高考数学一轮复习任意角和弧度制及任意角的三角函数
高三数学一轮复习知识点讲解5-1任意角和弧度制及任意角的三角函数
高三数学一轮复习知识点讲解专题5.1 任意角和弧度制及任意角的三角函数【考纲解读与核心素养】1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2. 理解正弦函数、余弦函数、正切函数的定义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 4.高考预测:(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标. 5.备考重点:(1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.【知识清单】知识点1.象限角及终边相同的角 1.(1)任意角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度.若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180rad .知识点2.三角函数的定义 1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 知识点3.扇形的弧长及面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度. (2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示名称 角度制 弧度制 弧长公式 l =n πr180l =__|α|r __ 扇形面积公式 S =n πr 2360S =|α|2r 2 = 12lr 注意事项r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长【典例剖析】高频考点一 象限角及终边相同的角【典例1】(2019·乐陵市第一中学高三专题练习)如果,那么与终边相同的角可以表示为A .B .C .D .【答案】B 【解析】 由题意得,与终边相同的角可以表示为.故选B . 【规律方法】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式探究】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限.当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限.综上所述,2α的终边在第一象限或第三象限.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角集合表示第一象限角{α|k·360°<α<k·360°+90°,k∈Z}第二象限角{α|k·360°+90°<α<k·360°+180°,k∈Z}第三象限角{α|k·360°+180°<α<k·360°+270°,k∈Z}第四象限角{α|k·360°+270°<α<k·360°+360°,k∈Z} (2)轴线角:角的终边的位置集合表示终边落在x轴的非负半轴上{α|α=k·360°,k∈Z}终边落在x轴的非正半轴上{α|α=k·360°+180°,k∈Z}终边落在y轴的非负半轴上{α|α=k·360°+90°,k∈Z}终边落在y轴的非正半轴上{α|α=k·360°+270°,k∈Z}终边落在y轴上{α|α=k·180°+90°,k∈Z}终边落在x轴上{α|α=k·180°,k∈Z}终边落在坐标轴上{α|α=k·90°,k∈Z}高频考点二三角函数的定义【典例2】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B【解析】由题意可知,,,是第三象限角,可得,即,解得,故选B.【典例3】已知角的终边落在直线y=2x上,求sinα、cosα、tanα的值.【答案】【解析】当角的终边在第一象限时,在角的终边上取点P(1,2),由r=|OP|=12+22=5,得sinα=2 5=255,cos α=15=55,tan α=21=2. 当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-12+-22=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.【典例4】(2011·江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【规律方法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【变式探究】1.(浙江省嘉兴市第一中学期中)已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B 【解析】由三角函数的定义可得.故选B .2.已知角的终边在射线上,则等于( )A. B. C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为: A.【总结提升】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=aa 2+b2,正切值tan α=ab. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. 高频考点三:三角函数值的符号判定 【典例5】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.【典例6】确定下列各式的符号: (1)sin105°·cos230°; (2)sin 7π8·tan 7π8;(3)cos6·tan6. 【答案】【解析】先确定角所在象限,进而确定各式的符号. (1)∵105°、230°分别为第二、第三象限角, ∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0.(2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin 7π8·tan 7π8<0.(3)∵3π2<6<2π,∴6是第四象限角.∴cos6>0,tan6<0,则cos6·tan6<0. 【总结提升】判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果角不能确定所在象限,那就要进行分类讨论求解. 【变式探究】1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.2.(1)判断下列各式的符号: ①sin3·cos4·tan5;②α是第二象限角,sin α·cos α.(2)若cos θ<0且sin θ>0,则θ2是第( )象限角.A .一B .三C .一或三D .任意象限角【答案】(1)①正,②负;(2)C【解析】 (1)①π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0. ②∵α是第二象限角,∴sin α>0,cos α<0,∴sin αcos α<0.(2)由cos θ<0且sin θ>0,知θ是第二象限角,所以θ2是第一或三象限角.高频考点四:扇形的弧长及面积公式【典例7】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18 【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例8】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【典例9】已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【答案】r=10cm, θ==2rad, 100 cm 2【解析】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20) ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).【总结提升】1.(1) 弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.2.当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想. 【变式探究】1.(2019·甘肃高三月考(理))若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 【答案】B 【解析】因为扇形的周长与面积的数值相等,所以设扇形所在圆的半径为R ,扇形弧长为l ,则lR=2R+l ,所以即是lR=4R+2l , ∴l=∵l>0,∴R>2 故选:B .2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A. 1 B. 4 C. 1或4 D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .3.一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【特别提醒】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决;(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.11金榜题名前程似锦。
2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数
考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,
第5章+第1讲+任意角和弧度制及任意角的三角函数2024高考数学一轮复习+PPT(新教材)
2.(多选)(2021·武汉调研)关于角度,下列说法正确的是( ) A.时钟经过两个小时,时针转过的角度是 60° B.钝角大于锐角 C.三角形的内角必是第一或第二象限角 D.若 α 是第二象限角,则α2是第一或第三象限角
答案
解析 对于 A,时钟经过两个小时,时针转过的角度是-60°,故错误; 对于 B,钝角大于锐角,显然正确;对于 C,若三角形的内角为 90°,是终 边在 y 轴正半轴上的角,故错误;对于 D,因为 α 是第二象限角,所以 2kπ +π2<α<2kπ+π,k∈Z,所以 kπ+π4<α2<kπ+π2,k∈Z,α2是第一或第三象限角, 故正确.故选 BD.
解
弧长和扇形面积的计算方法 (1)在弧度制下,记住下列公式 ①弧长公式:l=|α|r;②扇形的面积公式:S=12lr=12|α|r2(其中 l 是扇形 的弧长,α 是扇形的圆心角,r 是扇形的半径). (2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任 意两个量.
3.(多选)(2021·青岛模拟)已知扇形的周长是6 cm,面积是2 cm2,下列说法正确的有( )
答案 2 解析 由圆的几何性质可知,圆内接正方形的边长为 2r,故弧长为 2 r 的弧所对的圆心角为 2.
解析 答案
2
PART TWO
核心考向突破
考向一 角的概念及表示
例 1 (1)(2021·赤峰模拟)若角 α 的终边与 240°角的终边相同,则α2的终
边所在象限是( )
A.第二或第四象限
B.第二或第三象限
半轴重合,终边经过点 P(-1,2),则 sinα-cosα+tanα=________.
