线性代数62维数基与坐标

合集下载

《维数基与坐标》课件

《维数基与坐标》课件
描述运动轨迹
维数基可以用来描述物体在空间中的 运动轨迹,通过在各个维度上定义坐 标值的变化,可以描述物体运动的方 向和距离。
坐标系在维数基中的应用
表达空间关系
通过坐标系,我们可以表达空间中物体之间的关系,例如距离、角度、方向等。
进行数学运算
在坐标系中,我们可以进行各种数学运算,例如加法、减法、乘法、除法等,以 解决各种实际问题。
标的应用和发展。
创新研究方法
03
鼓励数学家探索新的研究方法,以解决现有问题并开拓新的研
究领域。
感谢观看
THANKS
维数基与坐标
目 录
• 维数基的基本概念 • 坐标系的基本概念 • 维数基与坐标的关系 • 维数基与坐标的实例分析 • 维数基与坐标的未来发展
01
维数基的基本概念
定义与性质
维数基定义
维数基是线性空间中的一组基底,它由有限个线性无关的向 量组成,可以用来表示线性空间中的任意向量。
维数基的性质
维数基中的向量是线性无关的,即它们不能被其他向量线性 表示;维数基中的向量是正交的,即它们的点积为零;维数 基中的向量是单位向量,即它们的模长为1。
01
更高维度的探索
随着数学理论的发展,对高维空 间的研究将更加深入,有望揭示 更多关于宇宙的奥秘。
几何化代数
02
03
拓扑结构的研究
通过几何方法研究代数结构,将 有助于更好地理解复杂数学对象 。
利用坐标方法研究几何对象的拓 扑性质,将有助于解决一些经典 问题。
维数基与坐标在其他领域的应用前景
物理学
在量子力学和广义相对论等领域,维数基与坐标 有望提供更精确的数学工具。
参数方程
1 2
定义

线性代数-基变换与坐标变换

线性代数-基变换与坐标变换
一、基变换公式与过渡矩阵
问题:在 n 维线性空间 V中,任意 n 个线性 无关的向量都可以作为 V 的一组基.对于不同的 基,同一个向量的坐标是不同的.
那么,同一个向量在不同的基下的坐标有什 么关系呢?换句话说,随着基的改变,向量的坐 标如何改变呢?
设1,2 , ,n及1, 2 , , n是线性空间Vn的
1 , 2
,
,n
P
x2'.
xn
xn'
x1 x1'

x2
P
x2'
.
xn xn'
由 于 矩 阵P可 逆, 所 以
x1'
x1
x2'
P
1
x2 .
xn'
xn
例1 在 P[ x]3中取两个基
1 x3 2 x2 x, 3 x3 2 x2 x 1, 及 1 2 x3 x2 1, 3 2 x3 x2 x 2,
过渡矩阵 P是可逆的.
二、坐标变换公式
定理1 设Vn中的元素 ,在基1 , 2 , , n下的坐标

( x1 , x2 , , xn )T ,
在基1 , 2 ,
,
下的坐
n
标为
( x1', x2 ', , xn ')T ,
若两个基满足关系式
1, 2, , n 1,2, ,n P
则有坐标变换公式
x1 x1'
x1'
x1
x2
P
x2'
,

x2'
P
1
x2 .
xn xn'
xn'

