(������0 ) . Δ������ Δ������ →0 ������(������+Δ������)-������(������) f'(x):f'(x)= lim . Δ������ Δ������ →0
高三数学(理)一轮总复习课件:3.1导数的概念及其运算
解:原式=������������������
h →0
f(x0+h)-f(x0)+f(x0)-f(x0-h) 2h
=12
������������������
h →0
������(������0+h)-f(������0) ℎ
+
������������������
-h →0
f(x0-h)-f(x0) -h
∴f'(x)= ������������������
������x →0
������������yx=������������x������→ ������0
(x+2)(x-1+2+������x)=-(x+12)2.
题型一 题型二 题型三 题型四
迁移训练1
题型二 导数的运算
重点难点
例2
规律总结 迁移训练2
������x
f(x)的导函数,导函数有时也记
作 y'.
4.基本初等函数的导数公式
原函数
导函数
f(x)=C
f'(x)=0
f(x)=xα(α∈Q*) f'(x)=αxα-1
f(x)=sin x
f'(x)=cos x
f(x)=cos x f(x)=ax f(x)=ex
f(x)=logax
f(x)=ln x
处的导数,记作
f'(x0)或
y'|x=x0
,即
f'(x0)=������������x������→������0
������y ������x
=
������������������
高考数学一轮总复习 第三章 3.1导数的概念及运算
所以 f′(x)=1x+a=2 在(0,+∞)上有解, 则 a=2-1x. 因为 x>0,所以 2-1x<2,所以 a 的取值范围是(-∞,2).
3 课时作业
PART THREE
基础保分练
命题点2 求参数的值 例2 (1)直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),
解析 由题意知,y=x3+ax+b的导数为y′=3x2+a,
13+a+b=3, 则3×12+a=k,
k+1=3, 由此解得k=2,a=-1,b=3,∴2a+b=1.
(2)已知f(x)=ln x,g(x)= 12x2+mx+27(m<0), 直线l与函数f(x 相切,与f(x)图象的切点为(1,f(1)),则m=-2 .
(3)
gfxx′=
f′xgx-fxg′x [gx]2
(g(x)≠0).
5.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间 y ′·u ′
【概念方法微思考】 1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形 提示 |f′(x)|越大,曲线f(x)的形状越来越陡峭. 2.直线与曲线相切,是不是直线与曲线只有一个公共点? 提示 不一定.
1.已知函数 f(x)=1xcos x,则 f(π)+f′π2等于
A.-π32
B.-π12
√C.-π3
D.-π1
解析 因为 f′(x)=-x12cos x+1x(-sin x),
所以 f(π)+f′π2=-1π+2π×(-1)=-3π.
2.(2018·衡水调研)设f(x)=xln x,若f′(x0)=2,则x0的值为A.e2√B.e
2017高考数学(理)一轮复习配套课件:第三章导数及其应用3.1
第四页,编辑于星期六:二十一点 四十六分。
§3.1 导数的概念及运算
1.导数的概念
(1)定义
如果函数 y=f(x)的自变量 x 在 x0 处有增量Δx,那么函数 y 相应地有增量 Δy=f(x0+Δx)-f(x0),比值ΔΔxy就叫函数 y=f(x)从 x0 到 x0+Δx 之间的平均变
第三章
导数及其应用
考纲链接 §3.1 导数的概念及运算
第一页,编辑于星期六:二十一点 四十六分。
1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数 y=C(C 为常数),y=x, y=1x,y=x2,y=x3,y= x的导数. 4.能利用以下给出的基本初等函数的导数公式和导 数的四则运算法则求简单函数的导数,并了解复合函数 求导法则,能求简单复合函数(仅限于形如 y=f(ax+b) 的复合函数)的导数.
解得 x0=±1,故切点为1,53,(-1,1).