3 5-10
答案
5
高考数学一轮复习 课时作业19 任意角和弧度制及任意角的三角函数 理(含解析)新人教版-新人教版高三
课时作业19 任意角和弧度制及任意角的三角函数一、选择题1.将-300°化为弧度为( B ) A .-43π B.-53πC .-76π D.-74π解析:-300×π180=-53π.2.tan 8π3的值为( D )A.33 B .-33C. 3 D .- 3解析:tan 8π3=tan(2π+2π3)=tan 2π3=- 3.3.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( C ) A .2 B .sin2 C.2sin1D .2sin1 解析:r =1sin1,l =θ·r =2·1sin1=2sin1,故选C.4.已知点P ⎝ ⎛⎭⎪⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为(C)A.5π6B.2π3 C.11π6 D.5π3解析:因为点P ⎝ ⎛⎭⎪⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈[0,2π),可得θ=11π6.5.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( D )A.45 B .-45 C.35 D .-35解析:因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.6.(2019·某某一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( D )A.43B.34 C .-34D .-43解析:因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =x x 2+16,解得x =-3,所以tan α=4x =-43.7.点P (cos α,tan α)在第二象限是角α的终边在第三象限的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:若点P (cos α,tan α)在第二象限,则⎩⎪⎨⎪⎧cos α<0,tan α>0,可得α的终边在第三象限;反之,若角α的终边在第三象限,有⎩⎪⎨⎪⎧cos α<0,tan α>0,即点P (cos α,tan α)在第二象限,故选项C 正确.8.已知A (x A ,y A )是单位圆(圆心在坐标原点O )上任意一点,将射线OA 绕O 点逆时针旋转30°,交单位圆于点B (x B ,y B ),则x A -y B 的取值X 围是( C )A .[-2,2]B .[-2,2]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-12,12解析:设x 轴正方向逆时针到射线OA 的角为α,根据三角函数的定义得x A =cos α,y B =sin(α+30°),所以x A -y B =cos α-sin(α+30°)=-32sin α+12cos α=sin(α+150°)∈[-1,1].二、填空题9.-2 017°角是第二象限角,与-2 017°角终边相同的最小正角是143°,最大负角是-217°.解析:因为-2 017°=-6×360°+143°,所以-2 017°角的终边与143°角的终边相同.所以-2 017°角是第二象限角,与-2 017°角终边相同的最小正角是143°.又143°-360°=-217°,故与-2 017°角终边相同的最大负角是-217°.10.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第四象限角.解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),则k π+π2<α2<k π+3π4(k ∈Z ),故α2是第二或第四象限角.由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.11.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为518.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则扇形与圆面积之比为12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,∴α=5π6.∴扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=13.解析:解法1:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时sin β=13;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y 轴的对称点(22,1)在角β的终边上,此时sin β=13.综合可得sin β=13.解法2:令角α与角β均在区间(0,π)内,故角α与角β互补,得sin β=sin α=13. 解法3:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).13.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( D )A.5π6 B.2π3 C.5π3 D.11π6解析:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.14.(2019·某某模拟)已知角α的顶点在原点,始边在x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin2α=32. 解析:由题意得|OA |2=m 2+3m 2=1, 故m 2=14.由任意角三角函数定义知cos α=m ,sin α=3m ,由此sin2α=2sin αcos α=23m 2=32. 尖子生小题库——供重点班学生使用,普通班学生慎用 15.已知sin α>sin β,那么下列命题成立的是( D ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 解析:由三角函数线可知选D.16.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a -b |=( B )A.15B.55C.255D .1 解析:解法1:由正切定义tan α=y x,则tan α=a 1=b2,即a =tan α,b =2tan α.又cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=23,得tan 2α=15,tan α=±55. ∴|b -a |=|2tan α-tan α|=|tan α|=55. 解法2:由两点斜率公式,得:tan α=b -a2-1=b -a .又cos2α=cos 2α-sin 2α =cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=23, 解得tan 2α=15,∴|b -a |=|tan α|=55.。
备考高考数学一轮复习:16 任意角、弧度制及任意角的三角函数(解析版)
2020年高考数学一轮复习:16 任意角、弧度制及任意角的三角函数一、单选题1.已知角的顶点与坐标原点重合,始边与轴的非法半轴重合,终边经过点,则()A. B. C. D.2.与角终边相同的角是()A. B. C. D.3.若角a=-4,则a的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若p(-,m)是角θ终边上的一点,且sinθ=,则m的值为()A. B. 6 C. -或 D. -6或65.已知是角的终边上的点,则()A. B. C. D.6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角终边过点,则的值为()A. B. C. D.7.设函数,若角的终边经过,则的值为()A. B. 1 C. 2 D. 48.已知角的终边经过点,则A. B. C. D.9.已知角的顶点与原点重合,始边与x轴的非负半轴重合,终边上一点,则等于A. B. C. D.10.在直角坐标系中,若角α的终边经过点P(sin,cos),则cos(+α)=()A. B. ﹣ C. D. ﹣11.已知角终边上一点,则()A. B. C. D.12.在等差数列中,角顶点在坐标原点,始边与x轴正半轴重合,终边经过点,则()A. 5B. 4C. 3D. 2二、填空题13.角的终边经过点,则________.14.已知角的顶点与原点重合,始边与x轴非负半轴重合,终边过点,则________.15.已知角终边上有一点,且,则________16.若角的顶点在坐标原点,始边为轴的正半轴,其终边经过点,________.17.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则________.三、解答题18.若点在角的终边上,求的值.19.已知角终边经过点,且,求,,.20.已知角的终边过点,且,求和的值.21.已知角θ的终边经过点P(-3a,4a).(a≠0)(1)当a=1时,求sinθ-2cosθ的值:(2)若sinθ<0,求3tanθ+5cosθ的值22.在平面直角坐标系中,点是角终边上的一点.(1)求、;(2)求.答案解析部分一、单选题1. D解析:角的终边与单位圆的交点为,所以,,于是.故答案为:D.【分析】由已知利用任意角的三角函数定义,得到与的值代入,即可得结果.2. D解析:任一与终边相同的角,都可以表示成角与整数个周角的和,可得与角终边相同的角是,当时,,故答案为:D。
高考数学(文)一轮课件【第16讲】任意角和弧度制及任意角的三角函数
三角函数线 有向线段 MP 有向线段 OM 有向线段 AT 为 为余弦线 正切线 Biblioteka 正弦线返回目录第16讲
任意角和弧度制及任意角的三角函数
• 双 向 固 基 础
—— 链接教材 ——
1.[教材改编] 终边在x轴上的角的集合为________.
[答案] {α|α=n· 180° ,n∈Z}
[解析] 在0°~360°范围内,终边在x轴上的角有两个:0 °,180°,所以所有终边在x轴上的角可构成集合{α|α= n· 180° ,n∈Z}.
• 双 向 固 基 础 • 点 面 讲 考 向 • 多 元 提 能 力 • 教 师 备 用 题
第16讲 任意角和弧度制及 任意角的三角函数
返回目录
考试说明
1.了解任意角的概念、弧度. 2.理解任意角的正弦、余弦、正切的定义.
返回目录
第16讲
任意角和弧度制及任意角的三角函数
• 双 向 固 基 础
1.角的概念的推广 (1)任意角:角可以看成平面内的一条射线 ________绕着端点从一个 位置旋转到另一个位置所成的________ .角按旋转方向分为 图形 正角、负角和零角 ______________________________ . (2)与角α终边相同的角,连同角α在内,可构成一个集合是S =____________________________ {β|β=α+k· 360°,k∈Z} . (3)象限角:使角的顶点与坐标原点重合,角的始边与x轴的 非负半轴重合,那么,角的终边在第几象限,就说这个角是第 几象限角.如果角的终边在坐标轴上,那么这个角不属于任何 一个象限.
3.任意角的三角函数及三角函数线
三角函数 正弦 余弦 正切 y x叫作 α 的正切,记 作 tan α + - + -
高考数学一轮复习---任意角和弧度制及任意角的三角函数
高考数学一轮复习---任意角和弧度制及任意角的三角函数一、基础知识 1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }. 终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用. (2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总 (1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).(3)象限角(4)轴线角三、考点解析考点一 象限角及终边相同的角 例、(1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角 (2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. 跟踪训练1.集合},4{Z k k k ∈+≤≤ππαπα中的角所表示的范围(阴影部分)是( )2.在-720°~0°范围内所有与45°终边相同的角为________.考点二 三角函数的定义典例、已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解题技法]用定义法求三角函数值的2种类型及解题方法:(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解. (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.跟踪训练1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15 B.3715 C.3720 D.13152.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ) A .-45 B .-35 C .35 D .45考点三 三角函数值符号的判定例、若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解题技法]三角函数值符号及角所在象限的判断:三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0. 跟踪训练1.下列各选项中正确的是( )A .sin 300°>0B .cos(-305°)<0C .tan ⎪⎭⎫⎝⎛-322π>0 D .sin 10<0 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限课后作业1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .82.已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°3.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.},32{Z k k ∈-=ππαα B.},322{Z k k ∈+=ππαα C.},32{Z k k ∈-=ππαα D.},3{Z k k ∈-=ππαα4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( )A.3 B .-5 C.5 D.3或56.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.8.在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________. 9.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________.10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎪⎭⎫ ⎝⎛m ,53,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.12.已知α为第三象限角.(1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.提高训练1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 2.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.。
适用于老高考旧教材2024版高考数学一轮总复习第4章三角函数解三角形第1节任意角蝗制及任意角的三角函
=
1
2
1 1
+
4 4
-
=-
2
.故选
2
(2)由题意知 cos α≠0,设角 α 的终边上一点(a,-3a)(a≠0),
则 r= 2 + 92 = 10|a|.