6.2维数、基与坐标

6.2维数、基与坐标

都可表示为 p a0 p1 a1 p2 a2 p3 a3 p4 +a4 p5 ,
因此 p 在这个基中的坐标为
a0 , a1 , a2 , a3 , a4
T
.
若另取一个基 q1 1, q2 1 x, q3 2 x 2 , q4 x 3 , q5 x 4 ,
线性空间的结构完全被它的维数所决定.
谢谢
x1 , x2 , , xn 这组有序数就称为向量 在这个基中的坐标,
并记作 x1 ,
, xn
T
.
例 在线性空间 P x 中, 4 p1 1, p2 x, p3 x 2 , p4 x 3 , p5 x 4
就是它的一个基. 任一不超过 4 次的多项式
p a4 x4 a3 x3 a2 x 2 a1 x a0
维数、基与坐标
定义:设有线性空间 V , 如果存在n个向量a1, a2, …, an
满足 (i) a1, a2, …, an 线性无关;
(ii) V 中任意一个向量都能由 a1, a2, …, an线性表示; 那么称向量组 a1, a2, …, an是线性空间 V 的一个基, n称为线性空间 V 的维数,
则 p a0 a1 x a2 x 2 a3 x 3 a4 x 4

a0

a1


a1
1

x

a2 2
2x2

a3 x3

a4
x4

a0 a1
q1

a1q2

a2 2
q3

a3q4

a4q5
,

基变换与坐标变换的关系与应用

基变换与坐标变换的关系与应用

基变换与坐标变换的关系与应用基变换和坐标变换是线性代数中的重要概念,它们之间存在一定的关系,并且在许多领域中有广泛的应用。

本文将探讨基变换和坐标变换的关系以及它们在实际应用中的应用案例。

1. 基变换与坐标变换的概念在线性代数中,基是向量空间中一组线性无关的向量。

基变换是将一个向量空间的基转换为另一个基的过程。

而坐标是描述向量在某个基下的表示方式。

坐标变换是从一个基的坐标系转换到另一个基的坐标系的过程。

可以说基变换是在向量空间中改变基的方向和大小,而坐标变换是在坐标系中改变坐标的表示。

2. 基变换与坐标变换的关系基变换和坐标变换之间存在紧密的联系。

考虑一个向量在一个基下的坐标表示,如果我们将该基进行变换,那么基相应的坐标系也会发生变化。

而坐标变换是基变换的结果,通过基变换,我们可以得到向量在新基下的坐标表示。

换句话说,基变换决定了坐标变换的方式。

3. 基变换与坐标变换的应用基变换和坐标变换在许多科学领域中有广泛的应用。

3.1 三维坐标变换在三维计算机图形学和计算机视觉中,我们经常需要对三维空间中的对象进行坐标变换。

通过基变换和坐标变换,我们可以将对象从世界坐标系转换到相机坐标系或者屏幕坐标系。

这样可以实现对象在三维空间中的旋转、缩放和平移等操作。

3.2 坐标系的正交化在机器学习领域中,正交化是一个常见的操作。

通过对数据进行基变换,可以将原始数据映射到一个正交基的坐标系中,从而方便进行数据分析和处理。

例如,在主成分分析(PCA)中,我们通过基变换将数据投影到一个新的基上,实现数据的降维和特征提取。

3.3 图像处理中的颜色空间转换在图像处理中,颜色空间的转换是一个重要的任务。

基于RGB颜色模型的图像可以通过基变换和坐标变换转换到其他颜色空间,如HSV、Lab等。

这样可以方便地实现图像的亮度、饱和度和色彩的调整。

3.4 机器人运动规划中的坐标变换在机器人运动规划中,坐标变换是一个关键的步骤。

通过基变换,可以将机器人末端执行器的位置和姿态从机器人局部坐标系转换到全局坐标系,从而方便进行运动轨迹的规划和控制。

维数基与坐标

维数基与坐标

在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。

维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。

一个向量空间可以有多组不同的维数基。

维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。

换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。

坐标是描述一个向量在给定维数基下的表示。

当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。

而坐标就是指这些线性组合中各个基向量的系数。

举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。

维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。

而坐标的选择也是由维数基的选择决定的。

通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。

但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。

在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。

对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。

维数基与坐标

维数基与坐标

维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。

维数基是向量空间的一组基础向量,用于表示空间中的任意向量。

坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。

本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。

2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。

