因式分解练习题(完全平方公式)

合集下载

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.

因式分解经典例题练习题

因式分解经典例题练习题

提公因式法提公因式法:确定公因式的一般方法:①各项系数都是整数时,因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的. ③它们的乘积就是多项式的公因式例:用提公因式法分解因式(1)3a 2- 9ab 2 (2)-5x 2 + 25x 3 (3)4x 3y+2x 2y 2-6xy 3(4)-9m 2n-3mn 2+27m 3n 4 (5)2(x+y)2-4x(x+y) (6)2(a-1)+a(1-a)自我检测1、判断下列各题是否为因式分解:①m(a+b+c)= ma+mb+mc. ②a 2-b 2 = (a+b)(a-b) ③a 2-b 2 +1= (a+b)(a-b)+12、试一试:请找出下列多项式中各项的相同因式(公因式)(1) 3a+3b 的公因式是: (2)-24m 2x+16n 2x 公因式是:(3)2x(a+b)+3y(a+b)的公因式是: (4) 4ab-2a 2b 2的公因式是:3、.对下列多项式进行因式分解①-20a -25ab ②-32233b a b a - ③1+-m m aa④44252336279x a x a x a +- ⑤3a 2- 9ab4.、把下列各式分解因式①3 x 3 -3x 2 –9x ② 8a 2c+ 2b c ③ -4a 3b 3 +6 a 2 b-2ab ④ a(x-y)+by-bx5、把下列多项式分解因式① 2p 3q 2+p 2q 3 ② x n -x n y ③ a(x-y)-b(x-y)④ 4a 3b-2a 2b 2 ⑤323812a b ab c - ⑥ 323612ma ma ma -+-6、已知,x+y=2,xy=-3,求x 2y+xy 2的值.公式法(平方差公式)a 2-b 2=(a+b) (a-b)注意:①公式中的a 、b 可以是单项式(数字、字母)、还可以是多项式。