当 a>0 时,r= 10a,sin α=
10sin
3
α+
=-3
cos
10sin
α=
10
=
10
,
10
10+3 10=0.
当 a<0 时,r=- 10a,sin
4.三角函数线的应用
核心素养
1.数学抽象
2.直观想象
3.数学运算
强基础•固本增分
1.角的概念的推广
(1)角的定义:平面内一条射线绕着 端点从一个位置旋转到另一个位置所成
的图形.
按旋转方向不同分为 正角
(2)角的分类
和 零角
、 负角
.
按终边位置不同分为 象限角
和轴
线角.
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合
(2)tan
1-tan15 °
α=
1+tan15 °
=
α=
=
6
3
=- .
-4 2
tan45 °-tan15 °
=tan(45°-15°)=tan
1+tan45 °·tan15 °
3
30°= .故选3来自D.考向2 三角函数值的符号判断
例4(1)已知点P(tan α,cos α)在第三象限,则角α为(
(方法
α= =2.
第四章第1讲任意角和弧度制、三角函数的概念课件-2025届高三数学一轮复习
D.5
C.±4
,所以m>0解得=4.
sinα=√4tm25?>0
B.4
A.-4 解析:由题可知,
解题技法利用三角函数定义解决问题的策略(1)已知角α终边上一点P的坐标,可求三函数值.先到原点的距离,再用三角函数定义求解;(2)已知角α的某个,可求终边上一点P坐标中参数值,可根据定义中的两个量列方程求参;(3)已知角α的所在直线方程或大小,根据三函数定义可求角α终边上某特定点的坐标.
( )
B.第二象限
A.第一象限
解析:选D.因为角α是第三象限,所以π+2k<3z π<4+k,∈Z故当=2n时为第二象限角;当k=2n+1,
为第四象限角.综上,
u-2
是第四象限角.故选D
u-2
k∈Z,
所以
2nπ+"<
34,∈Z
则角
n∈Z时,2π+3<
7
则角
是第二或四象限角.
ul2
又 sin"|=-
解析
3.若sinθ<0且ta,则角所在的象限是( )
D.第四象限
C.第三象限 B.第二象限
解析:选D.若sinθ<0,则角在第三或四象限ta
二所以当且时故
A.第一象限
,由弧长公式 解析
9m. 20×18=9
4.在单位圆中,20°的心角所对弧长为解析:单位圆半径r=1,20°的弧度数是 1=19m 得]
第四章 三角函数
第1讲 任意角和弧度制、三函数的概念
考情分析考点法:本讲内容高一般不直接查,但它是后续各学习的基础三角函数必须掌握的基本功.核心素养:直观想象、数学运算逻辑推 理
课标要求 1.了解任意角、弧度制的概念2.能进行弧度与角的互化3.理解任意角的三函数(正弦、余切)的定义.
2024年高考数学一轮复习课件(新高考版) 第4章 §4.1 任意角和弧度制、三角函数的概念
因为-2 023°=-360°×6+137°, 所以与-2 023°终边相同的最小正角是137°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2023·合肥模拟)在平面直角坐标系中,若角
θ
的终边经过点
P-sin
延伸探究
若α是第一象限角,则
α 2
是第几象限角?
因为α是第一象限角,所以k·360°<α<k·360°+90°,k∈Z,
所以 k·180°<α2<k·180°+45°,k∈Z, 当 k 为偶数时,α2是第一象限角, 当 k 为奇数时,α2是第三象限角.
(2)在-720°~0°范围内所有与45°终边相同的角为____-__6_7_5_°_和__-__3_1_5. °
a2+2a2a2=
2a
2 =
5
5,a>0,
5|a| -255,a<0,
所以 2sin α-cos α=-35355,5,a>a0<,0.
(2)sin 2cos 3tan 4的值
√A.小于0
C.等于0
B.大于0 D.不存在
∵π2<2<3<π<4<32π,∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2cos 3tan 4<0.
(3)若 A(1,a)是角 θ 终边上的一点,且 sin θ= 633,则实数 a 的值为 ___1_1__.
根据三角函数的终边上点的定义可得,r= 1+a2, 所以 sin θ= a2a+1= 633>0, 即 a>0 且 a2=11,所以 a= 11.
高考一轮复习专题三角函数(全)
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数
-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3
≤
������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).
当
k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角
高考数学一轮总复习 第四章 4.1 任意角、弧度制及任意角的三角函数
3.任意角的三角函数
任意角α的终边与单位圆交于点P(x,y)时, y
则sin α= y ,cos α= x ,tan α= x (x≠0).
三个三角函数的性质如下表:
三角函数
sin α cos α
定义域
_R__ __R__
第一象 第二象 第 限符号 限符号 限
+
+
+
-
4.三角函数线 如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂 作单位圆的切线与α的终边或终边的反向延长线相交于点T.
题组二 教材改编 2.[P10A组T7]角-225°=-54π 弧度,这个角在第二 象限.
3.[P15T2]若角 α 的终边经过点 Q- 22, 22,则 sin α=
2 2,
4.[P10A组T6]一条弦的长等于半径,这条弦所对的圆心角大
题组三 易错自纠
5.集合αkπ+π4≤α≤kπ+π2,k∈Z
2.弧度制 (1)定义:把长度等于 半径 长的弧所对的圆心角叫做1弧度 表示,读作弧度.正角的弧度数是一个 正数 ,负角的弧度数
零角的弧度数是 0 . π
(2)角度制和弧度制的互化:180°= π rad,1°= 180 rad,1 r 1
(3)扇形的弧长公式:l= |α|·r ,扇形的面积公式:S= 2lr =
A.-3
√B.3
16 C. 3
解析 sin θ= 16m+m2=35,且 m>0,解得 m=3.
