酉矩阵 unitary matrix
数学专业英语词汇(U)
数学专业英语词汇(U)u statistic u统计量ulm factor 乌姆因子ultra filter base 超滤子基ultra ideal 超理想ultra power 超幂ultrabarrelled space 超桶型空间ultrabornological space 超有界型空间ultrafilter 超滤子ultrafilter space 超滤子空间ultrahyperbolic equation 超双曲型方程ultrametric space 超度量空间ultraproduct 超积ultraspherical polynomials 特种球多项式umbilical point 脐点unary operation 一元运算unary relation 一元关系unbiased confidence estimation 无偏置信估计unbiased estimate 无偏估计unbiased estimating equation 无偏估计方程unbiased estimator 无偏估计量unbiased sample 无偏样本unbiased test 无偏检验unbiasedness 无偏性unbounded function 无界函数unbounded interval 无界区间unbounded operator 无界算子unbounded quantifier 无界量词unbounded sequence 无界序列unbounded set 无界集unboundedness 无界性uncertainty 不定uncertainty principle 测不准原理unconditional convergence 无条件收敛unconditional inequality 无条件不等式unconditional jump 无条件跳跃unconditionally convergent 无条件收敛的unconditionally convergent series 无条件收敛级数unconnected graph 不连通图unconnected space 不连通空间unconnectedness 不连通性uncorrelated 不相关的uncorrelated random variables 不相关随机变量uncountability 不可数性uncountable 不可数的uncountable ordinal 不可数序数undecidability 不可判定性undecidability theorem 不可判定性定理undecidable theory 不可判定理论underdeterminate system 欠定组underdeterminate system of partial differential equations 欠定偏微分方程组underlying graph 底图underlying group 基础群underlying topological space 基础拓扑空间underlying topology 基础拓扑undetermined 未定的undetermined coefficient 末定系数undetermined number 未定数undirected edge 无向棱undirected graph 无向图undisturbed differential equation 无扰动微分方程unduloid 波状体unequal 不等的ungula of the cone 锥的蹄状体ungula of the cylinder 柱的蹄状体ungula of the prism 棱柱的蹄状体uniaxial 单轴的unicity 唯一性uniconvergence space 单收敛空间unicursal 单行的unicursal curve 有理曲线unicursal graph 单行图unicursal involution 单行对合unicursal surface 单行曲面unidirectional 单方面的unified field theory 统一场论uniform 匀的uniform approximation 一致逼近uniform boundedness principle 一致有界原理uniform continuity 一致连续性uniform convergence 一致收敛uniform cover 一致覆盖uniform distribution 均匀分布uniform equicontinuity 一致同等连续性uniform invariant 一致不变量uniform isomorphism 一致同胚uniform limit 一致极限uniform scale 等分标尺uniform space 一致空间uniform stability 一致稳定性uniform structure 一致结构uniform topology 一致拓扑uniformity 一致结构uniformity generated by a pseudometric 伪度量一致性uniformizable 可一致化的uniformizable point 单值化点uniformizable space 单值化空间uniformization 单值化uniformization principle 一般单值化定理uniformization theorem 单值化定理uniformization theory 单值化理论uniformizing covering surface 单值化覆盖面uniformizing function 单值化函数uniformly bounded 一致有界的uniformly bounded sequence of functions 一致有界函数序列uniformly bounded series 一致有界级数uniformly bounded set 一致有界集uniformly continuous 一致连续的uniformly continuous map 一致连续映射uniformly convergent 一致收敛的uniformly convergent sequence of functions 一致收敛函数序列uniformly convex 一致凸的uniformly convex space 一致凸空间uniformly distributed random variable 均匀分布随机变量uniformly elliptic operator 一致椭圆算子uniformly equicontinuous 一致同等连续的uniformly equivalent metric 一致等价度量uniformly equivalent space 一致等价空间uniformly integrable 一致可积的uniformly locally compact space 一致局部紧空间uniformly most powerful test 一致最大功效检定uniformly open map 一致开映射uniformly strongly elliptic operator 一致强椭圆算子uniformly summable family of functions 一致可积函数族unilateral 单侧的unilateral surface 单侧曲面unimodal 单峰的unimodal distribution 单峰分布unimodular group 幺模群unimodular map 幺模映射unimodular matrix 幺模阵unimodular number 单模数unimodularly bounded function 幺模有界函数union 并集union of sets 集的并unipotent element 幂幺元unipotent group 幂单群unipotent matrix 幂单矩阵unique existence 唯一存在性unique factorization domain 唯一析因整环unique factorization theorem 唯一析因定理unique solution 唯一解uniquely defined 唯一定义的uniqueness 唯一性uniqueness condition 唯一性条件uniqueness theorem 唯一性定理unirational variety 单有理簇uniserial algebra 单列代数unit ball 单位球unit character 单位特贞unit circle 单位圆unit disk 单位园板unit divisor 单位因子unit dyad 单位并向量unit filter 单位滤子unit function 单位函数unit group 单位群unit ideal 单位理想unit idele 单位伊代尔unit interval 单位区间unit line 单位线unit lower triangular matrix 单位下三角阵unit matrix 单位矩阵unit of angle 角的单位unit of area 面积单位unit of volume 体积单位unit operator 恒等算子unit point 单位点unit representation 恒等表示unit simplex 单位单形unit sphere 单位球unit square 单位平方形unit tangent 单位切向量unit tensor 单位张量unit theorem 单元定理unit transformation 恒等变换unit vector 单位向量unitarily equivalent operator 酉等价算子unitarily equivalent representation 酉等价表示unitarity 酉性unitary 单式的unitary algebra 单式代数unitary bundle 酉丛unitary connection 酉朕络unitary geometry 酉几何unitary group 酉群unitary homomorphism 单式同态unitary invariant 酉不变量unitary matrix 酉矩阵unitary modular group 特殊酉群unitary operator 酉算子unitary r module 单式r模unitary representation 酉表示unitary similar matrix 酉相似矩阵unitary space 酉空间unitary transfer 酉朕络unitary transformation 酉变换unity 单位元素unity element 单位元素unity group 单位群univalent 单叶的univalent function 单叶函数univariable series 单变量级数universal affirmative proposition 全称肯定命题universal bundle 通用丛universal class 全类universal coefficient formula 万有系数公式universal coefficient theorem 万有系数定理universal covering 通用覆盖universal covering group 通用覆盖群universal covering manifold 通用覆盖廖universal covering space 万有覆盖空间universal covering surface 万有覆盖面universal curve 万有曲线universal domain 万有域universal enveloping algebra 通用包络代数universal function 通用函数universal map 通用映射universal negative proposition 全称否定命题universal proposition 一般命题universal quantifier 全称量词universal relation 通用关系universal set 通用集合universal subgroup 通用子群universal validity 一般有效性universal variety 普遍簇universally japanese ring 伪几何环universally maximal left ideal 普遍极大左理想universally maximal twosided ideal 普遍极大双侧理想universally minimal right ideal 普遍极小右理想universally valid formula 普遍有效公式unknown 末知的unknown number 未知数unlimited 无限的unlimited covering manifold 无限覆盖廖unlimitedness 无穷unmixed ideal 纯理想unordered pair 无序对unparted hyperboloid 单叶双曲面unramified covering 非分歧覆盖unramified covering surface 非分歧覆盖面unramified extension 非分歧扩张unramified manifold 非分歧廖unramified prime ideal 非分歧素理想unramified ring 非分歧环unsolvability 不可解性unsolvable 不可解的unsolvable equation 不可解方程unstability 不稳定性unstable 不稳定的unstable solution 不稳定解unweighted mean 未加权平均数upper bound 上界upper central series 上中心列upper class 上类upper control limit 上控制限upper derivative 上导数upper envelope 上包络upper half plane 上半平面upper limit 上极限upper limit of integration 积分的上限upper pure value 上纯值upper quartile 上四分位数upper semi continuous decomposition 上半连续分解upper semicontinuity 上半连续性upper semicontinuous 上半连续的upper semilattice 上半格upper triangular matrix 上三角形矩阵upper value of game 对策上方值upper variation 正变差useful direction 有效方向utility 效用utility function 效用函数utility theory 效用理论。