一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。

2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。

•维数基可以通过线性组合生成空间中的任意向量。

•维数基的数量等于向量空间的维数。

2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。

3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。

坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。

3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。

常见的坐标系有笛卡尔坐标系、极坐标系等。

在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。

以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。

3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。

那么v 的坐标表示为 (a, b)。

4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。

基变换与坐标变换的理解

基变换与坐标变换的理解

基变换与坐标变换的理解在线性代数的学习过程中,我们经常会遇到基变换和坐标变换的概念。

这两个概念是线性代数中非常重要的概念,对于理解矩阵变换和向量空间变换起着至关重要的作用。

基变换的概念和意义在向量空间中,基是一个线性无关且张成整个向量空间的向量集合。

基变换指的是由一个基向量集合变换为另一个基向量集合的过程。

当我们进行基变换时,实际上是在改变向量表示的方式,但是向量本身不会发生变化。

基变换的本质是将原向量空间中的向量通过一种线性变换映射到一个新的基向量空间中,从而使得原空间中的向量在新的基下有着不同的坐标表示。

通过基变换,我们可以更加方便地对向量空间进行分析和处理。

在实际应用中,基变换也被广泛应用于图像处理、机器学习等领域。

例如,在计算机图形学中,基变换可以帮助我们更好地理解和描述图形的变化和转换。

坐标变换的概念和意义坐标变换是指在给定基的基础上,改变向量在这个基下的坐标表示的过程。

坐标变换实际上是一种基变换的特例,特别是当基是标准正交基时,坐标变换可以简化为矩阵乘法的形式。

通过坐标变换,我们可以将向量从一个坐标系表示转换为另一个坐标系表示,这在实际应用中具有重要意义。

在机器人学中,坐标变换可以帮助我们描述机器人在不同坐标系下的位置关系,从而控制机器人的运动。

在三维图形学中,坐标变换也是不可或缺的工具,可以帮助我们实现图形对象的平移、旋转等操作。

基变换与坐标变换的关系基变换和坐标变换之间有着密切的联系。

在实际应用中,基变换可以通过矩阵乘法来表示,而坐标变换也可以通过矩阵乘法来表示。

基变换和坐标变换的关系可以从几何和代数的角度进行理解。

从几何上看,基变换可以看作是一种向量空间的旋转、拉伸和压缩等操作,而坐标变换则是在这个基的基础上描述向量的位置关系的操作。

从代数的角度看,基变换可以看作是基向量的线性组合,坐标变换可以看作是向量在不同基向量下的系数表示。

通过矩阵的乘法运算,我们可以很方便地实现基变换和坐标变换的转换。

维数、基与坐标

维数、基与坐标
(k) k ()
对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,

k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B

02 第二节 维数、基与坐标

02 第二节 维数、基与坐标
. 显然,是的倍数. 向量组与向量组等价,并且线性无关,进而是的 一组基,所以.
例6 (E04) 证明维线性空间 与维数组向量空间同构.
证 (1) 中的元素与中的元素形成一一对应关系;
(2) 则有
结论 1. 数域上任意两个维线性空间都同构. 2. 同构的线性空间之间具有反身性、对称性与传递性. 3. 同维数的线性空间必同构.
例4(E02) 所有二阶实矩阵组成的集合对于矩阵的加法和数量乘法, 构成实数域R上的一个线性空间. 试证
,,, 是中的一组基, 并求其中矩阵A在该基下的坐标.
证 先证其线性无关, 由有
即线性无关. 又对于任意二阶实矩阵 有 因此为的一组基. 而矩阵在这组基下的坐标是
例5 (E03) 求子空间的维数,其中 解 易知是由下列向量的全体线性组合所构成的集合:
第二节 基、维数与坐标
分布图示
★ 引言
★ 线性空间的基与维数
★ 生成子空间
★ 例1
★ 坐标
★ 例2
★ 例3 ★ 例4
★ 线性空间的同构
★ 例6
★ 内容小结
★ 课堂练习
★ 习题6-2
★ 例5 ★ 例7
内容要点
一、线性空间的基与维数 我们已知在中,线性无关的向量组最多由个向量组成,而任意个向
量都是线行相关的。现在我们要问:在线性空间中,最多能有多少个线 性无关的向量?
元素有序数组 定义2 设是线性空间的一个基,对于任一元素, 有且仅有一组有序数 使,则称有序数组为元素在基下的坐标, 并记作.
二、线性空间的同构 设是维线性空间的一组基,在这组基下,中的每个向量都有唯一确
定的坐标,而向量的坐标可以看作中的元素,因此向量与它的坐标之间 的对应就是到的一个映射。对于中不同的向量它们的坐标也不同,即对 应于中的不同元素。反过来,由于中的每个元素都有中的向量与之对 应,我们称这样的映射是与的一个一一对应的映射。这个映射的一个重 要特征表现在它保持线性运算(加法和数乘)的关系不变。

