线性代数6.2-维数、基与坐标

合集下载

《维数基与坐标》课件

《维数基与坐标》课件
描述运动轨迹
维数基可以用来描述物体在空间中的 运动轨迹,通过在各个维度上定义坐 标值的变化,可以描述物体运动的方 向和距离。
坐标系在维数基中的应用
表达空间关系
通过坐标系,我们可以表达空间中物体之间的关系,例如距离、角度、方向等。
进行数学运算
在坐标系中,我们可以进行各种数学运算,例如加法、减法、乘法、除法等,以 解决各种实际问题。
标的应用和发展。
创新研究方法
03
鼓励数学家探索新的研究方法,以解决现有问题并开拓新的研
究领域。
感谢观看
THANKS
维数基与坐标
目 录
• 维数基的基本概念 • 坐标系的基本概念 • 维数基与坐标的关系 • 维数基与坐标的实例分析 • 维数基与坐标的未来发展
01
维数基的基本概念
定义与性质
维数基定义
维数基是线性空间中的一组基底,它由有限个线性无关的向 量组成,可以用来表示线性空间中的任意向量。
维数基的性质
维数基中的向量是线性无关的,即它们不能被其他向量线性 表示;维数基中的向量是正交的,即它们的点积为零;维数 基中的向量是单位向量,即它们的模长为1。
01
更高维度的探索
随着数学理论的发展,对高维空 间的研究将更加深入,有望揭示 更多关于宇宙的奥秘。
几何化代数
02
03
拓扑结构的研究
通过几何方法研究代数结构,将 有助于更好地理解复杂数学对象 。
利用坐标方法研究几何对象的拓 扑性质,将有助于解决一些经典 问题。
维数基与坐标在其他领域的应用前景
物理学
在量子力学和广义相对论等领域,维数基与坐标 有望提供更精确的数学工具。
参数方程
1 2
定义

线性代数第六章第一节——线性空间的定义与性质

线性代数第六章第一节——线性空间的定义与性质
0 c

解 (1)不构成子空间. 因为对
1
A B
0
2
有 A B
0
0 0
W1
0 0
0 0
W1 ,
0 0
线性代数
即 W1对矩阵加法不封闭,不构成子空间.
0 0 0
W2 , 即W2非 空.
( 2) 因
0 0 0
对任意
a1 b1 0
定义1 设 V是一个非空集合,R为实数域.如果
对于任意两个元素 , V,总有唯一的一个元
素 V 与之对应,称为 与 的和,记作

若对于任一数 R 与任一元素 V ,总有唯
一的一个元素 V 与之对应,称为 与 的积,记作

( 3) 在V中存在零元素0, 对任何 V , 都有有零元素
0 ;
(4)对任何 V , 都有的负元素 V , 使 有负元素
0;
(5) 1 ;
(6) ; 对数乘运算的结合律和分配律
(7) ;
数 乘 : k (a , b) (lg a , bk ), k R
V是不是向量空间
? 为 什 么?
线性代数

V不是向量空间
.
显 然,V对 加 法 封 闭,因 为 两 个 正 实 数 的 和 与

还 是 正 实 数.
但V对乘法不封闭
.
比如V中的元素(1, b), 对任意实数k ,
k (1, b) (lg 1, bk ) (0, bk ) V .
1 ; 0 0.
4.如果 0 ,则 0 或 0 .