酉矩阵 自由度
酉矩阵自由度
酉矩阵(Unitary Matrix)是一种特殊的矩阵,具有以下性质:
1. 酉矩阵的转置等于其共轭转置,即U^T = U*。
2. 酉矩阵的列向量和行向量都是单位向量,且相互正交。
酉矩阵在信号处理、量子力学等领域有广泛应用。
与自由度相关的概念是酉矩阵的秩,即矩阵中线性无关的行向量或列向量的数量。
对于n阶酉矩阵,其秩最多为n,因此自由度为n。
实际上,酉矩阵的秩等于其主对角线上的非零元素个数。
由于酉矩阵的列向量和行向量相互正交,所以主对角线上的非零元素个数不超过n。
因此,n阶酉矩阵的自由度为n。
需要注意的是,这里讨论的自由度是指酉矩阵的线性无关向量的数量,而不是矩阵中的参数个数。
酉矩阵可以表示为一系列单位向量的线性组合,这些单位向量构成了酉矩阵的列向量或行向量。
这些单位向量的数量就是酉矩阵的自由度。
矩阵的奇异值分解
矩阵的奇异值分解(Singular Value Decomposition,SVD)是一种重要的矩阵分解方法,可以将一个复杂的矩阵分解为三个简单的矩阵相乘的形式。
SVD 可以应用于各种领域,如图像处理、语音识别、推荐系统等。
SVD 分解将一个m × n 的矩阵 M 分解为U × Σ × V^T 的形式,其中 U 是一个m × m 的酉矩阵(unitary matrix),Σ 是一个m × n 的矩阵,只有对角线上的元素大于等于 0,V^T 是一个n × n 的酉矩阵。
通常情况下,SVD 可以通过奇异值分解定理进行求解。
首先,我们需要计算矩阵M × M^T 和M^T × M 的特征向量和特征值。
设 M 是一个m × n 的矩阵,M^T 是它的转置矩阵,那么M × M^T 是一个m × m 的矩阵,M^T × M 是一个n × n 的矩阵。
我们可以通过特征值分解方法求解这两个矩阵的特征向量和特征值。
然后,我们可以将M × M^T 和M^T × M 的特征向量和特征值组成两个酉矩阵 U 和 V。
特征值的平方根构成了Σ 矩阵的对角线元素。
我们可以将 U 和V 按照特征值降序排列,以保证U × Σ × V^T 是一个矩阵。
最后,我们可以利用奇异值分解定理,将 M 分解为U × Σ × V^T 的形式。
这样的分解可以帮助我们理解原始矩阵的结构和特征,提取重要信息,并进行维度降低等操作。
在某些情况下,SVD 还可以作为矩阵的伪逆(pseudo-inverse),帮助我们解决线性方程组等问题。
SVD 分解在各个领域都有广泛的应用。
在图像处理中,SVD 可以用于图像压缩和降噪等操作。
在语音识别中,SVD 可以用于语音特征提取和模式匹配。
酉矩阵——精选推荐
酉矩阵
1.酉矩阵(unitary matrix)定义 若n阶复矩阵A满足 AHA=AAH=E 则称A为酉矩阵,记之为A∈UN×N。其中,AH是A的共轭转置。
2.性质 如果A是酉矩阵 (1)A−1=AH (2)A−1也是酉矩阵; (3)det(A)=1; (det表示矩阵的行列式) (4)充分条件是它的n每个元素aij取共轭得bij,将新得到的由bij组成的新m*n型矩阵记为矩阵B,再对矩阵B作普通转置得到BT,即为A的共轭转置矩 阵:BT=AH
对于矩阵部分的内容在深度学习(花书)第二章线性代数中有一些介绍,如果遇到问题可以在第二章进行寻找。
qubit定量原理
qubit定量原理
在量子计算中,Qubit(量子位)是量子信息的最小单位,与
经典计算中的bit(比特)相对应。
在量子力学的基础上,Qubit可以同时处于0和1的叠加态,这使得量子计算具有更
大的信息处理能力。
Qubit的定性原理是基于叠加态和测量原理的。
根据叠加态原理,Qubit可以处于0态或1态,也可以处于0和1态的叠加态。
另外,通过测量原理,系统在测量时会坍塌到一个确定的态上,这个态的概率与叠加态的幅度平方成正比。
Qubit的定量原理是通过数学模型来描述Qubit的状态以及其
演化规律。
量子态可以表示为一个复数的线性组合,具体而言,可以用一个复数列表示一个Qubit的状态,例如:
|ψ⟩=α|0⟩+β|1⟩,其中α和β是复数,|0⟩和|1⟩分别表示0态
和1态。
这个线性组合中的复数满足α² + β² = 1,即概率归一
化条件。
除了描述Qubit的状态,Qubit的演化规律也可以用数学模型
来表示。
量子系统的演化可以通过酉矩阵(unitary matrix)来
描述。
酉矩阵是一个方阵,其列向量(或行向量)彼此正交,且模长为1。
通过将Qubit的状态与酉矩阵做矩阵乘法,可以
得到演化后的新的Qubit状态。
总而言之,Qubit的定量原理是基于数学模型来描述Qubit的
状态和演化规律。
通过这些原理,我们可以更好地理解和利用量子计算的特性和能力。
酉矩阵——精选推荐
正交矩阵、正规矩阵和酉矩阵在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足其中是的共轭转置。
如果是实系数矩阵,那么条件简化为其中是的转置矩阵。
矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。
在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。
同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。
两个正规矩阵的乘积也不一定是正规矩阵酉矩阵n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。
一个简单的充分必要判别准则是:方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。
即酉矩阵的逆矩阵与其伴随矩阵相等。
酉方阵在量子力学中有着重要的应用。
酉等价是标准正交基到标准正交基的特殊基变换。
若一n 行n 列的复矩阵U满足其中为n阶单位矩阵,为U的共轭转置,为酉矩阵或译幺正矩阵。
即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵:。
若酉矩阵的元素都是实数,其即为正交矩阵。
与正交矩阵G不会改变两个实向量的内积类似,幺正矩阵U不改变两个复向量的内积:若为n阶方阵,则下列条件等价:1.是酉矩阵2.是酉矩阵3.的列向量构成内积空间C n上的一组正交基4.的行向量构成内积空间C n上的一组正交基酉矩阵的特征值都是绝对值为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。
酉矩阵是正规矩阵,由谱定理知,幺正酉矩阵U可被分解为其中V是酉矩阵,Σ是主对角线上元素绝对值为1的对角阵。
对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。
性质∙U可逆∙U−1 = U*∙|det(U)| = 1∙U*是酉矩阵∙正交变换最初来自于维基百科,这种矩阵元被称为简正坐标.用质量加权坐标表示的分子内部运动的动能,用质量加权坐标表示的分子内部势能,用质量加权坐标表示的分子内部势能,由力常数的数学表达式可以知道fij = fji因而矩阵为一个正交变换通过酉变换可以把矩阵变形成为对角矩阵的形式:。
鲁棒控制讲义-第1-2章
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
酉矩阵概念及性质
酉矩阵概念及性质
酉矩阵是在线性代数研究中分析及其他研究,例如信号处理,系统设计等,有着重要地位
的一种矩阵类型。
它的定义是一个极大的可操作的长方形矩阵,它的主要特性是行数和列
数均为偶数,它可以在特定的坐标系中被定义。
酉矩阵有一系列特定的性质。
首先,偏移矩阵是主对角线上元素零化的矩阵,即主对角线
上元素均为零。
第二,它可以被分解为两个子矩阵及其相反的对角矩阵的乘积。
第三,它
的乘积可以在它的状态空间中表示。
第四,它的元素、行列式以及其他属性可以通过两个子矩阵及它们的对角矩阵求得。
第五,它能够完全表达当前变量之间的线性关系。
酉矩阵在许多学科中都被广泛应用,特别是在生物技术、电气工程、物理、传感器工程、
信号处理等领域都有着重要的地位。
它被广泛应用于传感器技术,为传感器系统提供了可
靠的方案,从而促进了传感器技术的发展和应用。
在信号处理的应用中,酉矩阵可以用来
分析和处理信号,从而获得更准确的结果。
系统设计中,它可以用来估算系统改进后的性能,以及评估系统变化对系统性能的影响。
总之,酉矩阵是一种重要的矩阵类型,因其自身的特殊性质,在众多学科的应用中发挥着
重要的作用,它的应用不仅有利于提高系统的可靠性和性能,而且还有利于更深入研究系
统的运作原理,充分发挥其应用价值。
BLAST相关术语及参数详解
Alignment: 序列比对.将两个或多个序列排在一起,以达到最大一致性的过程(对于氨基酸序列是比较它们的保守性),这样可以评估序列间的相似性和同源性。
Algorithm:算法.在计算机程序中包含的一种固定过程。
Bit score:二进制。
二进制值S'源于统计性质被数量化的打分系统中产生的原始比对分数S。
由于二进制值相对于打分系统已经被标准化,它们常用于比较不同搜索之间的比对分数。
BLOSUM:模块替换矩阵.在替换矩阵中,每个位置的打分是在相关蛋白局部比对模块中观察到的替换的频率而获得的.每个矩阵被修改成一个特殊的进化距离。
例如,在BLOSUM62矩阵中,是使用一致性不超过62%的序列进行配对来获得打分值的。
一致性大于62%的序列在配对时用单个序列表示,以避免过于强调密切相关的家族成员。
Conservation: 保守。
指氨基酸或DNA(普遍性较小)序列某个特殊位置上的改变,并不影响原始序列的物理化学性质.Domain:结构域.蛋白质在折叠时与其他部分相独立的一个不连续的部分,它有着自己独特的功能。
DUST: 一个低复杂性区段过滤程序。
E value: E值。
期望值。
在一个数据库中所搜索到的打分值等于或大于S的不同比对的个数。
E值越低,表明该打分值的显著性越好。
Filtering:过滤,也叫掩蔽(masking)。
指对那么经常产生乱真的高分数的核苷酸或氨基酸序列区域进行隐藏的过程.Gap: 空位。
在两条序列比对过程中需要在检测序列或目标序列中引入空位,以表示插入或删除。
为了避免在比对时出现太多的空位,可以在收入空位的同时,从比对的打分值中减去一个固定值(空位值).在多余的核苷酸或氨基酸周围引入空位时,也要对比对的打分值进行罚分。
Global Alignment:整体联配。
对两个核苷酸或蛋白质序列的全长进行的比对。
H:相对熵值。
目标残基和底物残基频率的相对熵记作H。
H可以衡量某个位置(这个位置可以通过概率来区分比对)上由于偶然因素而得到的平均信息(用字节表示)。
矩阵分析 酉矩阵
第一题正交矩阵定义:满足的方阵称为正交矩阵(orthogonal matrix)。
n阶正交矩阵的集合记为。
1.正交矩阵与运算的关系1.1.和:正交矩阵的和不一定是正交矩阵。
如:取,则,但,所以。
但若又取,;则=。
1.2.伴随:矩阵的伴随矩阵是正交矩阵的充分必要条件是它本身是正交矩阵。
(充分性) 若是正交矩阵,则可逆,且也是正交矩阵,而,又因为,所以是正交矩阵。
(必要性) 反之若是实矩阵且是正交矩阵,则可逆,于是可逆。
由于,故,又由于,故,由得,所以也是正交矩阵。
1.3对角化:若为正交矩阵且有n 个特征值,则正交相似于对角矩阵因为由3(3)的推论,对任意的正交矩阵,有正交矩阵为上三角矩阵,由于都是正交矩阵,所以也是正交矩阵,而,所以,是上三角的,而是下三角的,所以为对角矩阵;又因为这个根据3(2)的证明,这个正交矩阵一定是对称的,所以再根据3(5)1的证明且正交矩阵的特征值为,可得正交相似于不过在附录中正交矩阵与(反)对称矩阵关系的讨论中我们可以发现一个正交矩阵可找到另一个正交矩阵,使这个正交矩阵化为准对角形式,而且这个命题的逆方向也是正确的,即若能找到另一个正交矩阵,使某个矩阵化为准对角形式,则这个矩阵是正交矩阵!1.4.与对称矩阵:设,则的充分必要条件是,是一个对角矩阵。
(充分性)。
(必要性)由3(3)的推论,是上三角矩阵,在两边加转置,可得,是下三角矩阵,所以是对角的,不仅对角化,还可以化到以特征值为对角元的对角矩阵,因为对称变换中不同特征值对应的特征向量必正交。
酉矩阵定义:若一行列的复数矩阵满足:其中,为的共轭转置,为阶单位矩阵,则称为酉矩阵。
2A Hadamard matrix of order n is an n×n matrix with elements in {+1,−1} such that HHT = nIn where HT is the transpose of H and In is the identity matrix of order n. This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for anyorder? Please list a Hadarmard matrix of order n with n ≤20 if such a matrix exists. Q2 Design two Hadamard matrices H = [h1,h2,···,hn] and G = [g1,g2,···,gn] of order n = 2m (where m is odd) such that •{h1,h2,···,hn/2} is orthogonal to {g1,g2,···阿达玛矩阵的顺序是一个n×n矩阵元素{ + 1−1 },遗传性出血性毛细血管扩张症=外祖母在HT的转置H和n阶单位矩阵。
酉矩阵与HERMITE矩阵性质总结
酉矩阵与Hermite矩阵的浅谈韦龙 201131402摘要科学在发展,社会在进步,人们对于数学的理解越来越深刻,数学应用于日常生活生产越来越广泛。