D.±3
4.点 P 从(1,0)出发,沿单位圆逆时针方向运动23π弧长到达 Q
标为
√A.-12,
3 2
B.- 23,-12
C.-12,-
3 2
解析 点 P 旋转的弧度数也为23 Nhomakorabea,当sin θ>0,cos θ>0时,θ为第一象限角,
专题18 任意角、弧度制及任意角的三角函数领军高考数学一轮复习(文理通用)含解析
2020年领军高考数学一轮复习(文理通用)专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=yr,cos α=xr,tan α=yx(x≠0).重点难点突破【题型一】角及其表示【典型例题】已知集合{α|2kπα≤2kπ,k∈Z},则角α的终边落在阴影处(包括边界)的区域是()A.B.C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.【题型二】弧度制【典型例题】已知扇形的周长是6cm ,面积是2cm 2,试求扇形的圆心角的弧度数( ) A .1B .4C .1或 4D .1或 2【解答】解:设扇形的圆心角为αrad ,半径为Rcm ,则,解得α=1或α=4.故选:C .【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1 D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a=sin,b=cos,c=tan,则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【解答】解:因为,所以cos sin,tan1,所以b<a<c.故选:A.思维升华(1)利用三角函数的定义,已知角α终边上一点P的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.基础知识训练2,3-,则1.【湖南省衡阳市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()()A .5B .15-C .15D .5-【答案】A 【解析】由任意角的三角函数定义可知:3tan 2θ=-本题正确选项:A2.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是( ) A .B .C .D .【答案】C 【解析】由题意可知:角的终边不能落在坐标轴上, 当角终边在第一象限时, 当角终边在第二象限时, 当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P 的坐标为,则sin α的值为( )A .12B .1-2C .2D .-2【答案】B 【解析】解:角α的终边上一点P的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【甘肃省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sin α+cos α,tan α)在第四象限, ∴,由sin α+cosα=(α4π+), 得2k π<α4<π+2k π+π,k∈Z,即2k π4π-<α<2k π34π+π,k∈Z. 由tan α<0,得k π2π+<α<k π+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【安徽省示范高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【河南省南阳市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是( ) A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D.7.【宁夏石嘴山市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C .9.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是( ) A .钝角是第二象限角B .第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的范围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的范围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【江苏省南通市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若,则α与β的终边相同;θ<,则θ是第二或第三象限的角.⑤若cos0其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【河南省平顶山市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟, 故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届四川省成都市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P--,则sinα的值为__________.【解析】解:∵点P(1,2)在角α的终边上,∴tanα2=,将原式分子分母除以cosα,则原式故答案为:5.16.【江苏省涟水中学2018-2019学年高二5月月考】欧拉公式(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3ie-表示的复数在复平面中位于第_______象限.【答案】三【解析】由题e-3i=cos3-i sin3,又cos3<0, sin3>0,故3ie-表示的复数在复平面中位于第三象限.故答案为三17.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100.【解析】(1)设扇形的圆心角大小为α()rad,半径为r,则由题意可得:.联立解得:扇形的圆心角2α=.(2)设扇形的半径和弧长分别为r和l,由题意可得240r l+=,∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2lrα==, ∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【上海市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD ,,,平方海里,由题意建立平面直角坐标系,如图所示; 由题意知,点P 在圆B 上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z};(2) {α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【解析】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.能力提升训练1.【安徽省芜湖市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则()A.B.C.D.【答案】D【解析】∵点A为单位圆上一点,,点A沿单位圆逆时针方向旋转角α到点,∴A(cos,sin),即A(),且cos(α),sin(α).则sinα=sin[(α)]=sin(α)cos cos(α)sin,故选:D.∆中,若,那么2.【黑龙江省大庆实验中学2018-2019学年高一下学期期中考试】在ABC∆是()ABCA.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A .3.【河北省邯郸市2018-2019学年高一下学期期中考试】已知,那么角是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 【答案】B 【解析】由,得异号,则角是第二或第三象限角, 故选:.4.【河南省洛阳市2018-2019学年高一下学期期中考试】已知角α的终边经过点P (-3,y ),且y <0,cosα=-,则tanα=( ) A .B .C .D .【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【四川省攀枝花市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】∵已知角83πθ=的终边经过点(,P x ,∴,则2x =-,故选:C .6.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( )A B C .12D 【答案】C 【解析】根据题意,,且13π<<,则.故选:C .7.【四川省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【安徽省淮北市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【四川省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sin α+cos α的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12), ∴sin α=则sin α+cos α=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】 【解析】由于“”,故为第二象限角,故概率为.。
高考数学一轮复习任意角和弧度制、三角函数的概念
3.(忽视对参数的讨论)已知角α的终边过点P(-8m,6m)(m≠0),则sin α= ________.
解析:由题意得 x=-8m,y=6m,所以 r=10|m|. 当 m> 0 时,sin α=160mm=53; 当 m< 0 时,sin α=-61m0m=-53. 答案:35或-35
Ⅲ.微点知能的优化拓展 1.掌握 5 个常用结论 (1)若 α∈0,π2,则 tan α> α> sin α. (2)α,β终边相同⇔β=α+2kπ,k∈Z. (3)α,β终边关于x轴对称⇔β=-α+2kπ,k∈Z. (4)α,β终边关于y轴对称⇔β=π-α+2kπ,k∈Z. (5)α,β终边关于原点对称⇔β=π+α+2kπ,k∈Z.
数时,α2为第二象限角;当 k 为奇数时,α2为第四象限角,而 2α 的终 边落在第一、二象限或 y 轴的非负半轴上. 答案:二、四 第一、二象限或 y 轴的非负半轴上
[一“点”就过] 1.利用终边相同的角的集合求适合某些条件的角 先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参 数k赋值来求得所需的角.
限角,故 C 正确;-315°=-360°+45°,所以-315°是第一象
限角,故 D 正确,故选 B 、C 、D . 答案:B C D
3.集合α|kπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是( )
解析:当 k=2n(n∈Z )时,2nπ+π4≤α≤2nπ+π2,此时 α 表示的范围 与π4≤α≤π2表示的范围一样;当 k=2n+1(n∈Z )时,2nπ+π+π4 ≤α≤2nπ+π+π2,此时 α 表示的范围与π+π4≤α≤π+π2表示的范 围一样,故选 C . 答案:C
4.设集合 M=x|x=k2·180°+45°,k∈Z,N=x|x=k4·180°+45°,k∈Z,
2025届高中数学一轮复习课件:第五章 第1讲任意角、弧度制及三角函数的概念(共71张ppt)
高考一轮总复习•数学
第28页
题型 弧长与扇形的面积公式
典例 3(1)如图所示,在平面直角坐标系 xOy 中,将一个半径为 1 的圆盘固定在平面上,
圆盘的圆心与原点重合,圆盘上缠绕着一条没有弹性的细线,细线的端头 M(开始时与圆盘
上点 A(1,0)重合)系着一支铅笔,让细线始终保持与圆盘相切的状态展开,切
2.任意角的三角函数的定义(推广) 设 P(x,y)是角 α 终边上异于原点的任意一点,其到原点 O 的距离为 r,则 sin α=yr, cos α=xr,tan α=yx(x≠0).
高考一轮总复习•数学
第9页
3.三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.
高考一轮总复习•数学
第20页
1.终边相同的角的集合的应用 利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相 同的所有角的集合,然后通过对集合中的参数 k 赋值来求得所需角. 2.象限角的两种判断方法 (1)图象法:在平面直角坐标系中作出已知角,并根据象限角的定义直接判断已知角是 第几象限角. (2)转化法:先将已知角化为 2kπ+α(α∈[0,2π),k∈Z)的形式,即找出与已知角终边相 同的角 α,再由角 α 终边所在的象限判断已知角是第几象限角.
答案
高考一轮总复习•数学
第22页
解析:(1)由于 M 中,x=2k·180°+45°=k·90°+45°=(2k+1)·45°,2k+1 是奇数;而 N 中,x=4k·180°+45°=k·45°+45°=(k+1)·45°,k+1 是整数,因此必有 M⊆N.
(2)如图,在坐标系中画出直线 y= 3x,可以发现它与 x 轴的夹角 是π3,在[0,2π)内,终边在直线 y= 3x 上的角有两个:π3,43π;在[-2π, 0)内满足条件的角有两个:-23π,-53π,故满足条件的角 α 构成的集合 为-53π,-23π,π3,43π.
高考一轮复习第3章三角函数解三角形第1讲任意角和蝗制及任意角的三角函
第一讲 任意角和弧度制及任意角的三角函数
知识梳理·双基自测
知识点一 角的有关概念
(1)从运动的角度看,角可分为正角、负角和零角.
(2)从终边位置来看,角可分为象限角与轴线角.