维数基与坐标

维数基与坐标

在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。

维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。

一个向量空间可以有多组不同的维数基。

维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。

换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。

坐标是描述一个向量在给定维数基下的表示。

当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。

而坐标就是指这些线性组合中各个基向量的系数。

举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。

维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。

而坐标的选择也是由维数基的选择决定的。

通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。

但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。

在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。

对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。

维数基与坐标

维数基与坐标

维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。

维数基是向量空间的一组基础向量,用于表示空间中的任意向量。

坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。

本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。

2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。

一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。

2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。

•维数基可以通过线性组合生成空间中的任意向量。

•维数基的数量等于向量空间的维数。

2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。

3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。

坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。

3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。

常见的坐标系有笛卡尔坐标系、极坐标系等。

在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。

以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。

3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。

那么v 的坐标表示为 (a, b)。

4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。

维数、基与坐标

维数、基与坐标
(k) k ()
对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,

k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B

02 第二节 维数、基与坐标

02 第二节 维数、基与坐标
. 显然,是的倍数. 向量组与向量组等价,并且线性无关,进而是的 一组基,所以.
例6 (E04) 证明维线性空间 与维数组向量空间同构.
证 (1) 中的元素与中的元素形成一一对应关系;
(2) 则有
结论 1. 数域上任意两个维线性空间都同构. 2. 同构的线性空间之间具有反身性、对称性与传递性. 3. 同维数的线性空间必同构.
例4(E02) 所有二阶实矩阵组成的集合对于矩阵的加法和数量乘法, 构成实数域R上的一个线性空间. 试证
,,, 是中的一组基, 并求其中矩阵A在该基下的坐标.
证 先证其线性无关, 由有
即线性无关. 又对于任意二阶实矩阵 有 因此为的一组基. 而矩阵在这组基下的坐标是
例5 (E03) 求子空间的维数,其中 解 易知是由下列向量的全体线性组合所构成的集合:
第二节 基、维数与坐标
分布图示
★ 引言
★ 线性空间的基与维数
★ 生成子空间
★ 例1
★ 坐标
★ 例2
★ 例3 ★ 例4
★ 线性空间的同构
★ 例6
★ 内容小结
★ 课堂练习
★ 习题6-2
★ 例5 ★ 例7
内容要点
一、线性空间的基与维数 我们已知在中,线性无关的向量组最多由个向量组成,而任意个向
量都是线行相关的。现在我们要问:在线性空间中,最多能有多少个线 性无关的向量?
元素有序数组 定义2 设是线性空间的一个基,对于任一元素, 有且仅有一组有序数 使,则称有序数组为元素在基下的坐标, 并记作.
二、线性空间的同构 设是维线性空间的一组基,在这组基下,中的每个向量都有唯一确
定的坐标,而向量的坐标可以看作中的元素,因此向量与它的坐标之间 的对应就是到的一个映射。对于中不同的向量它们的坐标也不同,即对 应于中的不同元素。反过来,由于中的每个元素都有中的向量与之对 应,我们称这样的映射是与的一个一一对应的映射。这个映射的一个重 要特征表现在它保持线性运算(加法和数乘)的关系不变。

高等代数 第6章线性空间 6.2 基底、坐标与维数

高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是

线性代数_第六章

线性代数_第六章
a x1a1 + x2a2 + … + xnan
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0

维数-基-坐标ppt课件

维数-基-坐标ppt课件
则称向量 可由向量组 1,2 , ,r 线性表出.
3/36
若向量组 1, 2 , , s 中每一向量皆可由向量组
1,2 , ,r线性表出, 则称向量组 1, 2 , , s
可由向量组 1,2 , ,r 线性表出.
若两向量组可以互相线性表出,则称这两个向量组 为等价的.
(3)1,2 , ,r V ,若存在不全为零的数 k1, k2 , , kr P,使得 k11 k22 krr 0 则称向量组 1,2 , ,r 线性相关.
就是 Pn 的一组基.称为Pn的标准基.
12/36
注意:
① n维线性空间 V的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基.
② 任意两组基向量是等价的.
例4(1)证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
(2)证明:1,x-a,(x-a)2,…,(x-a)n-1 也为P[x]n的一组基.
0
0

k1 2k2 k3 0
其系数行列式
11 1
1 2 ( 1)( 2 1)( 2 ) 0 1 2
23/36
∴方程组②只有零解: k1 k2 k3 0 故 E, A, A2 线性无关. 又由①知,任意f(A)均可表成 E, A, A2 的线性组合, 所以V为三维线性空间, E, A, A2 就是V 的一组基.
怎样才能便于运算?
2/36
一、线性空间中向量之间的线性关系
1、有关定义
设V 是数域 P 上的一个线性空间
(1)1,2 , ,r V (r 1), k1, k2 , , kr P, 和式
k11 k22 krr
称为向量组1,2 , ,r 的一个线性组合.