在数学的很多分支和工程实际应用中, 都涉及到一些特殊的矩阵的性质及构造. 本文讨论两类特殊的矩阵——酉矩阵和Hermite矩阵. 酉矩阵和Hermite矩阵作为两类特殊的矩阵, 有很多良好的性质, 在矩阵理论中具有举足轻重的作用。
本文通过对正交矩阵和酉矩阵关系的概述、酉矩阵的性质和酉矩阵的构造来初步认识酉矩阵,为以后的深入学习奠定基础。
本文主要从Hermite矩阵的性质,判定定理,正定性和Hermite矩阵不等式四个方面讨论Hermite矩阵。
关键词: 酉矩阵;Hermite矩阵;正交矩阵;特征值。
The study of Unitary matrix and Hermite matrixWei Long 201131402AbstractWith the development of science and society, people get a deeper understanding of math , and the use of math becomes more and more widely. In many branches of mathematics and engineering applications, are related to some special nature and structure matrix. This paper discusses a special kind of matrix - unitary matrix and Hermite matrix. The two kinds of matrix as two specials kind of matrix, there are many good properties. In the matrix theory plays an important role in the study of this topic could be more perfect matrix theory. In this paper , we use the knowledge of the unitary matrix and Orthogonal matrix ,the nature of the unitary matrix, the construction of the unitary matrix to get a first impression of the unitary matrix, and make a basement to farther study. And we study the Hermite matrix by the knowledge of the nature of Hermite matrix,determined theorem ,positive definite matrix and the Hermite matrix inequality.Key words: unitary matrix ;Hermite matrix ;Orthogonal matrix;Characteristic value第一章 酉矩阵第一节 酉矩阵的概念及等价条件1.1.1 正交矩阵和酉矩阵定义1.1.1满足E A A AA ==**的n 阶实矩阵A 称为正交矩阵.在矩阵理论中, 经常利用矩阵来描述变换. 在实空间中正交变换保持度量不变, 而正交变换中对应的变换矩阵就是正交矩阵, 所以对正交矩阵的研究就显得格外重要. 同样道理, 想要得到复空间中保持度量不变的线性变换, 就应该对正交变换进行推广, 将其推广到复数域上, 那对应的正交矩阵相应的也推广到复数域就是酉矩阵.1.1.2 酉矩阵的等价条件先给出酉矩阵的以下定义.定义1.1.2 若n 阶复方阵U 满足H U U E =则称U 为酉矩阵. 定义1.1.3 若n 阶复方阵U 满足H UU E =则称U 为酉矩阵. 定义1.1.4 若n 阶复方阵U 满足1H U U -=则称U 为酉矩阵. 注:H U 表示矩阵U 的共轭转置,即H U =-U '.定义1.1.5 若n 阶复方阵U 的n 个行(列)向量是两两正交的单位向量, 则称U 为酉矩阵.易知定义1.1.2—定义1.1.5是相互等价的. 从定义1.1.2或定义1.1.3或定义1.1.4知, 酉矩阵是可逆矩阵.根据定义1.1.5可得, n 阶酉矩阵U 的n 个行(列) 向量构成nC 的标准正交基.引理1.1.1[3]酉矩阵的行列式的模为1引理1.1.2[4] 对任意的n 阶矩阵A 有E A AA =*.引理1.1.3[5]对任意的n 阶矩阵A 和n 阶可逆矩阵P , 有)()(1A Tr PAP Tr =-引理1.1.4[6]对任意的n m ⨯阶矩阵A 和m n ⨯阶矩阵B , 有)()(BA Tr AB Tr = 引理1.1.5[6]n 阶矩阵A 为酉矩阵的充分必要条件是:'=A A I 或者'AA E = 定理1.1.1 阵)(ij a A =为酉矩阵的充分必要条件是.,,2,1,n j a AA A ij ='=这里A 表示行列A 的模, 表示ij a 的共轭复数.定理1.1.2 二阶矩阵A 为酉矩阵的充分必要条件是A 为下列三种形式之一 :(i) ⎥⎦⎤⎢⎣⎡++2211sin cos 00sin cos ββi a i a(ii) ⎥⎦⎤⎢⎣⎡++0sin cos sin cos 02211ββββi i (iii) ⎥⎥⎦⎤⎢⎢⎣⎡++-+-+)sin (cos )sin (cos 1)sin (cos 1)sin (cos 4433222211θθθθθθθθi r i r i r i r这里123401,2r k θθθθππ<<+--=+且,k 为整数.定理1.1.3 n 阶矩阵A 为酉矩阵的充要条件是: 对任意n 阶矩阵B, 有:)()(B Tr A AB Tr ='第二节 酉矩阵的性质1.2.1 运算性质1.2.1 酉矩阵的转置与伴随矩阵定理1.2.1 设U 为酉矩阵,则-1U U U ',和都是酉矩阵.证明 因为HH U U =U U =U U =E =E '''()()()所以U 是酉矩阵.因为HH H U U =U U =UU =E =E '''''()()()()()所以U '是酉矩阵.因为-1H -1H HH H U U =U U =UU =E ()()()()所以-1U 是酉矩阵.定理1.2.2 设U 为酉矩阵, 则U 的伴随矩阵*U 也是酉矩阵. 证明 因为,*-1U =detUgU2*H *-1H -1H -1(U )U =detU U detUU =detU UU =E ()()(),所以*U 为酉矩阵.定理1.2.3 设1U 和2U 是酉矩阵,则12U U , 21U U 也是酉矩阵.证明 因为1212()()HU U U U1212H H U U U U = 22H U EU E =所以12U U 是酉矩阵, 同理可证,21U U 也是酉矩阵. 推论1.2.1 设U 是酉矩阵,则k U (k 为正整数)是酉矩阵.推论1.2.2 设1U ,2U 是酉矩阵,则12U U ,21U U ;21'U U ,12'U U ;112U U -,112U U -;1121U U U -,1212U U U -也是酉矩阵.推论1.2.3 设1U ,2U 是酉矩阵,则*12U U ,*21U U 也是酉矩阵.推论1.2.4 设1U ,2U 是酉矩阵,则k 12U U ,k 21U U ,k m12U U (k , m 为正整数)也是酉矩阵.定理1.2.4 设1U ,2U 是酉矩阵,若1212U U +E 是反Hermite 矩阵, 则12U U +也是酉矩阵, 因此1111212---U +U =U +U ()证明 因为12121221HH H U +U U +U =E +U U +U U +E ()()()12211122H H =E +U U +E +U U +E ()()E =因此,当1212U U +E 是是反Hermite 矩阵时,1212HU +U U +U =E ()(),记12U +U 也是酉矩阵,从而-112U +U ()1212H H H =U +U =U +U ()-1-112=U +U注: 定理2.4表明, 酉矩阵的和未必是酉矩阵.1.2.2 酉矩阵的行列式定理1.2.5 设U 是酉矩阵,则其行列式的模等于1,即det 1U =,其中det U 表示U 的行列式.证明 由E H U U =得)(1U U det detE H==detU detU H = gdetU U det = gdetU detU =2detU =从而1detU =.定理1.2.6 设1U , 2U 是酉矩阵,则12U 00U ⎡⎤⎢⎥⎣⎦1111U U -U U ⎡⎤⎢⎥⎣⎦也是酉矩阵.证明 因为HH 11H 22U 0U 0=0U 0U ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-1-111-122U 0U 0=0U 0U ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦所以12U 00U ⎡⎤⎢⎥⎣⎦是酉矩阵. 因为H11111111U U U U -U U -U U ⎤⎤⎛⎫⎛⎫⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎦⎦12HH H 1111HH H1111U -U 2U U 0U U 02U U ⎡⎤⎡⎤==⎥⎢⎥⎦⎣⎦ H 11H11E0U U 0==0E 0U U ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦1111U U -U U ⎡⎤⎥⎦是酉矩阵. 定理1.2.7 设U 是酉矩阵, 则对U 的任一行(列)乘以模为1的数或任两行(列)互换, 所得矩阵仍为酉矩阵.证明 设,1i j n U u u u u =(,,,,,)其中,1i j nu u u u ,,,,,是U 的两两正交单位向量. 显然,1i j n u u u u λ,,,,, (1λ=)以及,1i j nu u u u ,,,,,也都是U 的两两正交的单位向量. 由定义1.1.5知结论成立.1.2.3 酉矩阵的特征值与对角化定理1.2.8 设U 是酉矩阵, 则U 的特征值的模为1, 即分布在复平面的单位圆上. 证明 设Ux =x,x 0λ≠, 则由,H H H H U U E x U x λ==可得H x H H H x x x U U x xλλ==于是0H x x λλ=(1-)而0H x x ≠, 故1λλ=即1λ=定理1.2.9 设U 为酉矩阵, λ是U 的特征值, 则1λ是H U 的特征值, 而1λ是U 的特征值.证明 设λ是U 的特征值, 则由定理1.2.1知0λ≠于是-1H U =U 的特征值, 而又可知λ是U 的特征值, 但U 与H U =U '的特征值全部相同,因此λ是H U 的特征值, 所以1λ是H -1U =U ()的特征值.定理1.2.10 设U 是酉矩阵, 则属于U 的不同特征值的特征向量正交.证明 设ξ是U 的属于特征值λ的特征向量, η是U 的属于特征值μ的特征向量, 由,,H U U U U =E ξλξημη==可得=()()=()()=H H H H H H U U U U ξηξηξηλξμηλμξη=所以(1)0H λμξη-=而λη≠从而21λλλλμ==≠故0Hξη=, 即ξ与η正交.定理1.2.11 设U 是酉矩阵, 且为Hermite 矩阵, 则U 必为对合矩阵()2U =E , 从而U 的特征值等于1或-1. 证明 由E UUU U HH==),(得2U =E又因Hermite 矩阵的特征值为实数, 所以根据定理1.2.8得,U 的特征值等于-1或1.引理2.1设是n A M (R)∈, 则A 为正交矩阵的充要条件是存在酉矩阵U , 使=(,,)H U AU diag λλ, 其中()i i =1,n λ,的模为1.引理1.2.2 [9]设n A M (R)∈,则A 为正交矩阵的充要条件是A 有n 个两两正交的单位特征向量n A C ∈, 且特征值的模为1.定理1.2.12 任一个n 阶酉矩阵U 一定正交相似于分块对角矩阵1111cos sin cos sin ,,,1,1,,1,1sin cos sin cos kk k k D diag θθθθθθθθ⎡⎤⎡⎤⎡⎤=--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,,其中0K ≥,cos sin j j j i λθθ=+,cos -sin j j j i λθθ=,cos -sin ;1,.j j j i j k λθθ==,是U 的所有不同的复特征值.证明 U 的所有特征值全为1±, 由引理1.2.1和引理1.2.2知U 一定正交相似于对角矩阵diag(1,,1-1,,-1),若U 有复特征值111cos +isin λθθ=则111cos -isin λθθ=也是U 的特征值. 因此可设有k 2复特征值.j j j cos +isin λθθ=, j j j cos -isin λθθ=,1,.j j j cos -isin j =,k λθθ=设j a 是属于j λ的单位特征向量, 则j a 属于λ的单位特征向量. 根据酉矩阵属于不同特征值的向量两两正交. 于是12k 12k ,,,,,,λλλλλλ互不相同, ,12k 12k a ,a ,a ,a ,a ,,a 两两正交, 令1),),12.j j j j j a +a r a -a j =,k β==易知j β与j r 为相互正交的实向量. 设2k+12k 2n a ,a ,,a +为U 的属于特征值1±的相互正交的单位实特征向量, 则1122k k 2k+12k 2n =(,r ,,r ,,,r ,a ,a ,,a )U βββ+为一个酉矩阵. 因为1(+)j j U a a β+)j j j j j j cos isin a cos isin )a θθθθ+-jjj j j a +a a a cos sin cos r sin θθβθθ-==-j ()a )rj j j j j j j j j j j j U a -a cos +isin cos -isin a sin +r cos θθθθβθθ= 所以AU =UA , 即A 正交相似于D .定理表明, 如果酉矩阵的特征根都是虚根, 则它在负数域上一定可对角化.1.2.4. 酉矩阵的其它性质定理1.2.13设U 为上(下) 三角的酉矩阵, 则U 必为对角矩阵, 且主对角线上元素的模等于1.