(3)若β与α是终边相同的角,则β用α表示为β=2kπ+α,k∈Z.
知识点二 弧度制及弧长、扇形面积公式
知识点三 任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α= (x≠0).
(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是点(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.
[解析]由角α的终边过点P 得sin α=- ,所以sin(α+π)=-sin α= .
考点突破·互动探究
考点一 角的基本概念——自主练透
例1 (1)若角θ的终边与 角的终边相同,则在区间[0,2π)内终边与 角的终边相同的角为 , , .
(2)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=- x上,则角α的取值集合是( D )
考点三 三角函数的定义——多维探究
角度1 定义的直接应用
例3 (1)(2020·北京海淀期中)在平面直角坐标系xOy中,点A的纵坐标为2,点C在x轴的正半轴上.在△AOC中,若cos∠AOC=- ,则点A的横坐标为( A )
A.- B.
C.-3D.3
(2)若角θ的终边经过点P(- ,m)(m≠0)且sin θ= m,则cos θ的值为- .
所以 终边在第三象限,综上, 的终边在第一或三象限.故选A、C.
高考数学一轮复习 第四章 第一节 任意角、弧度制及任意角的三角函数教案 文(含解析)
【第一节 任意角、弧度制及任意角的三角函数】之小船创作1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cosαyx叫做α的正切,记作tan α一+++各象限符号二+--三--+四-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线1.(2019·海门一中月考)若角α满足α=45°+k·180°,k∈Z,则角α的终边落在第________象限.答案:一、三2.(2018·南京调研)已知角α的终边过点P(-5,12),则cos α=________.答案:-5 133.已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=yx,但若不是单位圆时,如圆的半径为r,则sin α=yr,cos α=xr,tan α=yx.[小题纠偏]1.(2019·如皋模拟)-10π3为第________象限角.答案:二2.若角α终边上有一点P(x,5),且cos α=x13(x≠0),则sin α=________.答案:5 13考点一角的集合表示及象限角的判定基础送分型考点——自主练透[题组练透]1.(2019·海安模拟)若α是第二象限角,则α2是第______象限角.解析:∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.故α2是第一或三象限角.答案:一或三2.在-720°~0°范围内所有与45°终边相同的角为________.解析:所有与45°有相同终边的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°,得-765°≤k×360°<-45°,解得-765360≤k<-45360, 从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________.解析:如图,在平面直角坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-5π3,-2π3,π3,4π3 4.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z),则k π+π2<α2<k π+3π4(k ∈Z),故α2是第二或第四象限角.由⎪⎪⎪⎪⎪⎪⎪⎪sin α2=-sin α2,知sinα2<0,所以α2只能是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定kα,αk(k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在位置.考点二 扇形的弧长及面积基础送分型考点——自主练透[题组练透]1.(2019·盐城模拟)在半径为1的圆中,3弧度的圆心角所对的弧长为________.解析:在半径为1的圆中,3弧度的圆心角所对的弧长l =|α|r =3×1=3.答案:32.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案:1或43.如果一个扇形的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.解析:设圆的半径为r ,弧长为l ,则其弧度数为lr.将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l12r=3·lr,即弧度数变为原来的3倍.答案:3[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l=|α|r,扇形的面积公式是S=12lr=12|α|r2(其中l是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.考点三三角函数的定义题点多变型考点——多角探明[锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.常见的命题角度有:(1)三角函数定义的应用;(2)三角函数值的符号判定; (3)三角函数线的应用.[题点全练]角度一:三角函数定义的应用1.(2019·淮安调研)已知角α的终边经过点(4,a ),若sin α=35,则实数a 的值为________.解析:∵角α的终边经过点(4,a ),∴sin α=35=a16+a2,解得a =3. 答案:32.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:因为角α的终边经过点P (-x ,-6),且cos α=-513,所以cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),所以P ⎝⎛⎭⎪⎪⎫-52,-6, 所以sin α=-1213,所以tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.答案:-23角度二:三角函数值的符号判定3.若sin αtan α<0,且cos αtan α<0,则点(cos α,-sin α)在第________象限.解析:由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角. 故α为第三象限角,所以cos α<0,-sin α>0.故点(cos α,-sin α)在第二象限. 答案:二角度三:三角函数线的应用4.(2018·汇龙中学测试)设MP和OM分别是角17π18的正弦线和余弦线,给出以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM.其中正确的是________(填序号).解析:因为sin 17π18=MP>0,cos17π18=OM<0,所以OM<0<MP.答案:②[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P的坐标,可求角α的三角函数值.先求P到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.(2019·无锡调研)如图,已知点A 为单位圆上一点,∠xOA =π4,将点A 沿逆时针方向旋转角α到点B ⎝ ⎛⎭⎪⎪⎫35,45,则sin 2α=________.解析:由题意可得,cos ⎝ ⎛⎭⎪⎪⎫π4+α=35,α∈⎝⎛⎭⎪⎪⎫0,π4, ∴cos ⎝ ⎛⎭⎪⎪⎫π2+2α=2cos 2⎝ ⎛⎭⎪⎪⎫π4+α-1 =2×925-1=-725,即-sin 2α=-725,∴sin 2α=725. 答案:7252.(2018·扬州调研)在平面直角坐标系xOy 中,O 是坐标原点,点A 的坐标为(3,-1),将OA 绕O 逆时针旋转450°到点B ,则点B 的坐标为________.解析:设B (x ,y ),由题意知OA =OB =2,∠BOx =60°,且点B 在第一象限,所以x =2cos 60°=1,y =2sin 60°=3,所以点B 的坐标为(1,3).答案:(1,3)一抓基础,多练小题做到眼疾手快1.(2019·如东模拟)与-600°终边相同的最小正角的弧度数是________.解析:-600°=-720°+120°,与-600°终边相同的最小正角是120°,120°=2π3.答案:2π32.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为________.解析:设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,所以α= 3.答案:33.(2019·苏州期中)已知扇形的圆心角为θ,其弧长是其半径的2倍,则sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=________.解析:圆心角θ=l r =2,∵π2<2<π,∴sin θ>0,cos θ<0,tan θ<0,∴sin θ|sin θ|+|cos θ|cos θ+|tan θ|tan θ=1-1-1=-1.答案:-14.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.解析:因为sin θ=y42+y2=-255,所以y<0,且y2=64,所以y=-8.答案:-85.已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,则m=________.解析:由题设知点P的横坐标x=-3,纵坐标y=m,所以r2=|OP|2=(-3)2+m2(O为原点),即r=3+m2.所以sin α=mr=2m4=m22,所以r=3+m2=22,即3+m2=8,解得m=± 5.答案:±56.已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k ·π2,k ∈Z ,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x =k π±π2,k ∈Z ,则M ,N 之间的关系为 ________.