线性代数基和维数

线性代数基和维数

对于矩阵A,A的列之间的线性关系可以表 成Ax=0,其中x为相应的组合系数构成的列 向量.(如果A的某列在某个关系式中不出现, 则相应的系数为零.)
A经初等行变换化为B后,B的列一般与A的 列完全不同,但Ax=0和Bx=0两个方程组同 解,这意味着,A的列与B的相应列之间有 完全相同的线性关系. 因而有以下结果:
一向量 必可表为 1,2,..., p 的线性组合.
如果 能用两种方式表成1,2,..., p 的线性 组合,即
k11 k22 ... k p p , l11 l22 ... lp p.
两式相减,有
0 (k1 l1)1 (k2 l2 )2 ... (k p lp ) p.
(2) 如果 H 0, 则必有S的某个子集是H的基.
证明:(1)不妨设 p 是1, , p1 的线性组合:
p c11 c p1 p1.
H中的任意向量 可以表为
k11 k p1 p1 k p p ,
代入上式,容易验证 是1, , p1的线性组合.
可以看出,线性相关的生成集包含了冗余信息,
即如果 S 1,2, ,p是子空间H的线性相关生成
集,则至少有一个向量可以写成其余p-1个向量的 线性组合,从而可以从S中去除,得到一个较小的 生成集.
另一方面,如果B 1, 2, , r是H的线性无关生成
集,则B中任一向量都不能由其余r-1个向量线性表 出,因此从B中去除一个向量后得到的B的子集一 定不是H的生成集(去除的向量不能由剩余向量线 性表出).
解: 设 在基 1, 2 , 3下的坐标为 x1, x2, x3 T,则
x1
1
2

高等代数6.2 线性空间的定义与简单性质

高等代数6.2 线性空间的定义与简单性质
1、零元素是唯一的.
证明:假设线性空间V有两个零元素01、02,则有 01=01+02=02.
2、 V,的负元素是唯一的,记为- . 证明:假设 有两个负元素 β、γ ,则有
0, 0 0 ( ) ( ) ( ) 0
g
b a
k a ak
2) 加法与数量乘法定义为: a,b R ,k R
a b ab
k a ak
判断 R+是否构成实数域 R上的线性空间 .
解:1)R+不构成实数域R上的线性空间.
⊕不封闭,如
2
1 2

1
log22

1
R+.
2) R+构成实数域R上的线性空间.
k1, k2 P, k1 k2 , 有 k1 , k2 V 又 k1-k2 (k1 k2 ) 0
k1 k2 .
而数域P中有无限多个不同的数,所以V中有无限 多个不同的向量.
注:只含一个向量—零向量的线性空间称为零空间.
作业
P273 习题3:5)6)7)
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 与简单性质
§3 维数·基与坐标
§4 基变换与坐标变换
§6 子空间的交与和 §7 子空间的直和 §8 线性空间的同构 小结与习题
一、线性空间的定义 二、线性空间的简单性质
引例1 在第三章§2中,我们讨论了数域P上的n维向量
空间Pn,定义了两个向量的加法和数量乘法: (a1 , a2 ,, an ) (b1 , b2 ,, bn ) (a1 b1 , a2 b2 ,, an bn )
( ) 0