证明 不妨设U 为上三角的酉矩阵, 则其逆-1U (上三角)等于其共轭转置H U (下三角),所以U 只能是对角矩阵, 又HU U =E , 故可得U 的主对角线上元素的模等于1.定理1.2.14设U =P+iQ 是酉矩阵, 其中P ,Q 为实矩阵, 则P Q '为实对称矩阵,且P P+Q Q =E ''.证明 由H H U U =(P+iQ)(P+iQ)=E可得P P+Q Q+i(P Q -Q P)=E ''''从而P P+Q Q =E ''及P Q =Q P ''即P Q '为实对称矩阵.酉矩阵与正交矩阵均有许多良好的性质, 它们在线性代数理论、优化理论、计算方法等方面都占有重要的地位.最近,研究了两个偶数阶正交矩阵之和是正交矩阵的充要条件问题, 并指出当A ,B 是奇数阶正交矩阵时, A+B 不可能是正交矩阵. 然而, 对酉矩阵来说, 结果有所不同.下面我们将证明, 对给定的n 阶酉阵A , 一定存在n 阶酉阵B , 使A+B 是酉阵, 并给出酉阵B 的表达式.用n U 表示全体n 阶酉阵; n n C ⨯表示全体n 阶复矩阵.引理1.2.1复方阵A 酉相似于对角阵的充要条件是A 为复正规阵.证明 必要性显然. 充分性由schur 分解定理知, 任意复方阵A 必可酉相似于上三角阵, 即存在n 阶酉阵U , 使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n C C C C C AU U λλλ 2232112121* (1-2-1)由条件**=AA A A 得 AU U U A U U UA AU U *****⋅=⋅ (1-2-2) 把(1-2-1)及其共轭转置式代入等式(1-2-2)直接计算可得 C 01<ij i j n =≤≤,从而A 酉相似于对角阵. 由于酉阵是复正规阵, 因此根据引理1知, 任一酉阵均酉相似于对角阵, 且对角线上元素的模长都为1.定理1.2.15已知n A M ∈有特征值12n ,,,λλλ那么存在一个酉矩阵U , 使得()H ij U AU =T =t其中,0ij j ij t t i >j λ==,,T 是上三角矩阵. 如果()n A M R ∈且A 的所有特征值都是实数, 那么, 可选择U 为实正交矩阵.证明 用归纳法证明.设1()(1)(1)()n=A=a ,A =a ,定理成立. 假设n =k 定理也成立, 当n=k +1时. (+1)(+1)()ij k k A a ⨯=成立. 设1λ为A 的特征值, 1q 为它的单位特征向量, 由施密特正交化过程, 存在1321,,,,+k q q q q 使132,,,+k q q q 两两正交且构成k+1C 的标准正交基. 令112k 1=(,,,)U q q q +这是一个U 阵使⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=++++++11211112221*********k H k H k H k k H H H k H H H H Aq q Aq q Aq q Aq q Aq q Aq q Aq q Aq q Aq q AU U由于 1111,1H H1j j Aq q ,q q q q j λθ===≠所以 11*=0H 1U AU A λ⎡⎤⎢⎥⎣⎦由于1A 为k 阶矩阵, 由归纳假设, 存在k 阶U 矩阵2U , 使H 212U AU =T , 为上三角矩阵,令12100U =U U ⎛⎫ ⎪⎝⎭显然, U 为由阵 且11210*10001H H 2U AU U A U λ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦11*1001H 22U A U λ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦12*0H 212U U AU λ⎡⎤=⎢⎥⎣⎦121*0U T λ⎡⎤=⎢⎥⎣⎦是上三角阵, 由归纳原理可知定理成立, 对于实阵与是正交阵的证明均可用数学归纳法证明.第三节 酉矩阵的构造1.3.1 二阶酉矩阵的构造由定理1.1.2可知二阶矩阵A 为酉矩阵的充分必要条件是A 为下列三种形式之一 :(i)⎥⎦⎤⎢⎣⎡++2211sin cos 00sin cos ββi a i a (ii)⎥⎦⎤⎢⎣⎡++0sin cos sin cos 02211ββββi i (iii)⎥⎥⎦⎤⎢⎢⎣⎡++-+-+)sin (cos )sin (cos 1)sin (cos 1)sin (cos 4433222211θθθθθθθθi r i r i r i r 这里123401,2r k θθθθππ<<+--=+且, k 为整数.通过上式可以构造二阶的酉矩阵.1.3.2通过运算性质构造酉矩阵由酉矩阵的运算性质知:(1) 若U 为酉矩阵, 则1,,,T U U U U λ-(其中λ的为单位根)都是酉矩阵.(2) 酉矩阵, 则12,U U 11212,U U U U -等也都是酉矩阵.(3) 酉矩阵, 且1212U U E +是反Hermite 矩阵, 则12U U +也是酉矩阵. 通过这些运算性质可以构造出新的酉矩阵.1.3.3 利用施密特正交化构造酉矩阵矩阵的正规性是检验矩阵是否可对角化的一个简单方法,任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来,所有可在经过一个酉变换后变为对角矩阵都是正规矩阵.在高等代数中,我们知道实对称矩阵一定正交相似于对角矩阵,并且讨论过,对已知实对称矩阵A , 求正交矩阵T 使得AT T 1-为对角矩阵的一般歩骤,类似的我们可以讨论,当A 是正规矩阵时,求酉矩阵U ,使得AU U H 为对角矩阵,具体步骤如下:(1) 根n λλλ,, (21)(2) 求每一个相异特征值i λ的特征向量ii V λ;(3) chur 正交单位化的方法,求ii V λ的标准正交基in i i εεε,,,21 ;(4) 命),,(22111211sn n n U εεεεεε =则酉矩阵U 满足12H n U AU λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦若A 是正规矩阵,则A 能酉相似于对角矩阵,即存在酉矩阵U 使得Bdiag AU U n H ==)(21λλλ则 H A UBU =于是()n H n H H H n H A UBU UBU UBU UBU UB U ===而对角矩阵B 的n 次幂是由各对角元素的n 次幂组成,所以通过A 的相似对角矩阵求n A .第二章 Hermite 矩阵为了论述方便,我们给出以下几个定义:1.定义 矩阵A=[ij a ]∈Mn(C)称为Hermite 矩阵,是指A=A*,其中A*=T A =[ji a ]。
(抱佛脚必备)数学专业英语重点词汇
【Mathematical analysis】1 、上确界(supremum value) 下确界(infimum value)2 、极限(limit) 导数(derivative) 一阶导数(firstderivative) 二阶导数(second derivate)偏导数(partialderivative)方向导数(directional derivative)3 、泰勒展式(Taylor’s expansion) 洛必达法则(L’Hopital’srule) 链式法则(chain rule)连续可微(continuouslydifferentiable)4、微积分 (calculus)微分(differential)级数(series)积分(integral)原函数 (antiderivative)不定积分(indefinite integral)定积分(definite integral)5 、调和级数(harmonic series)马克劳林级数(Maclaurin series)交错级数 (alternating series)傅里叶级数(Fourier series)6 、二重积分(double integral)三重积分(triple integral)多重积分(multiple integral) 格林公式(Green’s formula)斯托克斯定理(Stokes’ theorem)7、收敛(convergence)发散(divergence)一致收敛(uniformly convergent)绝对收敛(absolutely convergent)条件收敛(conditionally convergent) 连续(continuity) 一致连续(uniformly continuous)8 、指数函数(exponential function)对数函数(logarithmicfunction)幂函数(power function)初等函数(elementary function)三角函数(trigonometric function) 调和函数(harmonic function) 周期函数(periodic function) 可微函数(differential function)单调函数(monotonefunction)9 、素数(prime number) 正数(positive number) 负数(negative number) 相反数(opposite number) 自然数(natural number) 有理数(rational number)无理数(irrational number)实数(real number)虚数(imaginarynumber)复数(complex number) 10、等式(equality)不等式(inequality)三角不等式(triangle inequality)勾股定理(Pythagorean theorem)无穷大(infinity)无穷小(infinitesimal)【Linear algebra】1、向量(vector)秩(rank)行列式(determinant)线性方程(linear equation)2 、奇异矩阵(singular matrix)可逆矩阵(invertible matrix)逆矩阵(inverse matrix) 转置矩阵(transposed matrix)酉矩阵(unitary matrix)对称矩阵(symmetric matrix)正定矩阵(positive definite matrix)负定矩阵(negative definitematrix) 雅克比矩阵(Jacobian matrix)3 、迹(trace)主子式(principle minor)代数余子式(algebraic cofactor)4 、二次型(quadratic form)标准型(normal form)最小多项式(minimal polynomial) 特征多项式(characteristicpolynomial)约当块(Jordan block)5 、特征值(eigenvalue)特征向量(eigenvector)约当标准型(Jordan canonical form)6 、几何重数(geometric multiplicity)可对角矩阵(diagonalizable matrix) 【Analytic Geometry】1 、平面几何(plane geometry) 立体几何(solid geometry)射影几何(projective geometry)代数几何(algebraicgeometry)黎曼几何(Riemann geometry)微分几何(differential geometry)几何分析(geometryanalysis)分形几何(fractal geometry)2 、平行线(parallel line) 中线(median line) 直线(straightline) 垂直线(vertical line)水平线(horizontal line)切线(tangent line)法线(normal line)3 、抛物线(parabola)椭圆(ellipse)双曲线(hyperbola)斜率(slope) 【Complex analysis】1 、解析函数(holomorphic function) 留数定理(residualtheorem) 柯西积分公式 (Cauchy’s integral formula)2 、定义域(domain) 值域(range) 像(image) 中值定理(mean value theorem)3 、凸函数(convex function) 凸集(convex set) 变分不等式(variational inequality) 变分法(calculus of variation)线性规划(linear programming)【Real analysis】1 、测度(measure) 可测函数(measure function) 可积函数(integrable function) 平方可积函数(square integrablefunction)黎曼积分(Riemann integral) 勒贝格积分(Lebesgue integral)【Functional analysis】1 、内积(inner product) 向量积(cross product)范数(norm)2 、向量空间(vector space)距离空间(distance space)拓扑空间(topological space) 测度空间(measure space)线性空间(linear space)内积空间(inner product space) 希尔伯特空间(Hilbert space) 赋范空间(normed space) 巴拿赫空间(Banach space)完备空间(complete space)可分空间(separable space) 概率空间(probability space)3 、有穷维的(finite dimensional)无穷维的(infinitedimensional)基底(basis) 线性相关(linear dependence) 线性无关(linear independence) 最佳逼近(bestapproximation ) 最大值原理( maximum principle) 比较原理( comparison principle)最小二乘(least squares)4、泛函(functional)线性算子(linear operator)有界线性算子(bounded linear operator) 有界线性泛函(boundedlinear functional) 闭图像定理(closed graph theorem)一致有界定理(uniform boundedness principle)不动点定理(fixed point theorem)压缩映照定理(contraction mapping theorem)【Supplements】1 、引理(lemma)推论(corollary)公理(axiom)命题(proposition)猜想(conjecture) 数学归纳法(mathematical induction) 充分性(sufficiency) 必要性(necessity) 反例(counterexample)2、加法(addition)减法(subtraction)乘法(multiplication)除法(division)3、理想(ideal)环(ring)单位(unit)陪集(coset)群(group)域(field)置换群(permutation group)有限群(finite group)同态(homomorphism) 同构(isomorphism)维数(dimension)4 、抽象代数(abstract algebra) 广义函数论(theory of distribution) 弦理论(stringtheory) 随机变量(random variable) 动力系统(dynamical system) 偏微分方程(partial differentialequation)。