维数基与坐标 基变换与坐标变换

维数基与坐标 基变换与坐标变换

§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。

高等代数 第6章线性空间 6.2 基底、坐标与维数

高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是

维数-基-坐标ppt课件

维数-基-坐标ppt课件
则称向量 可由向量组 1,2 , ,r 线性表出.
3/36
若向量组 1, 2 , , s 中每一向量皆可由向量组
1,2 , ,r线性表出, 则称向量组 1, 2 , , s
可由向量组 1,2 , ,r 线性表出.
若两向量组可以互相线性表出,则称这两个向量组 为等价的.
(3)1,2 , ,r V ,若存在不全为零的数 k1, k2 , , kr P,使得 k11 k22 krr 0 则称向量组 1,2 , ,r 线性相关.
就是 Pn 的一组基.称为Pn的标准基.
12/36
注意:
① n维线性空间 V的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基.
② 任意两组基向量是等价的.
例4(1)证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
(2)证明:1,x-a,(x-a)2,…,(x-a)n-1 也为P[x]n的一组基.
0
0

k1 2k2 k3 0
其系数行列式
11 1
1 2 ( 1)( 2 1)( 2 ) 0 1 2
23/36
∴方程组②只有零解: k1 k2 k3 0 故 E, A, A2 线性无关. 又由①知,任意f(A)均可表成 E, A, A2 的线性组合, 所以V为三维线性空间, E, A, A2 就是V 的一组基.
怎样才能便于运算?
2/36
一、线性空间中向量之间的线性关系
1、有关定义
设V 是数域 P 上的一个线性空间
(1)1,2 , ,r V (r 1), k1, k2 , , kr P, 和式
k11 k22 krr
称为向量组1,2 , ,r 的一个线性组合.

§3.4线性空间、基、维数和坐标

§3.4线性空间、基、维数和坐标

一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。

线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。

定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。

R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。

线性代数中的向量空间的基与维数计算与应用

线性代数中的向量空间的基与维数计算与应用

添加标题
添加标题
添加标题
添加标题
特征值分解(EVD):用于主成分 分析和图像处理
矩阵分解在推荐系统中的应用:通 过分解用户-物品交互矩阵,推荐 相关物品
数据降维案例
数据降维的背景:高维数据难以处理,需要降低维度以便分析
基与维数的概念:基是向量空间的一组线性无关的向量,维数是向量空 间的秩,即基向量的个数
响,例如小波变换、中值滤波等。
THANKS
汇报人:XX
向量空间在解析几何、线性代数等领域中有着广泛的应用。
向量空间的基的定义
基是向量空间中线性无关的 向量组
向量空间是由同维线性组合 生成的向量集合
基的个数是向量空间的维数
基可以用来描述向量空间中 的任意向量
基的个数与向量空间的维数的关系
基的个数必须 等于向量空间
的维数
基的个数不能 超过向量空间
的维数
06 基 与 维 数 的 计 算 注 意事项
Part One
单击添加章节标题
Part Two
向量空间与基的定 义
向量空间的定义
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、加法的结合律和交换律、数乘的 结合律和分配律。
向量空间中的向量可以进行加法、数乘等运算,且满足一定的性质。
向量空间中的向量可以表示为坐标系中的点或矢量,具有方向和大小。
迭代法:利用迭 代算法求解基
维数的计算方法
定义:基与维数是线性代数中描述向量空间的重要概念,维数等于向量空间的基中向量的个数。 计算方法:通过求解线性方程组,可以得到向量空间的基,从而计算出维数。 应用:维数的计算在解决实际问题中具有广泛的应用,如机器学习、图像处理等领域。 注意事项:在计算维数时,需要注意线性相关性的问题,避免出现计算错误。