线性代数中的向量空间的基与维数计算与应用

线性代数中的向量空间的基与维数计算与应用

添加标题
添加标题
添加标题
添加标题
特征值分解(EVD):用于主成分 分析和图像处理
矩阵分解在推荐系统中的应用:通 过分解用户-物品交互矩阵,推荐 相关物品
数据降维案例
数据降维的背景:高维数据难以处理,需要降低维度以便分析
基与维数的概念:基是向量空间的一组线性无关的向量,维数是向量空 间的秩,即基向量的个数
响,例如小波变换、中值滤波等。
THANKS
汇报人:XX
向量空间在解析几何、线性代数等领域中有着广泛的应用。
向量空间的基的定义
基是向量空间中线性无关的 向量组
向量空间是由同维线性组合 生成的向量集合
基的个数是向量空间的维数
基可以用来描述向量空间中 的任意向量
基的个数与向量空间的维数的关系
基的个数必须 等于向量空间
的维数
基的个数不能 超过向量空间
的维数
06 基 与 维 数 的 计 算 注 意事项
Part One
单击添加章节标题
Part Two
向量空间与基的定 义
向量空间的定义
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、加法的结合律和交换律、数乘的 结合律和分配律。
向量空间中的向量可以进行加法、数乘等运算,且满足一定的性质。
向量空间中的向量可以表示为坐标系中的点或矢量,具有方向和大小。
迭代法:利用迭 代算法求解基
维数的计算方法
定义:基与维数是线性代数中描述向量空间的重要概念,维数等于向量空间的基中向量的个数。 计算方法:通过求解线性方程组,可以得到向量空间的基,从而计算出维数。 应用:维数的计算在解决实际问题中具有广泛的应用,如机器学习、图像处理等领域。 注意事项:在计算维数时,需要注意线性相关性的问题,避免出现计算错误。

线性空间的概念,维数、基与坐标

线性空间的概念,维数、基与坐标
(4) 对任何 V ,都有 的负元素 V , 使 0 ;
统计软202件1/4分/22析与应用
线性代数A
4
6.1-6.2 线性空间的概念,维数、基与坐标
(5) 1 ;
(6) ; (7) ; (8) .
那么,V 就称为数域 F上的线性空间(或向量空 间),V 中的元素称为向量(或元).
线性代数A
19
6.1-6.2 线性空间的概念,维数、基与坐标
三、线性空间的子空间
定义2 设 V 是一个线性空间, U 是 V 的一个 非空子集,如果 U 对于 V 中所定义的加法和乘数 运算也构成一个线性空间, 则称 U 是 V 的一个子 空间.
线性空间中的零元构成一子空间, 称为零空间. V 自身是V 的子空间. 我们称这两个子空间为V 的 平凡子空间.
记作
;
统计软202件1/4分/22析与应用
线性代数A
3
6.1-6.2 线性空间的概念,维数、基与坐标
如果上述两种运算满足以下八条运算规律
( 设 , , V;, F ):
(1) ;
(2) ;
(3) 在V中存在零元素 0 ,对任何 V ,都有 0 ;
于是有 定理2 线性空间V 的非空子集U 构成子空间的
充分必要条件是: ⑴ 如果 , U, 则 U;
⑵ 如果 U, k R,则 k U.
[证略]
统计软202件1/4分/22析与应用
线性代数A
22
6.1-6.2 线性空间的概念,维数、基与坐标
例7
证明: N 2
a 0
b
0
a, b R
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?