线性代数英文单词
线性代数英语词汇大集合========================================================================= Aadjont(adjugate) of matrix A A 的伴随矩阵augmented matrix A 的增广矩阵Bblock diagonal matrix 块对角矩阵block matrix 块矩阵basic solution set 基础解系CCauchy-Schwarz inequality 柯西- 许瓦兹不等式characteristic equation 特征方程characteristic polynomial 特征多项式coffcient matrix 系数矩阵cofactor 代数余子式cofactor expansion 代数余子式展开column vector 列向量commuting matrices 交换矩阵consistent linear system 相容线性方程组Cramer's rule 克莱姆法则Cross- product term 交叉项DDeterminant 行列式Diagonal entries 对角元素Diagonal matrix 对角矩阵Dimension of a vector space V 向量空间V 的维数Eechelon matrix 梯形矩阵eigenspace 特征空间eigenvalue 特征值eigenvector 特征向量eigenvector basis 特征向量的基elementary matrix 初等矩阵elementary row operations 行初等变换Ffull rank 满秩fundermental set of solution 基础解系Ggrneral solution 通解Gram-Schmidt process 施密特正交化过程Hhomogeneous linear equations 齐次线性方程组Iidentity matrix 单位矩阵inconsistent linear system 不相容线性方程组indefinite matrix 不定矩阵indefinit quatratic form 不定二次型infinite-dimensional space 无限维空间inner product 内积inverse of matrix A 逆矩阵JKLlinear combination 线性组合linearly dependent 线性相关linearly independent 线性无关linear transformation 线性变换lower triangular matrix 下三角形矩阵Mmain diagonal of matrix A 矩阵的主对角matrix 矩阵Nnegative definite quaratic form 负定二次型negative semidefinite quadratic form 半负定二次型nonhomogeneous equations 非齐次线性方程组nonsigular matrix 非奇异矩阵nontrivial solution 非平凡解norm of vector V 向量V 的范数normalizing vector V 规范化向量Oorthogonal basis 正交基orthogonal complemen t 正交补orthogonal decomposition 正交分解orthogonally diagonalizable matrix 矩阵的正交对角化orthogonal matrix 正交矩阵orthogonal set 正交向量组orthonormal basis 规范正交基orthonomal set 规范正交向量组Ppartitioned matrix 分块矩阵positive definite matrix 正定矩阵positive definite quatratic form 正定二次型positive semidefinite matrix 半正定矩阵positive semidefinite quadratic form 半正定二次型Qquatratic form 二次型Rrank of matrix A 矩阵A 的秩r(A )reduced echelon matrix 最简梯形阵row vector 行向量Sset spanned by { } 由向量{ } 所生成similar matrices 相似矩阵similarity transformation 相似变换singular matrix 奇异矩阵solution set 解集合standard basis 标准基standard matrix 标准矩阵Isubmatrix 子矩阵subspace 子空间symmetric matrix 对称矩阵Ttrace of matrix A 矩阵A 的迹tr ( A )transpose of A 矩阵A 的转秩triangle inequlity 三角不等式trivial solution 平凡解Uunit vector 单位向量upper triangular matrix 上三角形矩阵Vvandermonde matrix 范得蒙矩阵vector 向量vector space 向量空间WZzero subspace 零子空间zero vector 零空间==============================================================================向量:vector 向量的长度(模):零向量: zero vector负向量: 向量的加法:addition 三角形法则:平行四边形法则:多边形法则减法向量的标量乘积:scalar multiplication 向量的线性运算线性组合:linear combination 线性表示,线性相关(linearly dependent),线性无关(linearly independent),原点(origin)位置向量(position vector)线性流形(linear manifold)线性子空间(linear subspace)基(basis)仿射坐标(affine coordinates),仿射标架(affine frame),仿射坐标系(affine coordinate system)坐标轴(coordinate axis)坐标平面卦限(octant)右手系左手系定比分点线性方程组(system of linear equations齐次线性方程组(system of homogeneous linear equations)行列式(determinant)维向量向量的分量(component)向量的相等和向量零向量负向量标量乘积维向量空间(vector space)自然基行向量(row vector)列向量(column vector)单位向量(unit vector)直角坐标系(rectangular coordinate system),直角坐标(rectangular coordinates),射影(projection)向量在某方向上的分量,正交分解,向量的夹角,内积(inner product)标量积(scalar product),数量积,方向的方向角,方向的方向余弦;二重外积外积(exterior product),向量积(cross product),混合积(mixed product,scalar triple product)==================================================================================(映射(mapping)),(象(image)),(一个原象(preimage)),(定义域(domain)),(值域(range)),(变换(transformation)),(单射(injection)),(象集),(满射(surjection)),(一一映射,双射(bijection)),(原象),(映射的复合,映射的乘积),(恒同映射,恒同变换(identity mapping)),(逆映射(inverse mapping));(置换(permutation)),(阶对称群(symmetric group)),(对换(transposition)),(逆序对),(逆序数),(置换的符号(sign)),(偶置换(even permutation)),(奇置换(odd permutation));行列式(determinant),矩阵(matrix),矩阵的元(entry),(方阵(square matrix)),(零矩阵(zero matrix)),(对角元),(上三角形矩阵(upper triangular matrix)),(下三角形矩阵(lower triangular matrix)),(对角矩阵(diagonal matrix)),(单位矩阵(identity matrix)),转置矩阵(transpose matrix),初等行变换(elementary row transformation),初等列变换(elementary column transformation);(反称矩阵(skew-symmetric matrix));子矩阵(submatrix),子式(minor),余子式(cofactor),代数余子式(algebraic cofactor),(范德蒙德行列式(Vandermonde determinant));(未知量),(系数矩阵),(方程的系数(coefficient)),(常数项(constant)),(线性方程组的解(solution)),(增广矩阵(augmented matrix)),(零解);子式的余子式,子式的代数余子式===================================================================================线性方程组与线性子空间(阶梯形方程组),(方程组的初等变换),行阶梯矩阵(row echelon matrix),主元,简化行阶梯矩阵(reduced row echelon matrix),(高斯消元法(Gauss elimination)),(解向量),(同解),(自反性(reflexivity)),(对称性(symmetry)),(传递性(transitivity)),(等价关系(equivalence));(齐次线性方程组的秩(rank));(主变量),(自由位置量),(一般解),向量组线性相关,向量组线性无关,线性组合,线性表示,线性组合的系数,(向量组的延伸组);线性子空间,由向量组张成的线性子空间;基,坐标,(自然基),向量组的秩;(解空间),线性子空间的维数(dimension),齐次线性方程组的基础解系(fundamental system of solutions);(平面束(pencil of planes))(导出组),线性流形,(方向子空间),(线性流形的维数),(方程组的特解);(方程组的零点),(方程组的图象),(平面的一般方程),(平面的三点式方程),(平面的截距式方程),(平面的参数方程),(参数),(方向向量);(直线的方向向量),(直线的参数方程),(直线的标准方程),(直线的方向系数),(直线的两点式方程),(直线的一般方程);=====================================================================================矩阵的秩与矩阵的运算线性表示,线性等价,极大线性无关组;(行空间,列空间),行秩(row rank),列秩(column rank),秩,满秩矩阵,行满秩矩阵,列满秩矩阵;线性映射(linear mapping),线性变换(linear transformation),线性函数(linear function);(零映射),(负映射),(矩阵的和),(负矩阵),(线性映射的标量乘积),(矩阵的标量乘积),(矩阵的乘积),(零因子),(标量矩阵(scalar matrix)),(矩阵的多项式);(退化的(degenerate)方阵),(非退化的(non-degenerate)方阵),(退化的线性变换),(非退化的线性变换),(逆矩阵(inverse matrix)),(可逆的(invertible),(伴随矩阵(adjoint matrix));(分块矩阵(block matrix)),(分块对角矩阵(block diagonal matrix));初等矩阵(elementary matrix),等价(equivalent);(象空间),(核空间(kernel)),(线性映射的秩),(零化度(nullity))==================================================================================== transpose