②分解因式最后结果中如果有同类项,一定要合并同类项。

2022-2023学年初一数学第二学期培优专题训练26 完全平方公式因式分解的5个类型

2022-2023学年初一数学第二学期培优专题训练26 完全平方公式因式分解的5个类型

专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________. 2.因式分解:1-2a +a 2=________.3.分解因式a 2-10a +25的结果是______.4.因式分解:222x xy y -+=______. 5.因式分解:222x xy y ++=________. 6.因式分解:222m mn n ++=__________. 7.分解因式:221x x ++= ___________ . 8.分解因式:x 2﹣8x +16=_____.9.因式分解:244b b -+=____. 10.因式分解221x x -+=______.类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 12.分解因式:214m m -+=__________. 13.分解因式:x 2+x+14=_____. 14.因式分解:2441a a ++=______________ 15.分解因式:2244a ab b -+=______. 16.分解因式221236x xy y -+=______. 17.分解因式:224129x xy y -+=________.18.分解因式:x 2y 2-2xy +1=_______. 19.分解因式:224129m mn n -+= __________.20.因式分解24129m m -+=______. 21.2441x x -+=________;2216249a ab b ++=________;22.因式分解4x 2+12xy +9y 2=_____. 23.24129a a -+分解因式得__________. 24.因式分解:2296x xy y ++=______. 25.因式分解229124x xy y -+=______ 26.分解因式:9﹣12t+4t 2=_____.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____. 29.因式分解:2mx 2﹣4mxy +2my 2=_____. 30.因式分解:2xm 2﹣12xm +18x =_____.31.分解因式:ma 2﹣2ma +m =___.32.分解因式x 3y ﹣6x 2y +9xy =___________.33.因式分解:22bx bx b -+=______. 34.分解因式:﹣x 2y +6xy ﹣9y =___. 35.分解因式:﹣m 2+4m ﹣4═_____.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.37.因式分解:-2x 3+4x 2y -2xy 2=________. 类型四 展开后再用完全平方公式因式分解38.分解因式:2(1)4a a +-=_________.39.因式分解:()241x x --=__________.40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________. 42.因式分解:8(a 2+1)-16a =____________.43.因式分解:()228a b ab +-的结果是______. 44.分解因式(a -b )(a -9b )+4ab 的结果是____.45.分解因式(a+1)(a+3)+1的结果是_____. 46.分解因式()(4)a b a b ab --+的结果是________.47.分解因式:x(x-1)-3x+4=____. 48.分解因式:x 2-4(x-1)= ______. 类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.50.因式分解2221b bc c -+-=______. 51.分解因式:2221y x x ---=_____.52.分解因式:2242x y xy --+=___________.专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________.解:原式=a 2-2×a ×2b +(2b )2=(a -2b )2, 2.因式分解:1-2a +a 2=________.解:由题意可知:1-2a +a 2=(1-a )2,3.分解因式a 2-10a +25的结果是______.【解答】a 2-10a +25=(a -5)24.因式分解:222x xy y -+=______.解:原式()2x y =-,5.因式分解:222x xy y ++=________.解:222x xy y ++=()2x y +.6.因式分解:222m mn n ++=__________.【解答】222m mn n ++=2()m n +,7.分解因式:221x x ++= ___________ .解:221x x ++=2(1)x +8.分解因式:x 2﹣8x +16=_____.【解答】x 2-8x +16,=x 2-2×4×x +42,=(x -4)2. 9.因式分解:244b b -+=____.解:原式=()22b -,10.因式分解221x x -+=______.解:221x x -+=(x ﹣1)2. 类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 解:214a a -+=212a ⎛⎫- ⎪⎝⎭ 12.分解因式:214m m -+=__________.解:221142m m m ⎛⎫-+=- ⎪⎝⎭, 13.分解因式:x 2+x+14=_____. 原式=(x +12)2.14.因式分解:2441a a ++=______________根据完全平方公式可得,原式=()()2224121a a a ++=+,15.分解因式:2244a ab b -+=______.16.分解因式221236x xy y -+=______.17.分解因式:224129x xy y -+=________.原式22(2)2(2)(3)(3)x x y y =-⨯⨯+ 2(23)x y =-.18.分解因式:x 2y 2-2xy +1=_______.【解答】:x 2y 2-2xy +1=(xy -1)². 19.分解因式:224129m mn n -+= ___________________.直接运用完全平方公式分解因式即可,即原式=(2m -3n )2.20.因式分解24129m m -+=______.解:24129m m -+=22(2)2233m m -⨯⨯+=2(23)m -21.2441x x -+=________;2216249a ab b ++=________;【解答】222441(2)41(21)x x x x x -+=-+=-,2222216249(4)24(3)(43)a ab b a ab b a b ++=++=+,22.因式分解4x 2+12xy +9y 2=_____.解:4x 2+12xy +9y 2=(2x +3y )2.23.24129a a -+分解因式得__________.解:224129(23)a a a -+=-,24.因式分解:2296x xy y ++=______.解:()222963x xy y x y ++=+25.因式分解229124x xy y -+=______解:229124x xy y -+=()232x y -.26.分解因式:9﹣12t+4t 2=_____.解:原式=(3﹣2t)2.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 试题解析:(1)25x 2+10x+1=(5x+1)2;(2)1-2b+b 2=(b-1)2(3)x 2+4x+4=(x+2)2;(4)4m 2+(±12mn )+9n 2=(2m±3n )2. 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____.解:am 2﹣2amn +an 2=()()2222a m mn n a m n -+=-, 29.因式分解:2mx 2﹣4mxy +2my 2=_____.解:2mx 2﹣4mxy +2my 2,=2m (x 2﹣2xy +y 2),=2m (x ﹣y )2. 30.因式分解:2xm 2﹣12xm +18x =_____.解:原式=2x (m 2﹣6m+9)=2x (m ﹣3)2.31.分解因式:ma 2﹣2ma +m =___.解:ma 2﹣2ma +m = m (a 2﹣2a +1)=m (a -1)2,32.分解因式x 3y ﹣6x 2y +9xy =_______________________. 解:原式=xy (x 2-6x+9)=xy (x-3)2,33.因式分解:22bx bx b -+=______.由完全平方公式:22bx bx b -+=()221b x x -+ =()21b x -34.分解因式:﹣x 2y +6xy ﹣9y =___.解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--35.分解因式:﹣m 2+4m ﹣4═_____.解:原式=-(m 2-4m +4)=-(m -2)2.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,37.因式分解:-2x 3+4x 2y -2xy 2=__________________________. 原式=-2x (x 2-2xy+ y 2)=-2x (x -y )2,38.分解因式:2(1)4a a +-=___________________________________. 2222(1)412421(1)a a a a a a a a +-=++-=-+=-.类型四 展开后再用完全平方公式因式分解39.因式分解:()241x x --=________________.解:()241x x --244x x =-+()22x =-. 40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________.原式=x 2-2x+1=(x-1)2.42.因式分解:8(a 2+1)-16a =____________.()()()222811681281.a aa a a +-=+-=-43.因式分解:()228a b ab +-的结果是______.解:()228a b ab +-22448a ab b ab =++-2244a ab b =-+()22a b =- 44.分解因式(a -b )(a -9b )+4ab 的结果是____.解:(a-b )(a-9b )+4ab=a 2-10ab+9b 2+4ab= a 2-6ab+9b 2=(a-3b )2. 45.分解因式(a+1)(a+3)+1的结果是_____.首先去括号,进而利用乘法公式分解因式,(a+1)(a+3)+1=244a a ++=2(2)a +. 46.分解因式()(4)a b a b ab --+的结果是___________.()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -. 47.分解因式:x(x-1)-3x+4=____.解:x (x-1)-3x+4,=x 2-x-3x+4,=x 2-4x+4,=(x-2)2.48.分解因式:x 2-4(x-1)= ______.x 2-4(x-1)=x 2-4x+4=(x-2)2.类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--. 50.因式分解2221b bc c -+-=______.解:原式=2()1b c --=[][]()1()1b c b c ---+=()()11b c b c ---+, 51.分解因式:2221y x x ---=_____.解:2221y x x ---=()22+2+1y x x -()22+1y x =-()()=11y x y x ++-- 52.分解因式:2242x y xy --+=__________________.原式=()()()()22242422x y xy x y x y x y -=--=+--++-.。