解析:k π±π2=(2k ±1)·π2是π2的奇数倍,所以N ⊆M .答案:N ⊆M二保高考,全练题型做到高考达标1.(2019·常州调研)若扇形OAB 的面积是1 cm 2,它的周长是4 cm ,则该扇形圆心角的弧度数为________.解析:设该扇形圆心角的弧度数是α,半径为r , 根据题意,有⎩⎪⎨⎪⎧2r +αr =4,12α·r 2=1,解得α=2,r =1.故该扇形圆心角的弧度数为2. 答案:22.(2018·黄桥中学检测)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan 2α=________.解析:由三角函数的定义可得cos α=x x 2+42.因为cosα=15x ,所以x x 2+42=15x ,又α是第二象限角,所以x <0,解得x =-3,所以cos α=-35,sin α=1-cos 2α=45,所以 tan α=sin αcos α=-43,所以tan 2α=2tan α1-tan 2α=247.答案:2473.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α=________.解析:因为r =2sin 22+-2cos 22=2,由任意三角函数的定义,得sin α=yr=-cos 2.答案:-cos 24.已知角2α的终边落在x 轴上方,那么α是第________象限角.解析:由题知2k π<2α<π+2k π,k ∈Z ,所以k π<α<π2+k π,k ∈Z.当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角,所以α为第一或第三象限角.答案:一或三5.与2 017°的终边相同,且在0°~360°内的角是________.解析:因为2 017°=217°+5×360°,所以在0°~360°内终边与2 017°的终边相同的角是217°.答案:217°6.(2019·淮安调研)已知α为第一象限角,sin α=35,则cos α=________.解析:∵α为第一象限角,sin α=35,∴cos α=1-sin2α=1-925=4 5.答案:4 57.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎪⎫2r 32πr 2=527,所以α=5π6. 所以扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.答案:5188.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为_____________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎪⎫π4,5π4. 答案:⎝ ⎛⎭⎪⎪⎫π4,5π4 9.(2019·镇江中学高三学情调研)点P 从(1,0)出发,沿单位圆x 2+y 2=1按顺时针方向运动π3弧长到达点Q ,则点Q 的坐标为________.解析:由题意可得点Q 的横坐标为cos ⎝ ⎛⎭⎪⎪⎫-π3=12,Q 的纵坐标为sin ⎝⎛⎭⎪⎪⎫-π3=-sin π3 =-32,故点Q 的坐标为⎝⎛⎭⎪⎪⎫12,-32. 答案:⎝ ⎛⎭⎪⎪⎫12,-32 10.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解:设α终边上任一点为P (k ,-3k ), 则r =k 2+-32=10|k |.当k >0时,r =10k ,所以sin α=-3k 10k =-310,1cos α=10 kk =10,所以10sin α+3cos α=-310+310=0;当k <0时,r =-10k ,所以sin α=-3k -10k =310,1cos α=-10kk =-10,所以10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,所以α=l r =23或α=lr=6.(2)法一:因为2r +l =8,所以S 扇=12lr =14l ·2r ≤14⎝ ⎛⎭⎪⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4.所以圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:因为2r +l =8,所以S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4.所以弦长AB =2sin 1×2=4sin 1.三上台阶,自主选做志在冲刺名校1.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP―→的坐标为________.解析:如图,作C Q ∥x 轴,P Q ⊥C Q ,Q 为垂足.根据题意得劣弧D P =2,故∠DCP =2弧度,则在△PC Q 中,∠PC Q =⎝ ⎛⎭⎪⎪⎫2-π2弧度,C Q =cos ⎝ ⎛⎭⎪⎪⎫2-π2=sin 2,P Q =sin ⎝ ⎛⎭⎪⎪⎫2-π2=-cos 2,所以P 点的横坐标为2-C Q =2-sin 2,P 点的纵坐标为1+P Q =1-cos2,所以P 点的坐标为(2-sin 2,1-cos 2),此即为向量OP―→的坐标.答案:(2-sin 2,1-cos 2)2.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限; (3)试判断 tan α2sin α2cos α2的符号. 解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧ α⎪⎪⎪⎪⎭⎪⎬⎪⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限.(3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
新高考数学一轮复习考点知识归类讲义 第22讲 任意角和弧度制及任意角的三角函数
新高考数学一轮复习考点知识归类讲义第22讲任意角和弧度制及任意角的三角函数1.角的概念(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.分类:按旋转方向,角可以分成三类:正角、负角和零角.(2)象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.2.弧度制的相关概念(1)1弧度的角:长度等于半径长的圆弧所对的圆心角. (2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:弧度单位用符号rad 表示,读作弧度.如图,在单位圆O 中,AB ︵的长等于1,∠AOB 就是1弧度的角. (3)角度制和弧度制的互化:180°=π rad ,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(4)扇形的弧长公式:l =α·r ,扇形的面积公式:S =12lr =12α·r 2.其中r 是半径,α(0<α<2π)为弧所对圆心角.3.三角函数的概念三角函数正弦余弦正切定义设α是一个任意角,α∈R ,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α➢考点1 角的概念与表示1.(2022·全国·高三专题练习)下列说法中正确的是()A.第一象限角都是锐角B.三角形的内角必是第一、二象限的C.不相等的角终边一定不相同D.不论是用角度制还是弧度制度量一个角,它们与扇形的半径的大小无关【答案】D【解析】解:对于A,第一象限的角不一定是锐角,所以A错误;对于B ,三角形内角的取值范围是(0,)π,所以三角形内角的终边也可以在y 轴的非负半轴上,所以B 错误;对于C ,不相等的角也可能终边相同,如2π与52π,所以C 错误;对于D ,根据角的定义知,角的大小与角的两边长度大小无关,所以D 正确. 故选:D .2.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是( ) A .245k π+,k Z ∈B .93604k π⋅+,k Z ∈ C .360315k ⋅-,k Z ∈D .54k ππ+,k Z ∈【答案】C【解析】首先角度制与弧度制不能混用,所以选项AB 错误; 又与94π的终边相同的角可以写成92()4k k Z ππ+∈, 所以C 正确. 故选:C .3.(2022·全国·高三专题练习)角α的终边属于第一象限,那么3α的终边不可能属于的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】∵角α的终边在第一象限, ∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限, 当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限, 综上,角α的终边不可能落在第四象限, 故选:D. [举一反三]1.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为( ) A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.2.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈,则α的终边在( ) A .第一、三象限B .第一、二象限 C .第二、四象限D .第三、四象限 【答案】A【解析】解:因为18045,k k Z α=⋅+∈,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈,其终边在第三象限; 当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈,其终边在第一象限. 综上,α的终边在第一、三象限. 故选:A.3.(多选)(2022·江苏·高三专题练习)下列与角23π的终边不相同的角是( )A .113πB .2kπ-23π(k ∈Z )C .2kπ+23π(k ∈Z )D .(2k +1)π+23π(k ∈Z )【答案】ABD 【解析】与角23π的终边相同的角为22()3k k Z ππ+∈,其余三个角的终边与角23π的终边不同. 故选:ABD.4.