n维线性空间的基与向量的坐标

n维线性空间的基与向量的坐标

621
线性代数讲稿
α = x1α 1 + x 2 α 2 + L + x n α n = [α 1
α2
⎡ x1 ⎤ ⎢x ⎥ L αn ] ⎢ 2 ⎥ ⎢M⎥ ⎢ ⎥ ⎣ xn ⎦
成立,则称这组有序数 x1,x2,……,xn 为元素α 在基α1 ,α2 ,……,αn 下的坐 标,记作(x1,x2,……,xn )T,称为坐标向量.
⎡1 2⎤ 2.例子:V = R2×2 中的元素 α = ⎢ ⎥ ,则 ⎣3 4⎦ ⎡1 0 ⎤ ⎡0 1 ⎤ ⎡0 0 ⎤ ⎡0 0 ⎤ + 2⎢ + 3⎢ + 4⎢ α=⎢ ⎥ ⎥ ⎥ ⎥ = [E 1 ⎣0 0 ⎦ ⎣0 0 ⎦ ⎣1 0 ⎦ ⎣0 1 ⎦ ⎡1 ⎤ ⎢ 2⎥ E4 ] ⎢ ⎥ , ⎢ 3⎥ ⎢ ⎥ ⎣ 4⎦
讨论所成矩阵的秩: A = [X 1
⎡1 ⎢1 X3]= ⎢ ⎢0 ⎢ ⎣1
X2
1 − 1⎤ ⎡1 ⎢0 ⎥ 0 0⎥ →⎢ ⎢0 1 2⎥ ⎢ ⎥ 0 3⎦ ⎣0
0 0⎤ ⎡1 ⎥ ⎢0 1 − 1⎥ →⎢ ⎢0 1 2⎥ ⎥ ⎢ 0 3⎦ ⎣0
0 0⎤ 1 − 1⎥ ⎥ , 0 3⎥ ⎥ 0 0⎦
即 R( A ) = 3,所以 X1 , X2 , X3 线性无关,从而α1 , α 2 , α 3 也线性无关. 四、基变换与坐标变换 1.同一线性空间中,两个(实为两套)基之间的变换矩阵称为过渡矩阵—— 设线性空间 V 中,有两个基α i 与β i ,i = 1, 2, ……, n ; 其关系写成矩阵式:
线性代数讲稿
§6.2 n 维线性空间的基与向量的坐标
一、线性空间的基与维数[P.185] 若在线性空间 V 中存在 n 个线性无关的向量α1 ,α2 ,……,αn 使得 V 中的任 何元素α 都可由它们表出,则称 α1 ,α2 ,……,αn 为 V 的一个基,基所含向量的 个数 n 称为线性空间 V 中的维数,记为 dimV,并称 V 为 n 维线性空间. 1.简单的例子 ① 二维线性空间 R2(平面),常用基向量 i = ( 1, 0 ),j = ( 0, 1 ) . ② 三维线性空间 R3,常用基向量 i = ( 1, 0, 0 ),j = ( 0, 1, 0 ) ,k = ( 0, 0, 1 ) . ③ n 维线性空间 Rn,常用基向量 e1 = ( 1, 0, …, 0 ),j = ( 0, 1, …, 0 ) ,……,k = ( 0, 0, …, 1 ) . 2.抽象的例子 ① V 的元素是二阶方阵 A = ( a i j )2×2 ,方阵的元素 a i j 是实数 R ;F 为实数 ⎡0 1 ⎤ ⎡0 0 ⎤ ⎡0 0 ⎤ ⎡1 0⎤ 域 R .可用基 E1 = ⎢ , E2 = ⎢ , E3 = ⎢ , E4 = ⎢ ⎥ ⎥ ⎥ ⎥ ; ⎣0 0 ⎦ ⎣1 0⎦ ⎣0 1 ⎦ ⎣0 0 ⎦ 可知为 4 维线性空间;记 R2×2 . ② V 的元素是所有实系数多项式,F 为 R .可用基 1,x,x2,……,xn,……; 为无限维线性空间. 3.有关定理 ① 子空间的维数 dimW ≤ 母空间的维数 dimV . ② 向量组 α1 ,α2 ,……,αn 的生成子空间的维数等于该向量组的秩. dimL( α1 ,α2 ,……,αn ) = R{ α1 ,α2 ,……,αn } . ③ V 中向量组 α1 ,α2 ,……,αn 可以作为基的充分必要条件,是 V = L( α1 ,α2 ,……,αn ) . 二、向量在基下的坐标 1.定义[P.188]:设 α1 ,α2 ,……,αn 为 n 维线性空间 V 的一个基,若取 α ∈V,总有且仅有一组有序数 x1,x2,……,xn 使得