6.3(2)运用完全平方公式因式分解[下学期]

6.3(2)运用完全平方公式因式分解[下学期]

1.分解因式: 分解因式:
1) 9a 2 − 6ab + b 2 ) − a 2 − 10a − 25 ( (2 3 ) 49b 2 + a 2 + 14ab ) 4x 3y + 4x 2y 2 + xy 3 ( (4
( 5 ) x 4 − 18x 2 + 81
2 2
2.下面因式分解对吗?为什么? 2.下面因式分解对吗?为什么? 下面因式分解对吗
两个数的平方和,加上(或减去)这两个数的 两个数的平方和, 平方和 或减去) 积的两倍,等于这两数和 或者差)的平方. 积的两倍,等于这两数和(或者差)的平方.
a 2 + 2 ab + b 2 = (a + b)2 a
2
− 2ab + b
2
= (a − b )
2
两个数的平方和,加上(或减去) 两个数的平方和,加上(或减去)这两个数 平方和 积的两倍,等于这两数和 或者差)的平方. 的积的两倍,等于这两数和(或者差)的平方.
1.判别下列各式是不是完全平方式. .判别下列各式是不是完全平方式.
(1) x + y ; 不是
2 2
(2) x + 2 xy + y ; 是
2 2
(3) x − 2 xy + y ; 是
2 2
(4) x + 2 xy − y ; 不是
2 2
(5) − x + 2 xy − y . 是
2 2
你能总结出完全平方式的特点吗? 你能总结出完全平方式的特点吗?
± 2 × 首 × 尾+ 首 尾
2
2
a 2 + 2ab + b 2 = (a + b) 2 ; a 2 − 2ab + b 2 = (a − b) 2 判别下列各式是不是完全平方式, 判别下列各式是不是完全平方式,若是说出