(多选)(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为( ) A .90︒B .360︒C .450︒D .2330︒ 【答案】AC【解析】因为角α与角45γ+︒的终边相同,故45360k γα,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈, 故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确, 令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误. 故选:AC.5.(多选)(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是( )A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD【解析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知, 选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意; 选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称. 故选:BD.6.(多选)(2022·全国·高三专题练习)如果2θ是第四象限角,那么θ可能是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】BD【解析】解:由已知得2222k k ππθπ-<<,k Z ∈,所以4k k ππθπ-<<,k Z ∈,当k 为偶数时,θ在第四象限,当k 为奇数时,θ在第二象限,即θ在第二或第四象限. 故选:BD .➢考点2 弧度制及其应用(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. [典例]1.(2022·广东广东·一模)数学中处处存在着美,机械学家莱洛发现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边三角形ABC ,再分别以点A 、B 、C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角(如图所示).若莱洛三角形的周长为2π,则其面积是______.【答案】223π-【解析】由条件可知,弧长23BC A AB C π===,等边三角形的边长2323AB BC AC ππ====,则以点A 、B 、C 为圆心,圆弧,,AB BC AC 所对的扇形面积为1222233ππ⨯⨯=,中间等边ABC 的面积12332S =⨯⨯=所以莱洛三角形的面积是23232233ππ⨯-=-. 故答案为:223π-2.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =. 由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=, 当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=, 所以()3152BD cm π=, 故()10BD cm π=. 故答案为:10π [举一反三]1.(2022·湖北·房县第一中学模拟预测)已知圆台形的花盆的上、下底面的直径分别为8和6,该花盆的侧面展开图的扇环所对的圆心角为2π,则母线长为( ) A .4B .8C .10D .16【答案】A【解析】如图,AD 弧长为6π,BC 弧长为8π,因为圆心角为2π,6122OA ππ==,8162OB ππ==,则母线16124AB =-=. 故选:A.2.(2022·山东济南·二模)济南市洪家楼天主教堂于2006年5月被国务院列为全国重点文物保护单位.它是典型的哥特式建筑.哥特式建筑的特点之一就是窗门处使用尖拱造型,其结构是由两段不同圆心的圆弧组成的对称图形.如图2,AC 和BC 所在圆的圆心都在线段AB 上,若rad ACB θ∠=,AC b =,则AC 的长度为( )A .2sin 2b θθB .2cos 2bθθC .sin 2b θθD .2cos 2bθθ【答案】A【解析】过C 作CD AB ⊥,设圆弧AC 的圆心为O ,半径为R ,则AO CO R ==,在ACD △中,2ACD θ∠=,所以sin sin 22AD AC b θθ=⋅=,cos cos 22CD AC b θθ=⋅=,所以在直角三角形CDO 中,222CD DO CO +=,所以222cos sin 22b R b R θθ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,所以2sin2b R θ=,而cos2sin =2sin cos =sin 222sin2b CDCOD b COθθθθθ∠==, 所以COD θ∠=,所以2sin2b AC R θθθ==.故选:A.3.(2022·湖南·长郡中学高三阶段练习)2,母线长为2其侧面展开图扇形的圆心角为( ) A .4πB .34πC .2πD .π 【答案】C【解析】由题设,底面周长2l π=,而母线长为2 根据扇形周长公式知:圆心角2222ππθ=. 故选:C.4.(2022·广东·一模)为解决皮尺长度不够的问题,实验小组利用自行车来测量A ,B 两点之间的直线距离.如下图,先将自行车前轮置于点A ,前轮上与点A 接触的地方标记为点C ,然后推着自行车沿AB 直线前进(车身始终保持与地面垂直),直到前轮与点B接触.经观测,在前进过程中,前轮上的标记点C 与地面接触了10次,当前轮与点B 接触时,标记点C 在前轮的左上方(以下图为观察视角),且到地面的垂直高度为0.45m.已知前轮的半径为0.3m ,则A ,B 两点之间的距离约为( )(参考数值: 3.14π≈)A .20.10mB .19.94mC .19.63mD .19.47m 【答案】D【解析】解:由题意,前轮转动了1103⎛⎫+ ⎪⎝⎭圈, 所以A ,B 两点之间的距离约为11020.3 6.2 6.2 3.1419.47m 3ππ⎛⎫+⨯⨯=≈⨯≈ ⎪⎝⎭,故选:D.5.(2022·浙江绍兴·模拟预测)我国古代数学著作《九章算术》方田篇记载“宛田面积术曰:以径乘周,四而一”(注:宛田,扇形形状的田地:径,扇形所在圆的直径;周,扇形的弧长),即古人计算扇形面积的公式为:扇形面4⨯=径周.现有一宛田的面积为1,周为2,则径是__________.【答案】2【解析】根据题意,因为扇形面4⨯=径周,且宛田的面积为1,周为2,所以14径2⨯=,解得径是:2. 故答案为:2.6.(2022·湖南·雅礼中学二模)坐标平面上有一环状区域由圆223x y +=的外部与圆224x y +=的内部交集而成.某同学欲用一支长度为1的笔直扫描棒来扫描此环状区域的x轴上方的某区域R .他设计扫描棒黑、白两端分别在半圆()22130C x y y +=≥:、()22240C x y y +=≥:上移动.开始时扫描棒黑端在点()3,0A,白端在2C 的点B . 接着黑、白两端各沿着1C 、2C 逆时针移动,直至白端碰到2C 的点()2,0B '-便停止扫描,则B 坐标___________;扫描棒扫过的区域R 的面积为___________.【答案】 ()3,1B512π 【解析】由题意)3,0A ,1AB =,设(),B x y ,则点B 在()22240C x y y +=≥:上.则()()22224031x y y x y ⎧+=≥-+=,解得3,1x y == 所以()3,1B当白端B 在2C 上移动,碰到2C 的点()2,0B '-时,黑端在点A 在1C 上移动,设移动到点A '位置.则扫描棒扫过的区域R 为如图所示的阴影部分.设()00,A x y '则()()220022003021x y y A B x y ⎧+=≥⎪⎨=++=''⎪⎩,解得0033,22x y =-=,即332A ⎛'- ⎝⎭ 连接,A O OB ',在OA B ''△中,1,3,2A B OA OB ''''==满足222A B OA OB ''''+=,则2OA B π''∠=,所以11313222OA B SA B OA '''''=⨯=⨯⨯=由()()3,0,3,1AB,则OAB 为直角三角形,则11331222OABSOA AB =⨯⨯=⨯⨯=则30BOA ∠=︒,扇形OAC 与扇形OA C ''的面积为()23033604ππ⨯=区域R 的面积为OA B OABBB CC OA C OAC S SS SS ''''''--++-扇环扇形扇形()2215033523360422412ππππ︒⎡⎤=⨯-+-+-=⎢⎥⎣⎦︒故答案为:()3,1B ;512π➢考点3 三角函数的定义[名师点睛]1.利用三角函数的定义求三角函数值时,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.2.已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.1.(2022·山东潍坊·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,点()1,2A x ,()2,4B x 在角α的终边上,且121x x -=,则tan α=( ) A .2B .12C .2-D .12- 【答案】C【解析】由已知得,因为点()1,2A x ,()2,4B x 在角α的终边上,所以直线AB 的斜率为12242k x x -==--,所以,明显可见,α在第二象限,tan 2α.故选:C2.(2022·湖南·长沙一中高三阶段练习)若角α的终边过点P (8m ,3-),且3tan 4α=,则m 的值为( )A .12-B .12C .【答案】A 【解析】∵33tan 84m α-==,∴12m =-,故选:A.3.(2022·山东枣庄·高三期末)θ为第三或第四象限角的充要条件是( ). A .sin 0<θB .cos 0<θC .sin tan 0θθ<D .cos tan 0θθ< 【答案】D【解析】对于A :第三或第四象限角,以及终边在y 轴负半轴,故A 错误;对于B :第二或第三象限角,以及终边在x 轴负半轴,故B 错误; 对于C :第二或第三象限角,故C 错误; 对于D :第三或第四象限角,故D 正确. 故选:D [举一反三]1.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=( )A .2425-B .725-C .725D .2425【答案】A【解析】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-. 故选:A2.(2022·全国·高三专题练习)已知α是第四象限角,(3,)P y 是角α终边上的一个点,若3cos 5α=,则y =( ) A .4B .-4C .4±D .不确定 【答案】B【解析】依题意α是第四象限角,所以0y <,3cos 540y y α⎧==⎪⇒=-⎨⎪<⎩. 