线性空间的概念,维数、基与坐标

线性空间的概念,维数、基与坐标
(4) 对任何 V ,都有 的负元素 V , 使 0 ;
统计软202件1/4分/22析与应用
线性代数A
4
6.1-6.2 线性空间的概念,维数、基与坐标
(5) 1 ;
(6) ; (7) ; (8) .
那么,V 就称为数域 F上的线性空间(或向量空 间),V 中的元素称为向量(或元).
线性代数A
19
6.1-6.2 线性空间的概念,维数、基与坐标
三、线性空间的子空间
定义2 设 V 是一个线性空间, U 是 V 的一个 非空子集,如果 U 对于 V 中所定义的加法和乘数 运算也构成一个线性空间, 则称 U 是 V 的一个子 空间.
线性空间中的零元构成一子空间, 称为零空间. V 自身是V 的子空间. 我们称这两个子空间为V 的 平凡子空间.
记作
;
统计软202件1/4分/22析与应用
线性代数A
3
6.1-6.2 线性空间的概念,维数、基与坐标
如果上述两种运算满足以下八条运算规律
( 设 , , V;, F ):
(1) ;
(2) ;
(3) 在V中存在零元素 0 ,对任何 V ,都有 0 ;
于是有 定理2 线性空间V 的非空子集U 构成子空间的
充分必要条件是: ⑴ 如果 , U, 则 U;
⑵ 如果 U, k R,则 k U.
[证略]
统计软202件1/4分/22析与应用
线性代数A
22
6.1-6.2 线性空间的概念,维数、基与坐标
例7
证明: N 2
a 0
b
0
a, b R
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?

线性代数6-2维数基坐标

线性代数6-2维数基坐标

坐标.
例1 在线性空间P[x]3中, p1 1, p2 x, p3 x2, p4 x3 就是它的一个基.
任一不超过3次的多项式
p a0 a1x a2x2 a3x3
可表示为 p a0 p1 a1 p2 a2 p3 a3 p4
因此 p 在这个基下的坐标为 (a0, a1, a2, a3)

y2
yn

并且两组基间有线性关系式
1, 2,, n 1,2 ,,n A
则有如下的关系式
x1
y1
x2

xn


A
y2
yn
,
y1
x1


若取另一组基为 q1 1, q2 1 x, q3 2x2 , q4 x3,
p

( a0
a1)q1

a1q2

a2 2
q3

a3q4
因此 p 在这个基下的坐标为
说明:
(a0

a1, a1,
a2 2
, a3 )
(2)一个向量在一组基下的 坐标是唯一的.
(3)同一个向量在不同基下 的坐标一般是不同的 .
则称此公式为基变换公式.
2.利用分块矩阵的方法可将上述公式写成
其中
1, 2 ,, n 1,2 ,,n A
a11 a12 a1n
A