of matrix 倒置矩阵; 转置矩阵【数学词汇】transposed matrix 转置矩阵【机械专业词汇】matrix transpose 矩阵转置【主科技词汇】transposed inverse matrix 转置逆矩阵【数学词汇】transpose of a matrix 矩阵的转置【主科技词汇】permutation matrix 置换矩阵; 排列矩阵【主科技词汇】singular matrix 奇异矩阵; 退化矩阵; 降秩矩阵【主科技词汇】unitary matrix 单式矩阵; 酉矩阵; 幺正矩阵【主科技词汇】Hermitian matrix 厄密矩阵; 埃尔米特矩阵; 艾米矩阵【主科技词汇】inverse matrix 逆矩阵; 反矩阵; 反行列式; 矩阵反演; 矩阵求逆【主科技词汇】matrix notation 矩阵符号; 矩阵符号表示; 矩阵记号; 矩阵运算【主科技词汇】state transition matrix 状态转变矩阵; 状态转移矩阵【航海航天词汇】torque master 转矩传感器; 转矩检测装置【主科技词汇】spin matrix 自旋矩阵; 旋转矩阵【主科技词汇】moment matrix 动差矩阵; 矩量矩阵【航海航天词汇】Jacobian matrix 雅可比矩阵; 导数矩阵【主科技词汇】relay matrix 继电器矩阵; 插接矩阵【主科技词汇】matrix notation 矩阵表示法; 矩阵符号【航海航天词汇】permutation matrix 置换矩阵【航海航天词汇】transition matrix 转移矩阵【数学词汇】transition matrix 转移矩阵【机械专业词汇】transitionmatrix 转移矩阵【航海航天词汇】transition matrix 转移矩阵【计算机网络词汇】transfer matrix 转移矩阵【物理词汇】rotation matrix 旋转矩阵【石油词汇】transition matrix 转换矩阵【主科技词汇】circulant matrix 循环矩阵; 轮换矩阵【主科技词汇】payoff matrix 报偿矩阵; 支付矩阵【主科技词汇】switching matrix 开关矩阵; 切换矩阵【主科技词汇】method of transition matrices 转换矩阵法【航海航天词汇】stalling torque 堵转力矩, 颠覆力矩, 停转转矩, 逆转转矩【航海航天词汇】thin-film switching matrix 薄膜转换矩阵【航海航天词汇】rotated factor matrix 旋转因子矩阵【航海航天词汇】transfer function matrix 转移函数矩阵【航海航天词汇】transition probability matrix 转移概率矩阵【主科技词汇】energy transfer matrix 能量转移矩阵【主科技词汇】fuzzy transition matrix 模糊转移矩阵【主科技词汇】canonical transition matrix 规范转移矩阵【主科技词汇】matrix form 矩阵式; 矩阵组织【主科技词汇】stochastic state transition matrix 随机状态转移矩阵【主科技词汇】fuzzy state transition matrix 模糊状态转移矩阵【主科技词汇】matrix compiler 矩阵编码器; 矩阵编译程序【主科技词汇】test matrix 试验矩阵; 测试矩阵; 检验矩阵【主科技词汇】matrix circuit 矩阵变换电路; 矩阵线路【主科技词汇】reducible matrix 可简化的矩阵; 可约矩阵【主科技词汇】matrix norm 矩阵的模; 矩阵模; 矩阵模量【主科技词汇】rectangular matrix 矩形矩阵; 长方形矩阵【主科技词汇】running torque 额定转速时的转矩; 旋转力矩【航海航天词汇】transposed matrix 转置阵【数学词汇】covariance matrix 协变矩阵; 协方差矩阵【主科技词汇】unreduced matrix 未约矩阵; 不可约矩阵【主科技词汇】receiver matrix 接收机矩阵; 接收矩阵变换电路【主科技词汇】torque 传动转矩; 转矩; 阻力矩【航海航天词汇】pull-in torque 启动转矩; 输入转矩, 同步转矩, 整步转矩【航海航天词汇】parity matrix 奇偶校验矩阵; 一致校验矩阵【主科技词汇】bus admittance matrix 母线导纳矩阵; 节点导纳矩阵【主科技词汇】matrix printer 矩阵式打印机; 矩阵形印刷机; 点阵打印机【主科技词汇】dynamic matrix 动力矩阵; 动态矩阵【航海航天词汇】connection matrix 连接矩阵; 连通矩阵【主科技词汇】characteristic matrix 特征矩阵; 本征矩阵【主科技词汇】regular matrix 正则矩阵; 规则矩阵【主科技词汇】flexibility matrix 挠度矩阵; 柔度矩阵【主科技词汇】citation matrix 引文矩阵; 引用矩阵【主科技词汇】relational matrix 关系矩阵; 联系矩阵【主科技词汇】eigenmatrix 本征矩阵; 特征矩阵【主科技词汇】system matrix 系统矩阵; 体系矩阵【主科技词汇】system matrix 系数矩阵; 系统矩阵【航海航天词汇】recovery diode matrix 恢复二极管矩阵; 再生式二极管矩阵【主科技词汇】inverse of a square matrix 方阵的逆矩阵【主科技词汇】torquematic transmission 转矩传动装置【石油词汇】torque balancing device 转矩平衡装置【航海航天词汇】torque measuring device 转矩测量装置【主科技词汇】torque measuring apparatus 转矩测量装置【航海航天词汇】torque-tube type suspension 转矩管式悬置【主科技词汇】steering torque indicator 转向力矩测定仪; 转向转矩指示器【主科技词汇】magnetic dipole moment matrix 磁偶极矩矩阵【主科技词汇】matrix addressing 矩阵寻址; 矩阵寻址时频矩阵编址; 时频矩阵编址【航海航天词汇】stiffness matrix 劲度矩阵; 刚度矩阵; 劲度矩阵【航海航天词汇】first-moment matrix 一阶矩矩阵【主科技词汇】matrix circuit 矩阵变换电路; 矩阵电路【计算机网络词汇】reluctance torque 反应转矩; 磁阻转矩【主科技词汇】pull-in torque 启动转矩; 牵入转矩【主科技词汇】induction torque 感应转矩; 异步转矩【主科技词汇】nominal torque 额定转矩; 公称转矩【航海航天词汇】phototronics 矩阵光电电子学; 矩阵光电管【主科技词汇】column matrix 列矩阵; 直列矩阵【主科技词汇】inverse of a matrix 矩阵的逆; 逆矩阵【主科技词汇】lattice matrix 点阵矩阵【数学词汇】lattice matrix 点阵矩阵【物理词汇】canonical matrix 典型矩阵; 正则矩阵; 典型阵; 正则阵【航海航天词汇】moment matrix 矩量矩阵【主科技词汇】moment matrix 矩量矩阵【数学词汇】dynamic torque 动转矩; 加速转矩【主科技词汇】indecomposable matrix 不可分解矩阵; 不能分解矩阵【主科技词汇】printed matrix wiring 印刷矩阵布线; 印制矩阵布线【主科技词汇】decoder matrix circuit 解码矩阵电路; 译码矩阵电路【航海航天词汇】scalar matrix 标量矩阵; 标量阵; 纯量矩阵【主科技词汇】array 矩阵式组织; 数组; 阵列【计算机网络词汇】commutative matrix 可换矩阵; 可交换矩阵【主科技词汇】标准文档实用文案。
关于矩阵的英文词组(转)
关于矩阵的英⽂词组(转)精 transpose of matrix 倒置矩阵; 转置矩阵【数学词汇】精 transposed matrix 转置矩阵【机械专业词汇】近 matrix transpose 矩阵转置【主科技词汇】近 transposed inverse matrix 转置逆矩阵【数学词汇】近 transpose of a matrix 矩阵的转置【主科技词汇】近 permutation matrix 置换矩阵; 排列矩阵【主科技词汇】近 singular matrix 奇异矩阵; 退化矩阵; 降秩矩阵【主科技词汇】近 unitary matrix 单式矩阵; ⾣矩阵; ⼳正矩阵【主科技词汇】近 Hermitian matrix 厄密矩阵; 埃尔⽶特矩阵; 艾⽶矩阵【主科技词汇】近 inverse matrix 逆矩阵; 反矩阵; 反⾏列式; 矩阵反演; 矩阵求逆【主科技词汇】近 matrix notation 矩阵符号; 矩阵符号表⽰; 矩阵记号; 矩阵运算【主科技词汇】近 state transition matrix 状态转变矩阵; 状态转移矩阵【航海航天词汇】近 torque master 转矩传感器; 转矩检测装置【主科技词汇】近 spin matrix ⾃旋矩阵; 旋转矩阵【主科技词汇】近 moment matrix 动差矩阵; 矩量矩阵【航海航天词汇】近 Jacobian matrix 雅可⽐矩阵; 导数矩阵【主科技词汇】近 relay matrix 继电器矩阵; 插接矩阵【主科技词汇】近 matrix notation 矩阵表⽰法; 矩阵符号【航海航天词汇】近 matrix 基体阴模模型矩阵矩阵变换电路容器; 基体阻模模型矩阵矩阵变换电路; 矩阵; 字模; 阻模【航海航天词汇】近 permutation matrix 置换矩阵【航海航天词汇】近 transition matrix 转移矩阵【数学词汇】近 transition matrix 转移矩阵【机械专业词汇】近 transitionmatrix 转移矩阵【航海航天词汇】近 transition matrix 转移矩阵【计算机⽹络词汇】近 transfer matrix 转移矩阵【物理词汇】近 rotation matrix 旋转矩阵【⽯油词汇】近 transition matrix 转换矩阵【主科技词汇】近 circulant matrix 循环矩阵; 轮换矩阵【主科技词汇】近 payoff matrix 报偿矩阵; ⽀付矩阵【主科技词汇】近 switching matrix 开关矩阵; 切换矩阵【主科技词汇】近 method of transition matrices 转换矩阵法【航海航天词汇】近 stalling torque 堵转⼒矩, 颠覆⼒矩, 停转转矩, 逆转转矩【航海航天词汇】近 thin-film switching matrix 薄膜转换矩阵【航海航天词汇】近 rotated factor matrix 旋转因⼦矩阵【航海航天词汇】近 transfer function matrix 转移函数矩阵【航海航天词汇】近 transition probability matrix 转移概率矩阵【主科技词汇】近 energy transfer matrix 能量转移矩阵【主科技词汇】近 fuzzy transition matrix 模糊转移矩阵【主科技词汇】近 canonical transition matrix 规范转移矩阵【主科技词汇】近 matrix form 矩阵式; 矩阵组织【主科技词汇】近 stochastic state transition matrix 随机状态转移矩阵【主科技词汇】近 fuzzy state transition matrix 模糊状态转移矩阵【主科技词汇】近 matrix compiler 矩阵编码器; 矩阵编译程序【主科技词汇】近 test matrix 试验矩阵; 测试矩阵; 检验矩阵【主科技词汇】近 matrix circuit 矩阵变换电路; 矩阵线路【主科技词汇】近 reducible matrix 可简化的矩阵; 可约矩阵【主科技词汇】近 matrix norm 矩阵的模; 矩阵模; 矩阵模量【主科技词汇】近 rectangular matrix 矩形矩阵; 长⽅形矩阵【主科技词汇】近 running torque 额定转速时的转矩; 旋转⼒矩【航海航天词汇】近 transposed matrix 转置阵【数学词汇】近 covariance matrix 协变矩阵; 协⽅差矩阵【主科技词汇】近 unreduced matrix 未约矩阵; 不可约矩阵【主科技词汇】近 receiver matrix 接收机矩阵; 接收矩阵变换电路【主科技词汇】近 torque 传动转矩; 转矩; 阻⼒矩【航海航天词汇】近 pull-in torque 启动转矩; 输⼊转矩, 同步转矩, 整步转矩【航海航天词汇】近 parity matrix 奇偶校验矩阵; ⼀致校验矩阵【主科技词汇】近 bus admittance matrix 母线导纳矩阵; 节点导纳矩阵【主科技词汇】近 matrix printer 矩阵式打印机; 矩阵形印刷机; 点阵打印机【主科技词汇】近 dynamic matrix 动⼒矩阵; 动态矩阵【航海航天词汇】近 connection matrix 连接矩阵; 连通矩阵【主科技词汇】近 characteristic matrix 特征矩阵; 本征矩阵【主科技词汇】近 regular matrix 正则矩阵; 规则矩阵【主科技词汇】近 flexibility matrix 挠度矩阵; 柔度矩阵【主科技词汇】近 citation matrix 引⽂矩阵; 引⽤矩阵【主科技词汇】近 relational matrix 关系矩阵; 联系矩阵【主科技词汇】近 eigenmatrix 本征矩阵; 特征矩阵【主科技词汇】近 system matrix 系统矩阵; 体系矩阵【主科技词汇】近 system matrix 系数矩阵; 系统矩阵【航海航天词汇】近 