故选:B3.(2022·全国·高三专题练习)已知第二象限角θ的终边上有两点()1,A a -,(),2B b ,且cos 3sin 0θθ+=,则3a b -=( )A .7-B .5-C .5D .7 【答案】D【解析】由cos 3sin 0θθ+=得:sin 1tan cos 3θθθ==-, 由三角函数定义知:21tan 3a bθ=-==-,解得:13a =,6b =-,3167a b -=+=∴. 故选:D.4.(2022·江苏·高三专题练习)点P 从(1,0)点出发,沿单位圆221x y +=逆时针方向运动π3弧长到达Q 点,则Q 点坐标为( )A .12⎛ ⎝⎭B .12⎛⎫- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .21⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题意可知1r =,根据三角函数的定义可知1cos32x r π==,sin 3y r π==所以点Q 的坐标是12⎛ ⎝⎭.故选:A5.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=( )A ..【答案】A【解析】因为α是第二象限角, 所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=. 故选:A.6.(2022·浙江·高三专题练习)若02πα-<<,则()sin ,cos Q αα所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵02πα-<<,∴cos 0,sin 0αα><,∴点()sin ,cos Q αα在第二象限. 故选:B .7.(2022·全国·高三专题练习)已知角α第二象限角,且coscos22αα=-,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】C【解析】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈, 所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角; 当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.; 综上所述:2α为第一象限角或第三象限角,因为cos cos 22αα=-,所以cos 02α≤,所以2α为第三象限角.故选:C .8.(2022·山东·德州市教育科学研究院二模)已知角θ的终边过点(3,)A y ,且()4sin 5πθ+=,则tan θ=____________. 【答案】43-【解析】角θ的终边过点(3,)A ysin θ∴=cos θ=()4sin 5πθ+=4sin 5θ∴-= 即4sin 05θ=-<∴点A 在第四象限, 22453yy ∴=-+ 解得:4y =(舍去)或4y =- 4tan 3y x θ∴==-. 故答案为:43-.9.(2022·福建·莆田二中模拟预测)在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分∠AOC ,B (35,45),则点C 的横坐标为___________. 【答案】725-【解析】由题意可知圆O 2234155⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,设AOB BOC α∠=∠= ,由题意可知43sin ,cos 55αα== ,∴点C 的横坐标为271cos 212sin 25αα⨯=-=- ; 故答案为:725-. 10.(2022·全国·高三专题练习)设点P 是以原点为圆心的单位圆上的一个动点,它从初始位置0(0,1)P 出发,沿单位圆顺时针方向旋转角(0)2πθθ<<后到达点1P ,然后继续沿单位圆顺时针方向旋转角3π到达点2P ,若点2P 的纵坐标是12-,则点1P 的坐标是___________. 【答案】31()2【解析】解:初始位置0(0,1)P 在2π的终边上,1P 所在射线对应的角为2θπ-, 2P 所在射线对应的角为6πθ-,由题意可知,1sin()62πθ-=-, 又(,)636πππθ-∈-, 则66ππθ-=-,解得3πθ=,1P 所在的射线对应的角为26ππθ-=,由任意角的三角函数的定义可知,点1P 的坐标是(cos ,sin )66ππ,即1)2.故答案为:1)2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
5.在与2 010° 终边相同的角中,绝对值最小的角的弧度数为 5π - 6 . ________
67 5π 解析:2 010° = π=12π- , 6 6 5π ∴与2 010° 终边相同的角中绝对值最小的角的弧度数为- . 6
(3)终边相同的角:所有与角 α 终边相同的角,连同角 α 在内, 可构成一个集合 S={β|β=α+k· 360° ,k∈Z}.
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
2.弧度制的定义和公式 (1)定义:把长度等于 半径长 的弧所对的圆心角叫做 1 弧度的 角,弧度记作 rad.
高考·导航
余弦线
课时作业
正切线
首页 上页 下页 尾页
主干知识 自主排查 核心考点 互动探究
教材通关
[小题诊断] 1.若 α=k· 360° +θ,β=m· 360° -θ(k,m∈Z),则角 α 与 β 的 终边的位置关系是( C ) A.重合 C.关于 x 轴对称 B.关于原点对称 D.关于 y 轴对称
第三章 三角函数、解三角形 第一节 任意角和弧度制及任意角的三角函数
高考·导航
C
目 录
ONTENTS
主干知识 自主排查 核心考点 互动探究 课时作业
高考· 导航
高考·导航
1.了解任意角、弧度制的概念,能正确进行弧度与角度的互 化. 2.会判断三角函数值的符号. 3.理解任意角三角函数(正弦、余弦、正切)的定义.
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
主干知识 自主排查
教材通关
1.角的概念及推广 (1)定义:角可以看成平面内一条射线绕着 端点 从一个位置旋 转到另一个位置所成的图形.
按旋转方向不同分为 (2)分类 按终边位置不同分为
正角 、 负角 、零角 , 象限角 和轴线角.
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆 心角 α(0<α<π)的弧度数为( C ) π A. 3 C. 3 π B. 2 D. 2
解析:设圆半径为 r,则其内接正三角形的边长为 3r,所以 3 r=αr, ∴α= 3.
y x
叫做 α 的正切,
记作 tan α
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
三角函数 各象 限符 号 一 二 三 四 正 + + 一 一 弦 余 + 一 一 + 弦 正 + 一 一 一 切
三角函 数线 有向线段MP为 有向线段OM 为 有向线段 AT 为 正弦线
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
3.点 A(sin 2 018° ,cos 2 018° )位于( C ) A.第一象限 C.第三象限 B.第二象限 D.第四象限
解析:因为 sin 2 018° =sin(11×180° +38° ) =-sin 38° <0,cos 2 018° =cos(11×180° +38° ) =-cos 38° < 0, 所以点 A(sin 2 018° ,cos 2 018° )位于第三象限.
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
易错通关
1.注意易混概念的区别:象限角、锐角、小于90° 的角是概念 不同的三类角.第一类是象限角,第二、第三类是区间角. 2.角度制与弧度制可利用180° =π rad进行互化,在同一个式 子中,采用的度量制度必须一致,不可混用. 3.已知三角函数值的符号确定角的终边位置不要遗漏终边在 坐标轴上的情况. 4.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α= y y,cos α=x,tan α= x ,但若不是单位圆时,如圆的半径为 y x y r,则sin α=r ,cos α= r ,tan α=x.
课时作业
1 2 |α|r 2 =
首页 上页 下页 尾页
高考·导航
主干知识 自主排查 核心考点 互动探究
教材通关
3.任意角的三角函数 三角 函数 正 弦 余 弦 正 切
设 α 是一个任意角,它的终边与单位圆交于点 P(x, 定 义 y),那么
y 叫做 α
x 叫做 α
的正弦,记 的余弦,记 作 sin α 作 cos α
课时作业
首页
上页 下页
尾页
易错通关
1 ± 5 2. 角 α 的终边在直线 3x+4y=0 上, 则 sin α+cos α=________.
A.(cos θ,sin θ) C.(sin θ,cos θ)
B.(-cos θ,sin θ) D.(-sin θ,cos θ)
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
解析:由三角函数的定义知 xP=cos θ,yP=sin θ,故选 A.
答案:A
高考·导航
解析:角 α 与 θ 终边相同,β 与-θ 终边相同. 又角 θ 与-θ 的终边关于 x 轴对称. ∴角 α 与 β 的终边关于 x 轴对称.
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
2.(2018· 杭州模拟)如图所示,在直角坐标系 xOy 中,射线 OP 交单位圆 O 于点 P,若∠AOP=θ,则点 P 的坐标是( )
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业的是( D ) A.三角形的内角必是第一、二象限角 B.第一象限角必是锐角 C.不相等的角终边一定不相同 D.若 β=α+2kπ(k∈Z),则 α 和 β 终边相同
高考·导航
主干知识 自主排查 核心考点 互动探究
高考·导航
主干知识 自主排查 核心考点 互动探究
课时作业
首页
上页 下页
尾页
教材通关
(2)公式 l 角 α 的弧度数公式 |α|= (l 表示弧长) r π ①1° = rad; 180 角度与弧度的换算 ②1 弧长公式 扇形面积公式
180 ° rad= π
l= |α|r
1 S= 2lr