故所求切线方程为 y-53=x-1 和 y-1=x+1,
即 3x-3y+2=0 和 x-y+2=0. (2)∵y′=x2,且 P(2,4)在曲线 y=13x3+43上, ∴在点 P(2,4)处的切线的斜率 k=y′|x=2=4. ∴曲线在点 P(2,4)处的切线方程为 y-4=4(x-2), 即 4x-y-4=0.
第十九页,编辑于星期六:二十一点 四十六分。
类型三 导数的几何意义
已知曲线 y=13x3+43. (1)求满足斜率为 1 的曲线的切线方程; (2)求曲线在点 P(2,4)处的切线方程; (3)求曲线过点 P(2,4)的切线方程.
高考数学大一轮总复习第三章导数及其应用教师资料
第三章⎪⎪⎪导数及其应用第一节变化率与导数、导数的计算突破点(一) 导数的运算基础联通 抓主干知识的“源”与“流” 1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f x 0+Δx -fx 0Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f x 0+Δx -f x 0Δx.2.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f x +Δx -f xΔx为f (x )的导函数.3.基本初等函数的导数公式 原函数 sin xcos xa x (a >0) e xlog a x (a >0,且a ≠1)ln x 导函数cos x -sin_xa x ln_ae x1x ln a1x4.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考点贯通 抓高考命题的“形”与“神”已知函数的解析式求导数[例1] 求下列函数的导数:本节主要包括2个知识点: 1.导数的运算;2.导数的几何意义.(1)y =(1-x )⎝⎛⎭⎪⎫1+1x ;(2)y =ln xx;(3)y =tan x ; (4)y =3x e x-2x+e ; (5)y =ln 2x +3x 2+1.[解] (1)∵y =(1-x )⎝⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2 =1x·x -ln xx2=1-ln xx2. (3)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=(3x e x)′-(2x)′+(e)′ =(3x)′e x+3x(e x)′-(2x)′ =3x(ln 3)·e x+3x e x-2xln 2 =(ln 3+1)·(3e)x-2xln 2. (5)y ′=[ln2x +3]′x 2+1-ln 2x +3x 2+1′x 2+12=2x +3′2x +3·x 2+1-2x ln 2x +3x 2+12=2x 2+1-2x 2x +3ln 2x +32x +3x 2+12.[方法技巧]导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.导数运算的应用[例2] (1)(2016·济宁二模)已知函数f (x )=x (2 017+ln x ),f ′(x 0)=2 018,则x 0=( ) A .e 2B .1C .ln 2D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x=2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x,所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017,即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求的导数值.能力练通 抓应用体验的“得”与“失” 1.[考点一](2017·东北四市联考)已知y = 2 017,则y ′=( ) A.12 2 017B .-12 2 017C.2 0172 017 D .0解析:选D 因为常数的导数为0,又y = 2 017是常数函数,所以y ′=0.2.[考点二](2016·大同二模)已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.3.[考点二](2017·湖北重点中学月考)已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.故选C.4.[考点二]在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.答案:4 0965.[考点一]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=cos x ′e x -cos x e x′e x 2=-sin x +cos x e x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .突破点(二) 导数的几何意义基础联通 抓主干知识的“源”与“流”函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.考点贯通 抓高考命题的“形”与“神”求切线方程[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程(高考常考类型),则点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程,则切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.[提醒] “过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.求切点坐标[例2] 设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x(x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)求参数的值[例3] 直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b=1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.能力练通 抓应用体验的“得”与“失”1.[考点一]已知f (x )=2e xsin x ,则曲线f (x )在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =xD .y =-2x解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x(sin x +cos x ),∴f ′(0)=2,∴曲线f (x )在点(0,f (0))处的切线方程为y =2x .2.[考点三]曲线f (x )=x 2+a x +1在点(1,f (1))处的切线的倾斜角为3π4,则实数a =( )A .1B .-1C .7D .-7解析:选C f ′(x )=2xx +1-x 2+a x +12=x 2+2x -a x +12,∵f ′(1)=tan3π4=-1,即3-a4=-1,∴a =7.3.[考点二]在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x +1上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:由y ′=3x 2-1=2,得x =±1,又点M 在第二象限内,故x =-1,此时y =1,故点M 的坐标为(-1,1).答案:(-1,1)4.[考点三](2017·衡阳八中模拟)已知函数f (x )=a xln x ,x ∈(0,+∞),其中a >0且a ≠1,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f (x )=a xln x ,所以f ′(x )=ln a ·a xln x +a xx.又f ′(1)=3,所以a =3.答案:35.[考点二]若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________. 解析:由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e)6.[考点一]如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.则曲线g (x )在x =3处的切线方程为y -3=0. 答案:y -3=0[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x2x 2+1.