线性代数6-2维数基坐标

线性代数6-2维数基坐标

坐标.
例1 在线性空间P[x]3中, p1 1, p2 x, p3 x2, p4 x3 就是它的一个基.
任一不超过3次的多项式
p a0 a1x a2x2 a3x3
可表示为 p a0 p1 a1 p2 a2 p3 a3 p4
因此 p 在这个基下的坐标为 (a0, a1, a2, a3)

y2
yn

并且两组基间有线性关系式
1, 2,, n 1,2 ,,n A
则有如下的关系式
x1
y1
x2

xn


A
y2
yn
,
y1
x1


若取另一组基为 q1 1, q2 1 x, q3 2x2 , q4 x3,
p

( a0
a1)q1

a1q2

a2 2
q3

a3q4
因此 p 在这个基下的坐标为
说明:
(a0

a1, a1,
a2 2
, a3 )
(2)一个向量在一组基下的 坐标是唯一的.
(3)同一个向量在不同基下 的坐标一般是不同的 .
则称此公式为基变换公式.
2.利用分块矩阵的方法可将上述公式写成
其中
1, 2 ,, n 1,2 ,,n A
a11 a12 a1n
A

a21
a23

a2n


an1
an2

ann

则称上述矩阵A为由基1,2,,n到基1, 2,, n的
设 a11 a22 ann , b11 b2 2 bn n

线性代数 基、维数与坐标

线性代数 基、维数与坐标

基、维数与坐标⏹基、维数的概念⏹坐标的概念基、维数与坐标定义2(1) α1,α2, …,αm 线性无关;(2) V 中任一向量都能由α1,α2, …,αm 表示,则称α1,α2, …,αm 为空间V 的一组基(或基底), 基与维数m 称为向量空间V 的维数,记为dim V =m ,设V 是数域p 上的向量空间,向量α1,α2, …,αm V ,如果并称V 是数域p 上的m 维向量空间.零空间的维数规定为零.基、维数与坐标2. 将向量空间V 的基的定义与向量组的极大线性无关组的定义相比较,不难看出,1. 向量空间的维数和该空间中向量的维数是两个不同的概念.若把向量空间V 看作一个向量组,那么它的基就是V 的一个极大线性无关组,dim V 就是V 的秩.3. 容易证明,若向量空间V 的维数是m ,那么V 中任意m 个线性无关的向量都是V 的一组基;对于向量空间V 的任一子空间V 1,dim V 1≤dim V .基、维数与坐标对于向量空间R n ,基本单位向量ε1, ε2, …, εn 就是它的一组基,有dim R n =n , 则称R n 为n 维实向量空间.在四维向量空间R 4中,向量组α1=(0, 0,0,1),α2=(0,1,0,1), α3=(-1,2,0,1),α4=(1,0,2,1)线性无关,所以它们也是R 4的一组基.基、维数与坐标定义3设α1,α2, …,αm 为向量空间V 的一组基,1122m m x x x ,则称有序数组由定理3.2.2,向量α的表示也是唯一的, α V , 有因此α基下α1,α2, …,αm 的坐标也是唯一的.坐标的概念x 1,x 2, …,x m 为向量α在基α1,α2, …,αm 下的坐标.记为(x 1,x 2, …,x m ).基、维数与坐标例4证明111002210A设α1=( 1,0,2),α2=(1,0,1), α3=(-1,2,0),证明α1,α2, α3是向量空间R 3的一组基,并求向量α=( 2,-3,5)在这组基下的坐标.以向量α1T ,α2 T , α3 T 为列向量做矩阵基、维数与坐标因为A 的行列式|A |=2≠0,,把α1,α2, α3代入,比较等式两端向量的对应分量,可得线性方程组112233x x x 设所以α1,α2, α3线性无关, 故它们是R 3的一组基.12331222325x x x x x x基、维数与坐标解之,得于是向量在α基α1,α2, α3下的坐标为12393,4,22x x x 93,4,22 ()。