recovery diode matrix 恢复⼆极管矩阵; 再⽣式⼆极管矩阵【主科技词汇】近 inverse of a square matrix ⽅阵的逆矩阵【主科技词汇】近 torquematic transmission 转矩传动装置【⽯油词汇】近 torque balancing device 转矩平衡装置【航海航天词汇】近 torque measuring device 转矩测量装置【主科技词汇】近 torque measuring apparatus 转矩测量装置【航海航天词汇】近 torque-tube type suspension 转矩管式悬置【主科技词汇】近 steering torque indicator 转向⼒矩测定仪; 转向转矩指⽰器【主科技词汇】近 magnetic dipole moment matrix 磁偶极矩矩阵【主科技词汇】近 matrix addressing 矩阵寻址; 矩阵寻址时频矩阵编址; 时频矩阵编址【航海航天词汇】近 stiffness matrix 劲度矩阵; 刚度矩阵; 劲度矩阵【航海航天词汇】近 first-moment matrix ⼀阶矩矩阵【主科技词汇】近 matrix circuit 矩阵变换电路; 矩阵电路【计算机⽹络词汇】近 reluctance torque 反应转矩; 磁阻转矩【主科技词汇】近 pull-in torque 启动转矩; 牵⼊转矩【主科技词汇】近 induction torque 感应转矩; 异步转矩【主科技词汇】近 nominal torque 额定转矩; 公称转矩【航海航天词汇】近 phototronics 矩阵光电电⼦学; 矩阵光电管【主科技词汇】近 column matrix 列矩阵; 直列矩阵【主科技词汇】近 inverse of a matrix 矩阵的逆; 逆矩阵【主科技词汇】近 lattice matrix 点阵矩阵【数学词汇】近 lattice matrix 点阵矩阵【物理词汇】近 canonical matrix 典型矩阵; 正则矩阵; 典型阵; 正则阵【航海航天词汇】近 moment matrix 矩量矩阵【主科技词汇】近 moment matrix 矩量矩阵【数学词汇】近 dynamic torque 动转矩; 加速转矩【主科技词汇】近 indecomposable matrix 不可分解矩阵; 不能分解矩阵【主科技词汇】近 printed matrix wiring 印刷矩阵布线; 印制矩阵布线【主科技词汇】近 decoder matrix circuit 解码矩阵电路; 译码矩阵电路【航海航天词汇】近 scalar matrix 标量矩阵; 标量阵; 纯量矩阵【主科技词汇】近 array 矩阵式组织; 数组; 阵列【计算机⽹络词汇】近 commutative matrix 可换矩阵; 可交换矩阵【主科技词汇】。
酉矩阵——精选推荐
⾣矩阵将学习到什么这⼀节介绍⼀类⾮常特殊且⾮常重要的矩阵,⾣矩阵。
并简单介绍了⼀些性质。
⼊门知识先给定义可以看到,如果把矩阵定义域限定在实数域,⾣矩阵就叫实正交矩阵啦。
这只是“官⽅定义”,它还有很多等价说法,列出来 证明:(a)~(f) 都没什么好说的,说⼀下最后⼀个 (g). 如果说U是⾣矩阵,令y=Ux,那么y∗y=x∗U∗Ux=x∗Ix=x∗x, 即‖x‖2=‖Ux‖2. 反过来,我们设U∗U=A=[a ij],取x=z+w,其中z,w∈C n, 则x∗x=z∗z+w∗w+2Re z∗w, 且y∗y=x∗Ax=z∗Az+w∗Aw+2Re z∗Aw. 由‖x‖2=‖Ux‖2可知z∗z=z∗Az以及w∗w=w∗Aw, 从⽽对任意的z与w有Re z∗w=Re z∗Aw. 取z=e p以及w=i e q, 并计算 Re i e T p e q=0=Re i e T p Ae q=Re i a pq=−im a pq, 即虚部全为零,则A的每个元素都是实的。
再取z=e p以及w=e q, 计算e T p e q=Re e T p e q=Re e T p Ae q=a pq, 这告诉我们有A=I, 则证明了U是⾣矩阵。
上个定理中的 (g) 中的条件有个定义那么就是说,复⽅阵U∈M n是 Euclid 等距的,当且仅当它是⾣矩阵。
下⾯给出⼀个简单结论 证明:(UV)∗(UV)=V∗U∗UV=V∗V=I, 所以UV是⾣矩阵。
可见⾣矩阵相乘还是⾣矩阵。
其实⾣矩阵的集合构成⼀个群。
这个群称为n×n⾣群,对应实数域中的实正交群。
群是对单独⼀个满⾜结合律的⼆元运算封闭的集合,且在此集合中含有该运算的恒等元以及逆元,对⾣矩阵来说,其相乘仍是⾣矩阵,所以对乘法运算封闭,乘法显然是可结合的,⾣群的恒等元是I, 其逆元仍是⾣矩阵,即U−1=U∗.深⼊⼀点⾣矩阵U∈M n的每⼀列或者每⼀⾏的 Euclid 范数都是 1,因⽽U=[u ij] 中没有任何元素有绝对值⼤于 1. 如果我们把⾣群看作是] 是⾣矩阵组成的⼀个⽆限序列(k=1,2,⋯), 使得对所有C n2的⼀个⼦集,这就是说是它的⼀个⼦集;如果U k=[u(k)iji,j=1,2,⋯,n都有lim, 那么由恒等式U_k^*U_k=I, k=1,2,\cdots,我们就看出\lim\limits_{k\rightarrow\infty}U_k^*U_k=U^*U=I, 其中U=[u_{ij}]. 于是,极限矩阵U也是⾣矩阵. 也就是说,⾣矩阵的集合是\mathbb{C}^{n^2}的封闭⼦集. 学过泛函的都知道有限维的有界闭集是⼀个紧集,所以我们可以说M_n中⾣群是紧的. 由这个结论可推出关于⾣矩阵的选择原理. 证明:紧集中必存在收敛的⽆限⼦序列于⾃⾝的某个元素。
酉矩阵性质(大学优秀论文)
数学专业英语词汇(U)
数学专业英语词汇(U)数学专业英语词汇(U)数学专业英语词汇(U)u statistic u统计量ulm factor 乌姆因子ultra filter base 超滤子基ultra ideal 超理想ultra power 超幂ultrabarrelled space 超桶型空间ultrabornological space 超有界型空间ultrafilter 超滤子ultrafilter space 超滤子空间ultrahyperbolic equation 超双曲型方程ultrametric space 超度量空间ultraproduct 超积ultraspherical polynomials 特种球多项式umbilical point 脐点unary operation 一元运算unary relation 一元关系unbiased confidence estimation 无偏置信估计unbiased estimate 无偏估计unbiased estimating equation 无偏估计方程unbiased estimator 无偏估计量unbiased sample 无偏样本unbiased test 无偏检验unbiasedness 无偏性unbounded function 无界函数unbounded interval 无界区间unbounded operator 无界算子unbounded quantifier 无界量词unbounded sequence 无界序列unbounded set 无界集unboundedness 无界性uncertainty 不定uncertainty principle 测不准原理unconditional convergence 无条件收敛unconditional inequality 无条件不等式unconditional jump 无条件跳跃unconditionally convergent 无条件收敛的unconditionally convergent series 无条件收敛级数unconnected graph 不连通图unconnected space 不连通空间unconnectedness 不连通性uncorrelated 不相关的uncorrelated random variables 不相关随机变量uncountability 不可数性uncountable 不可数的uncountable ordinal 不可数序数undecidability 不可判定性undecidability theorem 不可判定性定理undecidable theory 不可判定理论underdeterminate system 欠定组underdeterminate system of partial differential equations 欠定偏微分方程组underlying graph 底图underlying group 基础群underlying topological space 基础拓扑空间underlying topology 基础拓扑undetermined 未定的undetermined coefficient 末定系数undetermined number 未定数undirected edge 无向棱undirected graph 无向图undisturbed differential equation 无扰动微分方程unduloid 波状体unequal 不等的ungula of the cone 锥的蹄状体ungula of the cylinder 柱的蹄状体ungula of the prism 棱柱的蹄状体uniaxial 单轴的unicity 唯一性uniconvergence space 单收敛空间unicursal 单行的unicursal curve 有理曲线unicursal graph 单行图unicursal involution 单行对合unicursal surface 单行曲面unidirectional 单方面的unified field theory 统一场论uniform 匀的uniform approximation 一致逼近uniform boundedness principle 一致有界原理uniform continuity 一致连续性uniform convergence 一致收敛uniform cover 一致覆盖uniform distribution 均匀分布uniform equicontinuity 一致同等连续性uniform invariant 一致不变量uniform isomorphism 一致同胚uniform limit 一致极限uniform scale 等分标尺uniform space 一致空间uniform stability 一致稳定性uniform structure 一致结构uniform topology 一致拓扑uniformity 一致结构uniformity generated by a pseudometric 伪度量一致性uniformizable 可一致化的uniformizable point 单值化点uniformizable space 单值化空间uniformization 单值化uniformization principle 一般单值化定理uniformization theorem 单值化定理uniformization theory 单值化理论uniformizing covering surface 单值化覆盖面uniformizing function 单值化函数uniformly bounded 一致有界的uniformly bounded sequence of functions 一致有界函数序列uniformly bounded series 一致有界级数uniformly bounded set 一致有界集uniformly continuous 一致连续的uniformly continuous map 一致连续映射uniformly convergent 一致收敛的uniformly convergent sequence of functions 一致收敛函数序列uniformly convex 一致凸的uniformly convex space 一致凸空间uniformly distributed random variable 均匀分布随机变量uniformly elliptic operator 一致椭圆算子uniformly equicontinuous 一致同等连续的uniformly equivalent metric 一致等价度量uniformly equivalent space 一致等价空间uniformly integrable 一致可积的uniformly locally compact space 一致局部紧空间uniformly most powerful test 一致最大功效检定uniformly open map 一致开映射uniformly strongly elliptic operator 一致强椭圆算子uniformly summable family of functions 一致可积函数族unilateral 单侧的unilateral surface 单侧曲面unimodal 单峰的unimodal distribution 单峰分布unimodular group 幺模群unimodular map 幺模映射unimodular matrix 幺模阵unimodular number 单模数unimodularly bounded function 幺模有界函数union 并集union of sets 集的并unipotent element 幂幺元unipotent group 幂单群unipotent matrix 幂单矩阵unique existence 唯一存在性unique factorization domain 唯一析因整环unique factorization theorem 唯一析因定理unique solution 唯一解uniquely defined 唯一定义的uniqueness 唯一性uniqueness condition 唯一性条件uniqueness theorem 唯一性定理unirational variety 单有理簇uniserial algebra 单列代数unit ball 单位球unit circle 单位圆unit disk 单位园板unit divisor 单位因子unit dyad 单位并向量unit filter 单位滤子unit function 