平方差公式和完全平方公式、因式分解强化练习题

平方差公式和完全平方公式、因式分解强化练习题

平方差公式、完全平方公式应用例说例1 计算(1))1)(1(+-ab ab ;(2))32)(32(---x x ;(3)1022;(4)992. 解:(1))1)(1(+-ab ab =11)(222-=-b a ab ;(2))32)(32(---x x = )23)(23(x x --+-=22249)2()3(x x -=--;(3)1022= 2)2100(+=1040444001000022100210022=++=+⨯⨯+;(4)992=2)1100(-=98011200100001110021002=+-=+⨯⨯-.例2 计算 (1))1)(1(-+++b a b a ;(2)2)2(p n m +-.解:(1))1)(1(-+++b a b a =121)(]1)][(1)[(222-++=-+=-+++b ab a b a b a b a ;(2)2)2(p n m +-=222)2(2)2(])2[(p p n m n m p n m +⋅-⋅+-=+- =2224244p np mp n mn m +-++-.例3 当2)2()23)(23(1,1b a b a b a b a ---+=-=时,求的值.【点拨】先用乘法公式计算,去括号、合并同类项后,再将a 、b 的值代入计算出结果.解:)44(49)2()23)(23(22222b ab a b a b a b a b a +---=---+=2222228484449b ab a b ab a b a -+=-+--;当时,1,1=-=b a222848)2()23)(23(b ab a b a b a b a -+=---+=8(-1)81)1(42-⨯-+=-4. 例4 求证:当n 为整数时,两个连续奇数的平方差22)12()12(--+n n 是8的倍数.证明:22)12()12(--+n n =)144(14422+--++n n n n=n n n n n 814414422=-+-++,又∵n 为整数,∴8n 也为整数且是8的倍数.例5 观察下列等式:10122=-,31222=-,52322=-,73422=-,……请用含自然数n 的等式表示这种规律为:________________.例6已知2294y Mxy x +-是一个完全平方式,求M 的值.解:根据2)32(y x ±=229124y xy x +±得: 12±=-M .∴12±=M答:M 的值是±12.例7 计算 1584221)211)(211)(211)(211(+++++. 【点拨】若按常规思路从左到右逐个相乘,比较麻烦;如果乘或除以一个数或一个整式,将本来复杂的问题转化成我们已知的、熟悉的,从而找到问题的捷径.解:1584221)211)(211)(211)(211(+++++ =158422121)211)(211)(211)(211)(211(+÷++++- =1584222121)211)(211)(211)(211(+÷+++- =158442121)211)(211)(211(+÷++- =15882121)211)(211(+÷+- =15162121)211(+÷-=2-15152121+=2. 第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+12)(2x-12) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便1、 1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c)(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 ,. 。

平方差公式与完全平方公式(因式分解)

平方差公式与完全平方公式(因式分解)

专题一 平方差公式与完全平方公式(复习)因式分解的定义 公因式确定:(1) (2) (3)因式分解的方法:(1)提 法(2)套 法因式分解的步骤:把一个多项式因式分解,一般先 ,再 。

进行多项式因式分解时,必须把每一个因式都分解到 注:怎样验证因式分解的正确性?练习:请你从下列各式中,任选两式作差,并将得到的式子进行因式分解。

24a , 2)(y x +, 1, 29b二、典型例题例1:计算(1)(2m-3)(2m+3) (2)(a -2b +3c )(a +2b +3c ).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______. 8、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)53)(53(y x y x -+ 10、4(x+1)2-(2x+5)(2x-5)11、2275.7275.82⨯-⨯ 12、121211222112+⨯-(四、分解因式)13、2)2()2(---a a a 14、2241y x +-15、6xy 2-9x 2y-y 3 16、(2a-b)2+8ab17、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.。