根据题意,有⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=lnx 2+1-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -14.(2016·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为y -0=-2(x -1),即2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减, 因此g (x )<0.综上,a 的取值范围是(-∞,2].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3,∴f ′(x )=3(x 2-a 2).2.曲线y =sin x +e x在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x, ∴y ′=cos x +e x, ∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.3.(2016·安庆二模)给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.4.(2016·贵阳一模)曲线y =x e x在点(1,e)处的切线与直线ax +by +c =0垂直,则a b的值为( ) A .-12eB .-2e C.2e D.12e解析:选D y ′=e x+x e x,则y ′|x =1=2e.∵曲线在点(1,e)处的切线与直线ax +by +c =0垂直,∴-a b =-12e ,∴a b =12e,故选D.5.已知直线y =-x +1是函数f (x )=-1ae x图象的切线,则实数a =________.解析:设切点为(x 0,y 0).f ′(x )=-1a e x ,则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a·e x 0=-x 0+1,∴x 0=2,∴a =e 2.答案:e 2[练常考题点——检验高考能力]一、选择题1.(2017·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C 由题可知,f (π)=-1π,f ′(x )=-1x 2cos x +1x (-sin x ),则f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π×(-1)=-3π.2.设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12C .-2D .2解析:选A ∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 3.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( )A .1 B. 2 C.22D. 3 解析:选B 由题可得,y ′=2x -1x .因为y =x 2-ln x 的定义域为(0,+∞),所以由2x -1x=1,得x =1,则P 点坐标为(1,1),所以曲线在点P 处的切线方程为x -y =0,所以两平行线间的距离为d =22=2,即点P 到直线y =x -2距离的最小值为 2. 4.(2016·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,πB.⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,πD.⎝ ⎛⎦⎥⎤π2,5π6 解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 5.(2017·重庆诊断)已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)的值为( )A .0B .2C .2 017D .-2 017 解析:选B ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2exe x+12+cos x ,f (x )+f (-x )=2e x +1+sinx +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2exe x+12+cos x +2e-xe -x+12-cos(-x )=0,∴f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)=2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0,∴切线l 的方程为y=x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.二、填空题7.已知函数f (x )在R 上可导,且f (x )=x 2+2x ·f ′(2),则函数f (x )的解析式为________. 解析:由题意得f ′(x )=2x +2f ′(2),则f ′(2)=4+2f ′(2),所以f ′(2)=-4,所以f (x )=x 2-8x .答案:f (x )=x 2-8x8.若直线l 与幂函数y =x n的图象相切于点A (2,8),则直线l 的方程为________.解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x 3(x >0),故a ∈(-∞,0).答案:(-∞,0)10.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________.(用“<”连接)解析:(1)依题意,f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).答案:(1)1 (2)h (0)<h (1)<h (-1) 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).12.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,即2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.第二节导数与函数的单调性突破点(一) 利用导数讨论函数的单调性或求函数的单调区间基础联通 抓主干知识的“源”与“流”1.函数的单调性与导数的关系本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 2.由函数的单调性与导数的关系可得的结论(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0.当x ∈(a ,b )时,f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件.考点贯通 抓高考命题的“形”与“神”证明或讨论函数的单调性判断函数单调性的三种方法 定义法在定义域内(或定义域的某个区间内)任取x 1,x 2,且x 1<x 2,通过判断f (x 1)-f (x 2)与0的大小关系来确定函数f (x )的单调性图象法 利用函数图象的变化趋势直观判断,若函数图象在某个区间内呈上升趋势,则函数在这个区间内是增函数;若函数图象在某个区间内呈下降趋势,则函数在这个区间内是减函数导数法 利用导数判断可导函数f (x )在定义域内(或定义域的某个区间内)的单调性 [解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x = 1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧]导数法证明或讨论函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)得出结论:当f ′(x )>0时,函数f (x )在(a ,b )内单调递增;当f ′(x )<0时,函数f (x )在(a ,b )内单调递减.[提醒] 讨论含参函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,求函数f (x )的单调区间.[解] 对f (x )求导得f ′(x )=14-a x 2-1x,由曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.所以f (x )=x4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2, 令f ′(x )=0,解得x =-1或x =5,因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 所以函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). [方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.