a21
a23

a2n


an1
an2

ann

则称上述矩阵A为由基1,2,,n到基1, 2,, n的
设 a11 a22 ann , b11 b2 2 bn n

线性代数应该这样学3:基与维数

线性代数应该这样学3:基与维数

线性代数应该这样学3:基与维数在本系列中,我的个⼈见解将使⽤斜体标注。

每篇⽂章的最后,我将选择摘录⼀些例题。

由于⽂章是我独⾃整理的,缺乏审阅,难免出现错误,如有发现欢迎在评论区中指正。

⽬录Part 1:基基的定义是源⾃于上⼀节中得到的⼏个结论:线性相关的向量组总是可以归约成线性⽆关的。

有限维向量空间中,线性⽆关组的长度总是⼩于张成组的长度。

有限维向量空间中,线性⽆关张成组的长度是唯⼀的。

基(base) 若V中的⼀个向量组既线性⽆关⼜张成V,则称为V的基。

F n的标准基指的是(1,0,⋯,0),(0,1,⋯,0),⋯,(0,0,⋯,1)这个向量组,也可以记作e1,e2,⋯,e n,在有些地⽅也称为⾃然基,因为这样的⼀组基显得很⾃然。

基的判定准则V中的向量组v1,⋯,v n是V的基当且仅当每⼀个v∈V都能唯⼀地写成以下的形式:v=a1v1+⋯+a m v m.要证明向量组是基,关键在于两点:⼀是证明这个向量组张成V,也就是V中所有向量可以被它们线性表⽰,⼆是证明这个向量组线性⽆关。

这个定义之中,前半部分指出了每⼀个v,这就代表了张成组,后半部分指出了表⽰的唯⼀性,结合0∈V就可以得到向量组的线性⽆关性。

张成组含有基在向量空间中,每个张成组都可以化简成⼀个基。

这个定理的重要之处在于,给出了⼀个基于张成组构造基的⽅式,因⽽我们可以删繁就简。

设v1,⋯,v n是V的张成组。

对j=1,2,⋯,n,每⼀步中,如果:v j∉span(v1,⋯,v j−1)(规定空组张成{0}),则往向量组B中加⼊v j。

v j∈span(v1,⋯,v j−1),则不向向量组B中增加v j。

经过n步之后得到的n,由于每⼀个向量都不能被其之前的向量线性表⽰,所以B是个线性⽆关向量组。

同时,被去掉的那些向量因为都属于部分向量的张成组,所以span(B)=span(v1,⋯,v n).所以B就是我们所需要的基。

从⽽,由于每⼀个有限维向量空间都有张成组,所以每⼀个有限维向量空间都有基。

线性代数 基、维数与坐标

线性代数 基、维数与坐标

基、维数与坐标⏹基、维数的概念⏹坐标的概念基、维数与坐标定义2(1) α1,α2, …,αm 线性无关;(2) V 中任一向量都能由α1,α2, …,αm 表示,则称α1,α2, …,αm 为空间V 的一组基(或基底), 基与维数m 称为向量空间V 的维数,记为dim V =m ,设V 是数域p 上的向量空间,向量α1,α2, …,αm V ,如果并称V 是数域p 上的m 维向量空间.零空间的维数规定为零.基、维数与坐标2. 将向量空间V 的基的定义与向量组的极大线性无关组的定义相比较,不难看出,1. 向量空间的维数和该空间中向量的维数是两个不同的概念.若把向量空间V 看作一个向量组,那么它的基就是V 的一个极大线性无关组,dim V 就是V 的秩.3. 容易证明,若向量空间V 的维数是m ,那么V 中任意m 个线性无关的向量都是V 的一组基;对于向量空间V 的任一子空间V 1,dim V 1≤dim V .基、维数与坐标对于向量空间R n ,基本单位向量ε1, ε2, …, εn 就是它的一组基,有dim R n =n , 则称R n 为n 维实向量空间.在四维向量空间R 4中,向量组α1=(0, 0,0,1),α2=(0,1,0,1), α3=(-1,2,0,1),α4=(1,0,2,1)线性无关,所以它们也是R 4的一组基.基、维数与坐标定义3设α1,α2, …,αm 为向量空间V 的一组基,1122m m x x x ,则称有序数组由定理3.2.2,向量α的表示也是唯一的, α V , 有因此α基下α1,α2, …,αm 的坐标也是唯一的.坐标的概念x 1,x 2, …,x m 为向量α在基α1,α2, …,αm 下的坐标.记为(x 1,x 2, …,x m ).基、维数与坐标例4证明111002210A设α1=( 1,0,2),α2=(1,0,1), α3=(-1,2,0),证明α1,α2, α3是向量空间R 3的一组基,并求向量α=( 2,-3,5)在这组基下的坐标.以向量α1T ,α2 T , α3 T 为列向量做矩阵基、维数与坐标因为A 的行列式|A |=2≠0,,把α1,α2, α3代入,比较等式两端向量的对应分量,可得线性方程组112233x x x 设所以α1,α2, α3线性无关, 故它们是R 3的一组基.12331222325x x x x x x基、维数与坐标解之,得于是向量在α基α1,α2, α3下的坐标为12393,4,22x x x 93,4,22 ()。