因式分解全章练习题

因式分解全章练习题

因式分解练习题一、提取公因式专项训练一:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。

(单项式因式分解)1、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

完全平方公式练习题

完全平方公式练习题

一:填空题(每题2分.共32分)1、因式分解:9x2-1=_________________, 4x2-4x+1=_________________.a4-b4=_________________, an+2-an=____________________2、多项式x2+mx+36是一个完全平方式,则m=_____________.3、多项式x2+ax+b可以因式分解成(x-1)(x+3)则a=_______, b=______.4、如果x=3时,多项式x3-4x2-9x+m的值为0,则m=_________,多项式因式分解的结果为_______________________.二:选择题(每题3分.共18分)10、下列从左到右的变形,属于因式分解的是……………………………………()(A)(a+3)(a-3)=a2-9 (B)4a2+4a+3=(2a+1)2+2(C)x2-1=(x+1)(x-1)(D)-2m(m2-3m+1)=-2m3+6m2-2m11、下列各式,能用完全平方因式分解的多项式的个数为………………………()①-a2-b2+2ab ②a2-ab+b2 ③a2-a+14 ④4a2+4a-1(A)1个(B)2个(C)3个(D)4个12、用因式分解多项式3xy+6y2-x-2y时,分解正确的个数………………… ()①3xy+6y2-x-2y =(3xy-x)+(6y2-2y)②3xy+6y2-x-2y=(3xy+6y2)-(x+2y)③3xy+6y2-x-2y=(3xy-2y)+(6y2-x)(A)0个(B)1个(C)2个(D)3个9. (a2 + b2 –1 )2 – 4a2b2 10. (ax + by)2 + (bx – ay)2)1.下列多项式中何者含有2x+3的因式(1)2x3+3 (2)4x2-9 (3)6x2-11x+3 (4)2x2+x +3()2.下列何者是2x2-11x-21的因式?(1)(x-6) (2)(x+7) (3)(2x-3) (4)(2x+3)()3.下列何者为甲×丙+乙×丙的因式(1)甲+乙×丙(2)甲+乙(3)甲+丙(4)丙+乙。

利用完全平方公式因式分解

利用完全平方公式因式分解

利用完全平方公式因式分解当我们遇到一个多项式无法因式分解的时候,可以考虑使用完全平方公式来进行因式分解。

完全平方公式是一种通过加减法将一个二次多项式转化为一个平方的方法。

完全平方公式如下:(a+a)^2=a^2+2aa+a^2(a−a)^2=a^2−2aa+a^2我们以一个具体例子来说明这个方法。

假设我们要因式分解a^2+6a+9这个二次多项式。

我们可以将这个多项式写成一个完全平方的形式。

根据完全平方公式,(a+a)^2=a^2+2aa+a^2,我们可以将a^2+6a+9写成(a+3)^2的形式。

因此,a^2+6a+9=(a+3)^2接下来我们来看一个更复杂的例子。

假设我们要因式分解a^2+8a+12这个二次多项式。

我们可以尝试将这个多项式写成两个完全平方的和的形式。

首先,我们需要找到两个数,它们的乘积等于12,而它们的和等于8、通过试错的方法,我们可以得出这两个数是2和6然后,我们可以使用这两个数将a^2+8a+12进行因式分解。

a^2+8a+12=(a+2)(a+6)通过这种方法,我们成功将a^2+8a+12因式分解为两个一次多项式的乘积。

(a+2)(a+6)即为该多项式的因式分解形式。

除了上述的二次多项式,我们还可以使用完全平方公式来因式分解更复杂的多项式。

例如,a^4+10a^2+25这个四次多项式。

我们可以将a^4+10a^2+25写成一个完全平方的形式。

根据完全平方公式,(a+a)^2=a^2+2aa+a^2,我们可以尝试将a^4+10a^2+25写成(a^2+5)^2的形式。

通过这种方法,我们成功将a^4+10a^2+25因式分解为一个完全平方的平方。

(a^2+5)^2即为该多项式的因式分解形式。

总结一下,完全平方公式是一种因式分解多项式的方法。

通过将一个二次多项式转化为一个平方的形式,我们可以更容易地因式分解一个多项式。

通过试错的方法或其他的求解技巧,我们可以找到适合使用完全平方公式的例子来进行因式分解。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1)a2(x﹣y)+16(y﹣x)分析:首先将括号内的项变为相反数,再利用平方差公式进行二次分解即可。