线性空间

线性空间

例7: n元实有序数组组成的全体 Sn={ x=(x1, x2,· , xn)T| x1, x2,· , xnR } · · · · 对于通常的有序数组的加法及如下定义的数乘: °(x1, x2, ·, xn)T = (0, 0, ·, 0)T · · · · 不构成线性空间. 显然, Sn对运算封闭. 但1°x = 0 x, 故不满足第(5)条运算规律. 即所定义的运算不是线性运算, 所以Sn不是线性空间.
一、线性空间的定义
定义: 设V是一个非空集合, R为实数域. 如果对于 任意两个元素, V, 总有唯一的一个元素 V与之 对应, 称 为与 的和(简称加法运算), 记作 = +. 若对于任一数R与任一元素V, 总有唯一的 元素 V与之对应, 称为数与的积(简称数乘运算), 记作 = . 2010.5 3 第6章线性空间1-5
对任意的L, 则0R, 由运算的封闭性知: 0L, 而0 =0, 故0L, 从而(3)成立. 再由(–1)R, 则(–1)L, 且+(–1) = 0, 所以的 负元素就是(–1), 从而(4)成立. 所以L是线性空间V的子空间. 例8: 线性空间R23的下列子集是否构成R23的子 空间? 为什么? (1) W1 = 1 b 0 b, c , d R ; 0 c d ( 2) W 2 = a b 0 a + b + c = 0, a , b, c R . . 0 0 c 解(1): W1不构成子空间. 因为对 A = B = 1 0 0 W1 , 0 0 0 2010.5 13 第6章线性空间1-5
2010.5 第6章线性空间1-5 所以, = 0. 故结论成立.Fra bibliotek
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例如 n维线性空间
Vn x11 x22 xnn x1, x2, , xn R
与n维数组向量空间 Rn同构.
因为
(1)Vn中的元素与Rn中的元素( x1, x2 , , xn )T
形成一一对应关系;
V n x11 x2 2 xn n
f 4( x) 4 f 1( x) f 2( x).
1 2 1 2 k1 0
因此
2

4 1
3 9 1
0 6 5
5 7 5

k k k
2 3 4



0 0 0
.
设该齐次线性方程组的系数矩阵为A,则
1 0 3 4
~ A
初等行变换
因此 E11 , E12 , E 21 , E 22为V的一组基.
而矩阵A在这组基下的坐标是 (a11, a12, a 21, a 22)T .
例3 在线性空间R[ x]n中,取一组基
1 1, 2 ( x a), 3 ( x a)2 , , n ( x a)n1
(a1,a2, ,an)T 和(b1,b2, ,bn)T ,则
(a1 b1) 1 (a2 b2) 2 (an bn) n
k k a1 1 k a2 2 k an n
于是 与k的坐标分别为
(a1b1,a2b2, ,anbn)T
可表示为 p a0 p1 a1 p2 a2 p3 a3 p4 a4 p5
因此 p 在这个基下的坐标为 (a0, a1, a2, a3, a4)T
若取另一基q1 1, q2 1 x, q3 2 x2 , q4 x3 ,
q5

x4,则 p (a0

a1 )q1
四、小结
1.线性空间的基与维数;
2.线性空间的元素在给定基下的坐标;
坐标:(1)把抽象的向量与具体的数组向 量联系起来;
(2)把抽象的线性运算与数组向量 的线性运算联系起来.
3.线性空间的同构.
思考题
求由Px3中元素
f1( x) x3 2x2 4x 1, f2( x) 2x3 3x2 9x 1, f3( x) x3 6x 5, f4(x) 2x3 5x2 7x 5 生成的子空间的基与维数.
f
''(a
) ,

,
f
(
n

1)( a
)
T
)
.
2!
(n1)!
新泰洛其 新泰洛其价格 新泰洛其批发
三、线性空间的同构
设 1 , 2 , , n 是n维线性空间V n的一组基,在
这组基下,V n中的每个向量都有唯一确定的坐标. 而向量的坐标可以看作Rn中的元素,因此向量与它 的坐标之间的对应就是V n到 Rn的一个映射.
有序数组x1, x2 , , xn称为元素在1,2 , ,n这个
基下的坐标,并记作 x1, x2 , , xn T .
例1 在线性空间P[ x]4中, p1 1, p2 x, p3 x2 , p4 x3 , p5 x4 就是它的一个基.
任一不超过4次的多项式 p a4 x4 a3 x3 a2 x2 a1 x a0
,
线性nຫໍສະໝຸດ 无关;( 2)
V中任一元素总可由1,2 ,
,
线
n