线性代数62维数基与坐标

线性代数62维数基与坐标

即 E 11 , E 12 , E 21 , E 22线性无关.
对于任意二阶实矩阵 a 11 a 12 A V , a 21 a 22
有 A a 11 E 11 a 12 E 12 a 21 E 21 a 22 E 22
因此 E 11 , E 12 , E 21 , E 22为V的一组基.
f ''(a ) (a ) f ( f (a ), f '(a ), , , ) . 2! ( n 1)!
( n 1) T
三、线性空间的同构
设 1 , 2 , , n 是n维线性空间V n 的一组基, 在 这组基下,V n 中的每个向量都有唯一 确定的坐标. 而向量的坐标可以看作R n 中的元素,因此向量与它 n 的坐标之间的对应就是 V n 到 R 的一个映射. 由于 R n 中的每个元素都有 V n 中的向量与之对 应,同时V n 中不同的向量的坐标不 同,因而对应 R n
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
定义1 满足:
在线性空间 V 中,如果存在 n 个元素 1 , 2 ,, n
(1) 1 , 2 ,, n线性无关;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 设U、V是两个线性空间,如果它们的元素 之间有一一对应关系 ,且这个对应关系保持线性 组合的对应,那末就称线性空间 U 与 V 同构.
例如
Vn x11 x2 2 xn n x1 , x2 ,, xn R
与 n 维数组向量空间 R n 同构. 因为 T (1) Vn中的元素与R n中的元素( x1 , x2 ,, xn ) 形成一一对应关系;
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
f ''(a ) (a ) f ( f (a ), f '(a ), , , ) . 2! ( n 1)!
( n 1) T
三、线性空间的同构
设 1 , 2 , , n 是n维线性空间V n 的一组基, 在 这组基下,V n 中的每个向量都有唯一 确定的坐标. 而向量的坐标可以看作R n 中的元素,因此向量与它 n 的坐标之间的对应就是 V n 到 R 的一个映射. 由于 R n 中的每个元素都有 V n 中的向量与之对 应,同时V n 中不同的向量的坐标不 同,因而对应 R n
(a 1,a 2 ,,a n ) 和 (b1,b 2 ,,b n ) , 则 ( a 1 b1 ) 1 ( a 2 b 2 ) 2 ( a n b n ) n
k k a 1 1 k a 2 2 k a n n
( k 1 2 k 2 k 3 2 k 4 ) x 3 ( 2 k 1 3 k 2 5 k 4 ) x 2 (4 k 1 9 k 2 6 k 3 7 k 4 ) x ( k 1 k 2 5 k 3 5 k 4 ) 0. 2 1 2 k 1 0 1 2 3 0 5 k 2 0 因此 . 4 9 6 7 k3 0 1 1 5 5 0 k 4
x1 1 x2 2 xn n ,
有序数组x1 , x2 , , xn 称为元素在 1 , 2 , , n 这个 基下的坐标 , 并记作
T x1 , x2 ,, xn .
例1 在线性空间P[ x ]4中, p1 1, p 2 x , p 3 x 2 , p 4 x 3 , p 5 x 4 就是它的一个基 .
设该齐次线性方程组的 系数矩阵为A, 则
1 0 3 4 初等行变换 0 1 2 1 A ~ 0 0 0 0 0 0 0 0 因此, f 1 ( x ), f 2 ( x )线性无关, 是 f 1 ( x ), f 2 ( x ), f 3 ( x ),
若 1 , 2 ,, n为Vn的一个基, 则Vn可表示为
Vn x1 1 x2 2 xn n x1 , x2 ,, xn R
二、元素在给定基下的坐标
定义2 设 1 , 2 , , n是线性空间Vn的一个基 , 对
于任一元素 Vn , 总有且仅有一组有序 数x1 , x 2 , , x n , 使