解答:a2(x﹣y)+16(y﹣x)=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)。

4.分解因式:1)2x2﹣x;(2)16x2﹣1y2分析:(1)先提取公因式x,再利用平方差公式进行二次分解即可;2)先利用完全平方公式将16x2拆分,再利用差平方公式进行二次分解即可。

解答:(1)2x2﹣x=x(2x﹣1);2)16x2﹣1y2=(4x)2﹣(1y)2=(4x+1y)(4x﹣1y)。

5.因式分解:1)2am2﹣8a;(2)3a3﹣6a2b+3ab2.分析:(1)先提取公因式2a,再利用平方差公式进行二次分解即可;2)先提取公因式3ab,再利用完全平方公式进行二次分解即可。

解答:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);2)3a3﹣6a2b+3ab2=3ab(a﹣2b+1)。

6.将下列各式分解因式:1)3x﹣12x3;(2)(x2+y2)2﹣4x2y2分析:(1)先提取公因式3x,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x2+y2)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);2)(x2+y2)2﹣4x2y2=(x2﹣2xy+y2)(x2+2xy+y2)﹣(2xy)2=(x﹣y)(x+y)(x﹣yi)(x+yi),其中i是虚数单位。

7.因式分解:1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2分析:(1)先将各项变为同类项,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x+2y)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)x2y﹣2xy2+y3=xy(x﹣2y+y2)=xy(x﹣y)2;2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y)。

因式分解的常用方法及练习题

因式分解的常用方法及练习题

因式分解的常用方法及练习题(共13页)-本页仅作为预览文档封面,使用时请删除本页-因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c) 二、公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a-b) = a 2-b 2(2) 完全平方公式:(a ±b)2= a 2±2ab+b 2(3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2)(4) 立方差公式:a 3-b 3=(a-b)(a 2+ab+b 2)(5)完全立方公式:(a±b)³=a ³±3a ²b +3ab ²±b ³ 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca); 三、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式:))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