表示,
那末, 1,2 , ,n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为n 维线性空间,记作Vn . 当一个线性空间 V 中存在任意多个线性无关
的向量时,就称 V 是无限维的.
若1 ,2 , ,n为Vn的一个基,则Vn可表示为
a1 q2

1 2 a2 q3

a3 q4

a4 q5
因此 p 在这个基下的坐标为
注意
(a
0
a1,
a1,
1 2a
2,
a
3,
a
T
4)
线性空间 V的任一元素在不同的基下所对的
坐标一般不同,一个元素在一个基下对应的坐标是
唯一的.
例2 所有二阶实矩阵组成的集合V,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性
Vn x11 x22 xnn x1, x2 , , xn R
二、元素在给定基下的坐标
定义2 设1,2 , ,n是线性空间Vn的一个基,对 于任一元素 Vn ,总有且仅有一组有序
数x1, x2 , , xn , 使
x11 x2 2 xn n ,
由于 Rn中的每个元素都有V n中的向量与之对 应,同时V n中不同的向量的坐标不同,因而对应Rn 中的不同元素.我们称这样的映射是V n与 Rn的一个 1 1对应的映射.这个对应的重要性表现在它与运 算的关系上.

a1 1 a2 2 an n
b1 1 b2 2 bn n 即向量 , V在基 1 , 2 , , n下的坐标分别为
则由泰勒公式知 f ( x) f (a) f '(a)(x a) f ''(a) ( x a)2 2!
f (n1)(a) ( x a)n1 (n 1)!
因此 f ( x)在基 1 , 2 , 3 , , n 下的坐标是
(
f (a),
f '(a),
(a1,a2, ,an)T (b1,b2, ,bn)T (ka1,ka2, ,kan)T k (a1,a2, ,an)T
上式表明: 在向量用坐标表示后,它们的运算 就归结为坐标的运算,因而线性空间 V n的讨论就 归结为Rn的讨论.
下面更确切地说明这一点.
定义 设U、V是两个线性空间,如果它们的元素 之间有一一对应关系 ,且这个对应关系保持线性 组合的对应,那末就称线性空间U 与 V 同构.
Rn
x ( x1 , x2 , , xn )T
(2)设
( x1, x2 , , xn )T
则有
( y1, y2 , , yn )T ( x1, x2 , , xn )T ( y1, y2 , , yn )T
( x1, x2 , , xn )T
思考题解答
解令
k1 f 1(x) k2 f 2(x) k3 f 3(x) k4 f 4(x) 0 则得
(k1 2 k 2 k 3 2 k 4) x3 (2 k1 3 k 2 5 k 4) x2
(4 k1 9 k 2 6 k 3 7 k 4)x (k1 k 2 5 k 3 5 k 4) 0.
0 0
1 0
2 0
1 0
0 0 0 0
因此, f 1( x), f 2 ( x)线性无关,是 f 1( x), f 2 ( x), f 3 ( x),
f 4 ( x)所生成的子空间的基,该子空间的维数为2,且

f 3 ( x) 3 f 1( x) 2 f 2 ( x),
空间.对于V中的矩阵
E
11


1 0
0 0
,
E
12


0 0
1 , 0
0 0
0 0
E
21


1
0
,
E
22


0
1

k1 E11 k 2 E12 k 3 E 21 k 4 E 22 k1 k 2 , k3 k4
因此
0 0
一、线性空间的基与维数
已知:在 Rn中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
定义1 满足:
在线性空间 V 中,如果存在 n个元素
1,2, ,n
(1)
1,2 ,
k1
E 11

k
2
E 12

k
3
E
21

k4
E
22

O


0
, 0

k1 k 2 k 3 k 3 0,
即 E11 , E12 , E 21 , E 22线性无关. 对于任意二阶实矩阵
A a11 a12 V , a21 a22
有 A a11 E11 a12 E12 a21 E 21 a22 E 22
结论
1.数域 P上任意两个n 维线性空间都同
构2..同构的线性空间之间具有反身性、对称性
与传递性.
3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
相关文档
最新文档