n维线性空间
Vn
R
n
x1 1 x2 2 xn n
x ( x1 , x2 , , xn )
T
( 2)设
( x1 , x2 ,, xn )T ( y1 , Байду номын сангаас2 ,, yn )T
( x1 , x2 ,, xn ) ( y1 , y2 ,, yn )
T T
于是 与k的坐标分别为 T (a 1 b1,a 2 b 2,,a n b n )
(a 1,a 2,,a n ) (b1,b 2,,b n ) T T ( k a 1,k a 2 ,,k a n ) k (a 1,a 2,,a n )
T
T
上式表明: 在向量用坐标表示后 , 它们的运算 就归结为坐标的运算 ,因而线性空间 V n 的讨论就 归结为 R n 的讨论. 下面更确切地说明这一 点.
, 该子空间的维数为 2, 且 f 4 ( x )所生成的子空间的基 有
f 3 ( x ) 3 f 1 ( x ) 2 f 2 ( x ), f 4 ( x ) 4 f 1 ( x ) f 2 ( x ).
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
即 E 11 , E 12 , E 21 , E 22线性无关.
对于任意二阶实矩阵 a 11 a 12 A V , a 21 a 22
有 A a 11 E 11 a 12 E 12 a 21 E 21 a 22 E 22
因此 E 11 , E 12 , E 21 , E 22为V的一组基.
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
定义1 满足:
在线性空间 V 中,如果存在 n 个元素 1 , 2 ,, n
(1) 1 , 2 ,, n线性无关;
四、小结
1.线性空间的基与维数;
2.线性空间的元素在给定基下的坐标; 坐标:(1)把抽象的向量与具体的数组向 量联系起来; (2)把抽象的线性运算与数组向量 的线性运算联系起来. 3.线性空间的同构.
思考题
求由P x 3中元素
f1 ( x ) x 2 x 4 x 1,
3 2
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R [ x ]n中, 取一组基
1 1, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
n 中的不同元素.我们称这样的映射是 与 V n R 的一个
1 1对应的映射.这个对应的重要性表现 在它与运 算的关系上.

a1 1 a 2 2 a n n b1 1 b2 2 bn n 即向量 , V在基 1 , 2 , , n 下的坐标分别为
( 2) V中任一元素总可由 1 , 2 ,, n线性 表示, 那末, 1 , 2 ,, n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为 n 维线性空间 , 记作Vn .
当一个线性空间 V 中存在任意多个线性无关 的向量时,就称 V 是无限维的.
k1 k 2 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 k3 k4
因此 0 0 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 O 0 0
k 1 k 2 k 3 k 3 0,
f 2 ( x ) 2 x 3 3 x 2 9 x 1,
f 3 ( x ) x 3 6 x 5,
f4 ( x) 2 x 5 x 7 x 5
3 2
生成的子空间的基与维数.
思考题解答
解 令 k1 f 1 ( x) k 2 f 2 ( x) k 3 f 3 ( x) k 4 f 4 ( x) 0 则得
T T
则有
( x1 , x2 ,, xn )
T
结论 1.数域 P上任意两个n 维线性空间都同 构. 2.同构的线性空间之间具有反身性、对称性 与传递性. 3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
相关文档
最新文档