能力练通 抓应用体验的“得”与“失” 1.[考点二]函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,所以f (x )的单调递增区间是(2,+∞).故选D.2.[考点一]下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.3.[考点二]函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(0,2)解析:选A 对于函数y =12x 2-ln x ,易得其定义域为(0,+∞),y ′=x -1x =x 2-1x ,令x 2-1x <0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).4.[考点一]已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.5.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b ,由已知可得⎩⎪⎨⎪⎧f 1=a +1=c ,g 1=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6; 由F ′(x )<0得,-a 2<x <-a6. ∴函数f (x )+g (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a 2,⎝ ⎛⎭⎪⎫-a6,+∞;单调递减区间为⎝ ⎛⎭⎪⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.考点贯通 抓高考命题的“形”与“神”已知函数的单调性求参数的取值范围由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f (x )=x 3-ax -1.(1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].(2)因为f (x )在区间(-1,1)上为减函数,所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即a 的取值范围为[3,+∞).(3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3.应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒]比较大小或解不等式[例2] (1)若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x-1=0.根据函数y =e x 与y =1x的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x-ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e x x ,则g ′(x )=x e x -e x x2=exx -1x 2,故函数g (x )=e xx 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C.(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.1.[考点一]已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-(2x 2+4x )或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.2.[考点二](2016·南昌三模)已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B ) D .f (sin A )<f (sin B )解析:选A ∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,∴0<A <π2-B <π2,∴sin A <sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,故f (sinA )>f (cosB ),故选A.3.[考点一]若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)4.[考点一]已知函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在R 上为单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意可得f ′(x )≥0在x ∈R 上恒成立,所以Δ=4(4m -1)2-4(15m 2-2m -7)=4(m 2-6m +8)≤0,解得2≤m ≤4.答案:[2,4]5.[考点二]已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.解析:令g (x )=f (x )-3x +15,则f (x )<3x -15的解集即为g (x )<0的解集.又g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以g (x )<g (4),故x >4.所以f (x )<3x-15的解集为(4,+∞).答案:(4,+∞)[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析:选C 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.2.(2015·新课标全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f x x (x ≠0),则g ′(x )=xf ′x -f xx 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.3.(2014·新课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.4.若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]5.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=x -22x -1x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12,(2,+∞).2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518B.(]-∞,3C.⎣⎢⎡⎭⎪⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.log 2x 2+233.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =bx +c3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-bx 2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,∴当1-b x2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f xx>0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b )B .af (a )>bf (b )C .af (b )>bf (a )D .af (b )<bf (a )解析:选B 由f ′(x )+f x x >0得xf ′x +f x x >0,即[xf x ]′x>0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________. 解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝ ⎛⎭⎪⎫-x +1x max=83,∴2a ≥83,即a ≥43. 答案:⎣⎢⎡⎭⎪⎫43,+∞9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′x >0,x ∈1,+∞∪-∞,-1,f ′x <0,x ∈-1,1,不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧f ′x >0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′x <0,x 2-2x -3<0,解得x ∈(-∞,-1)。