酉矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交矩阵、正规矩阵和酉矩阵
在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足
其中是的共轭转置。
如果是实系数矩阵,那么条件简化为其中是的转置矩阵。
矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。
在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。两个正规矩阵的乘积也不一定是正规矩阵
酉矩阵
n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。
一个简单的充分必要判别准则是:
方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。即酉矩阵的逆矩阵与其伴随矩阵相等。
酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。
若一 n 行 n 列的复矩阵U满足
其中为n阶单位矩阵,为U的共轭转置,为酉矩阵或译幺正矩阵。即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵:
。
若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似,
幺正矩阵U不改变两个复向量的内积:
若为n阶方阵,则下列条件等价:
1.是酉矩阵
2.是酉矩阵
3.的列向量构成内积空间C n上的一组正交基
4.的行向量构成内积空间C n上的一组正交基
酉矩阵的特征值都是绝对值为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。
酉矩阵是正规矩阵,由谱定理知,幺正酉矩阵U可被分解为
其中V是酉矩阵,Σ是主对角线上元素绝对值为1的对角阵。
对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。
性质
∙U可逆
∙U− 1 = U*
∙|det(U)| = 1
∙U*是酉矩阵
∙
正交变换最初来自于维基百科,这种矩阵元被称为简正坐标.用质量加权坐标表示的分子内部运动的动能,用质量加权坐标表示的分子内部势能,用质量加权坐标表示的分子内部势能,由力常数的数学表达式可以知道fij = fji因而矩阵为一个正交变换通过酉变换可以把矩阵变形成为对角矩阵的形式:。则有:它的每一个矩阵元都是分子所有质量加权坐标的线性组合,总的矩阵元的数量恰巧等于质量加权坐标的个数,这些矩阵元就被称作简正坐标,而这些变换中分子的势能不变,所以正交变换又称为酉变换.
矩阵定义和相关符号
以下是一个 4 × 3 矩阵:
某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。
在C语言中,亦以 A[j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的)
此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。
一般环上构作的矩阵
给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R模Rn 的自同态环同构。
若 R 可置换,则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。
在百度百科内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。
分块矩阵
分块矩阵是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵
可分割成 4 个 2×2 的矩阵。
此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。
特殊矩阵类别
对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。
埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是ai,j=a*j,i。
特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。
随机矩阵所有列都是概率向量, 用于马尔可夫链。
矩阵运算给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:
另类加法可见于矩阵加法.
若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。例如
这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.
若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中
(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如
此乘法有如下性质:
(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").
(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。
C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。
对其他特殊乘法,见矩阵乘法。
六、其他性质
线性变换,转置。
矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:
以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。这矩阵 A "代表了" 线性变换 f。今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。
矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。
m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:
(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。
注记