单位函数unit group 单位群unit ideal 单位理想unit idele 单位伊代尔unit interval 单位区间unit line 单位线unit lower triangular matrix 单位下三角阵unit matrix 单位矩阵unit of angle 角的单位unit of area 面积单位unit of volume 体积单位unit operator 恒等算子unit point 单位点unit representation 恒等表示unit simplex 单位单形unit sphere 单位球unit tangent 单位切向量unit tensor 单位张量unit theorem 单元定理unit transformation 恒等变换unit vector 单位向量unitarily equivalent operator 酉等价算子unitarily equivalent representation 酉等价表示unitarity 酉性unitary 单式的unitary algebra 单式代数unitary bundle 酉丛unitary connection 酉朕络unitary geometry 酉几何unitary group 酉群unitary homomorphism 单式同态unitary invariant 酉不变量unitary matrix 酉矩阵unitary modular group 特殊酉群unitary operator 酉算子unitary r module 单式r模unitary representation 酉表示unitary similar matrix 酉相似矩阵unitary space 酉空间unitary transfer 酉朕络unitary transformation 酉变换unity 单位元素unity element 单位元素unity group 单位群univalent 单叶的univalent function 单叶函数univariable series 单变量级数universal affirmative proposition 全称肯定命题universal bundle 通用丛universal class 全类universal coefficient formula 万有系数公式universal coefficient theorem 万有系数定理universal covering 通用覆盖universal covering group 通用覆盖群universal covering manifold 通用覆盖廖universal covering space 万有覆盖空间universal covering surface 万有覆盖面universal curve 万有曲线universal domain 万有域universal enveloping algebra 通用包络代数universal function 通用函数universal map 通用映射universal negative proposition 全称否定命题universal proposition 一般命题universal quantifier 全称量词universal relation 通用关系universal set 通用集合universal subgroup 通用子群universal validity 一般有效性universal variety 普遍簇universally japanese ring 伪几何环universally maximal left ideal 普遍极大左理想universally maximal twosided ideal 普遍极大双侧理想universally minimal right ideal 普遍极小右理想universally valid formula 普遍有效公式unknown 末知的unknown number 未知数unlimited 无限的unlimited covering manifold 无限覆盖廖unlimitedness 无穷unmixed ideal 纯理想unordered pair 无序对unparted hyperboloid 单叶双曲面unramified covering 非分歧覆盖unramified covering surface 非分歧覆盖面unramified extension 非分歧扩张unramified manifold 非分歧廖unramified prime ideal 非分歧素理想unramified ring 非分歧环unsolvability 不可解性unsolvable 不可解的unsolvable equation 不可解方程unstability 不稳定性unstable 不稳定的unstable solution 不稳定解unweighted mean 未加权平均数upper bound 上界upper central series 上中心列upper class 上类upper control limit 上控制限upper derivative 上导数upper envelope 上包络upper half plane 上半平面upper limit 上极限upper limit of integration 积分的上限upper pure value 上纯值upper quartile 上四分位数upper semi continuous decomposition 上半连续分解upper semicontinuity 上半连续性upper semicontinuous 上半连续的upper semilattice 上半格upper triangular matrix 上三角形矩阵upper value of game 对策上方值upper variation 正变差useful direction 有效方向utility 效用utility function 效用函数utility theory 效用理论数学专业英语词汇(U) 相关内容:。
基于酉矩阵训练序列的CFO估计算法
基于酉矩阵训练序列的CFO估计算法肖清华【期刊名称】《邮电设计技术》【年(卷),期】2015(0)6【摘要】分析数据辅助类算法传输效率较低、盲估计算法精度较差的特性,通过公开已知的训练序列,借助酉矩阵的逆矩阵为其转置矩阵的性质,将训练符号与其接收信号作相关运算,提出一种新的CFO估计算法。
该算法能够消除信道噪声的影响,且其计算复杂度能够根据酉矩阵训练长度进行灵活调整。
通过Matlab仿真发现,该算法性能存在最优值,在最优值以外,一味增加训练序列长度并不能有效提升算法性能,且增加了复杂度。
%Analyzing the characteristics of low data transportation efficiency of data-aided algorithm, and relatively worse performance of blind estimation, it proposed a new CFO estimation algorithm named UMTS based on unitary matrix training sequence. Apply-ing correlative computation into training sequence and its received signal, with the help that unitary matrix’s inverse matrix is its transpose one, this algorithm can eliminate the effect of channel noise, its computation complexity can be easily adjusted according to the dimension of training sequence. After simulation by matlab, we found that there exists an optimum dimension for the training sequence. We cannot significantly improve the performance by increasing the size of unitary matrix, which wil increase the complexity of UMTS.【总页数】6页(P26-31)【作者】肖清华【作者单位】华信咨询设计研究院有限公司,浙江杭州310014【正文语种】中文【中图分类】TN929.5【相关文献】1.基于训练序列和LMS的频偏估计算法 [J], 丁勇;刘纯武;肖昌成2.多中继协同通信系统中基于循环正交训练序列的信道估计算法 [J], 张志鹏;钟杰;赵民建3.基于时域训练序列的MIMO系统信道估计算法研究 [J], 李向华;李飞;徐国标4.基于叠加训练序列的MIMO信道估计算法 [J], 李化;赵清华;张玮;王华奎5.基于训练序列的OOFDM采样时钟频率偏差估计算法 [J], 张镇;宋英雄;张俊杰;顿涵;郭松霖;薛子威因版权原因,仅展示原文概要,查看原文内容请购买。
多值逻辑量子置换门的酉矩阵表示
多值逻辑量子置换门的酉矩阵表示王冬;陈汉武;朱皖宁;刘志昊【期刊名称】《计算机学报》【年(卷),期】2012(035)003【摘要】理论上量子可逆电路不存在能量耗散问题,因此量子计算系统对环境产生的负面影响可以达到最低.多值逻辑量子置换门是构建多值逻辑量子电路的基本单元.该文从数学的角度研究多值逻辑量子置换门的酉矩阵,提出了一种构造多值逻辑量子置换门酉矩阵的方法,并对其正确性进行了讨论.在此基础之上,又给出了构造混合多值逻辑量子置换门酉矩阵的框架,利用此框架可以方便地构造任何混合逻辑量子置换门的酉矩阵.酉矩阵是量子门的数学模型,可以清晰地反映出量子门的数学性质.研究量子门的酉矩阵对验证量子门的正确性和可靠性,分析量子状态在电路中的演化过程及发展趋势具有一定的意义.%The negative effects to environment arose from quantum computing system can reach minimum in theory because there is no power dissipation in quantum reversible circuits. Multiple-valued quantum permutation gate is the basic unit to construct multiple-valued quantum circuits. In this paper, the unitary matrix of multiple-valued quantum permutation gate is studied from the view of mathematics. A method constructing the unitary matrix of multiple-valued quantum permutation gate is put forward, and its correctness is discussed constructively by permutation matrix. On the basis of it, a framework by which the unitary matrix of any hybrid quantum gate can be constructed is presented. Unitary matrix is mathematical model of quantum gate and canreflect quantum gate's mathematical properties clearly. The research on quantum gate's unitary matrix is significant to verify the correctness and reliability of quantum gate and to analyze the e-volution process and development trend of quantum state in quantum circuits.【总页数】6页(P639-644)【作者】王冬;陈汉武;朱皖宁;刘志昊【作者单位】东南大学计算机科学与工程学院南京210096;河南大学复杂智能网络系统研究所河南开封475004;东南大学计算机科学与工程学院南京210096;东南大学计算机科学与工程学院南京210096;东南大学计算机科学与工程学院南京210096【正文语种】中文【中图分类】TP387【相关文献】1.左酉矩阵、右酉矩阵、全酉矩阵及其性质 [J], 卢潮辉2.双量子比特置换不变态的矩阵表示及纠缠判据 [J], 梁晓荣;阎思青3.量子逻辑门的表示与实现 [J], 詹明生;张登玉4.量子逻辑门的算符及矩阵表示 [J], 张登玉;刘堂昆5.求解量子逻辑电路酉矩阵的快速方法 [J], 李志强;胡佳佳;张威;潘苏含;戴娟;杨冬晗;吴希因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所谓的酉矩阵(Unitary Matrix ),是指其具有如下性质
I =ΦΦH
其中的上标H 表示共轭转置,也即
()T
H *ΦΦ=
所谓的共轭转置其实就是熟悉的转置运算推广到复数域。
当然在这个推广过程中,最重要的物理性质得以保留。
这个保留的意思解释如下。
譬如在实数情况下,两个实数向量之间的内积定义为
∑=i i i y x y x ,
而向量的长度则为
x x x ,2=
而两个向量为正交是说这两个向量的内积等于0. 那么,推广到复数域,内积要推广为
∑==i
i i H w v *,w v w v
这样才能保证内积与长度的关系还是
v v v ,2=
回到最前面,很显然,所谓矩阵是unitary 的,无非是说其不同列之间是正交的,而且每一列具有单位长度。
可以证明,酉矩阵是保持长度或者说保持范数的,也即
()()()22z z z z z z z z z z =====H H H H H H ΦΦΦΦΦΦΦ。