例5、分解因式:652++x x 672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

第2课时 完全平方公式一.填空1.〔 〕2+=+22520y xy 〔 〕2. 2.=+⨯-227987981600800〔 --2)= .3.3=+y x ,那么222121y xy x ++= .4.0106222=++-+y x y x那么=+y x .5.假设4)3(2+-+x m x 是完全平方式,那么数m 的值是 .6.158-能被20至30之间的两个整数整除,那么这两个整数是 .二.把以下各式分解因式:7.32231212x x y xy -+8.442444)(y x y x -+9.22248)4(3ax x a -+10.2222)(4)(12)(9b a b a b a ++-+-〔11〕.2222224)(b a c b a --+〔12〕.22222)(624n m n m +-〔13〕.115105-++-m m m x x x三.利用因式分解进行计算:〔14〕.419.36.7825.03.2541⨯-⨯+⨯〔15〕.2298196202202+⨯+〔16〕.225.15315.1845.184+⨯+四.〔17〕.将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.〔18〕.212=-b a ,2=ab 求:42332444b a b a b a -+-的值.〔19〕.n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:〔1〕a 与b 的平方和;〔2〕a 与b 的积;〔3〕ba ab +.【课外拓展】〔20〕.△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.〔21〕.c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不管为x,y 何值,整式5422+-xy y x 总为正值.一、填空1.2,25x x y +2.800,798,43.924.-2 5.7或-16. 26、24 二.把以下各式分解因式:7.【解】32231212x x y xy -+=232x(x y )-8.【解】442444)(y x y x -+=42244224(2)(2)x x y y x x y y ++-+=22222()()()x y x y x y ++-9.【解】22248)4(3ax x a -+=2223[(4)16]a x x +-=2223[(4)16]a x x +-=223(2)(2)a x x +-10.【解】2222)(4)(12)(9b a b a b a ++-+-=2[3()2()]a b a b -++=2(5)a b -〔11〕.【解】2222224)(b a c b a --+=22222222(2)(2)a b c ab a b c ab +-++--=222222[()][()]a b c a b c +---=()()()()a b c a b c a b c a b c +++--+-- 〔12〕.【解】22222)(624n m n m +-=222226[()4]m n m n -+-=226()()m n m n -+-〔13〕.【解】115105-++-m m m x x x=125(21)m x x x --+=125(1)m x x --三.利用因式分解进行计算:〔14〕.【解】419.36.7825.03.2541⨯-⨯+⨯ =1(25.378.6 3.9)4+-=1(25.378.6 3.9)4+-=25 〔15〕.【解】2298196202202+⨯+=2(20298)+=90000〔16〕.【解】225.15315.1845.184+⨯+=2(184.515.5)+=40000四.〔17〕.【解】12x ±五.〔18〕.【解】42332444b a b a b a -+-=2222(44)a b a ab b --+=222(2)a b a b --而212=-b a ,2=ab .所以42332444b a b a b a -+-=222(2)a b a b -- =-144⨯=-1. (19).【解】〔1〕因为n b a m b a =-=+22)(,)(,所以22222,2a ab b m a ab b n ++=-+=.即22.a b m n +=+所以a 与b 的平方和为m n +.〔2〕由〔1〕可知:1()4ab m n =- 所以a 与b 的积为1()4m n - 〔3〕由〔1〕〔2〕可知,22.a b m n +=+1()4ab m n =- 所以b a a b +=22a b ab +=1()4m n m n +- 44m n m n+=- 【课外拓展】〔20〕.证明:因为ca bc ab c b a ++=++222,所以222222222a b c ab bc ca ++=++. 即222()()()0a b b c c a -+-+-=.所以0,0,0a b b c c a -=-=-=所以a=b=c.此三角形为等边三角形.〔21〕.【解】△ABC 是等边三角形.理由是:∵0)(22222=+-++c a b c b a∴2222220a b c ba bc ++--=∴22()()0a b b c -+-=所以0,0,a b b c -=-=所以a=b=c.∴△ABC 是等边三角形.〔22〕.证明:5422+-xy y x =2(2)110xy -+≥>.即不管为x,y 何值,整式5422+-xy y x 总为正值.《一元二次方程的应用》 综合练习【知能点分类训练】知能点1 面积问题1.有一个三角形的面积为25cm 2,其中一边比这一边上的高的3倍多5cm ,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm 2的长方形,并使长比宽多2cm ,那么长方形的长是______cm .3.有一间长为18m ,宽为7.5m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m . 4.在一块长16m ,宽12m 的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x ,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg ,方案在2007年产粮到达36.3万kg ,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x ,那么可列方程为〔 〕.A .95=15〔1+x 〕2B .15〔1+x 〕3=95C .15〔1+x 〕+15〔1+x 〕2=95D .15+15〔1+x 〕+15〔1+x 〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔 〕.A .9%B .9.5%C .8.5%D .10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm 长的铁丝:〔1〕能不能折成一个面积为48cm 2的矩形?〔2〕•能不能折成面积是32cm 2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。

《用完全平方公式因式分解》专项练习

《用完全平方公式因式分解》专项练习

《用完全平方公式因式分解》专项练习要点感知1完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn.1-2因式分解:x2+6x+9=__________.要点感知2因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1因式分解:3a2+6a+3=__________.2-2因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1) x2+2x+1=__________;(2) x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2xy-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.因式分解:4a3-12a2+9a=__________.14.多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案要点感知1三项式相同底数的积的2倍预习练习1-1①⑤1-2(x+3)2要点感知2 提取公因式公式法预习练习2-13(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.1 17.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.(4)原式=3a[(x2+4)2-16x2]=3a(x+2)2(x-2)2.18.(1)原式=12×(3.7-2.7)2=12.(2)原式=(198-202)2=16.19.(x2+2xy)+x2=2x2+2xy=2x(x+y);或(y2+2xy)+x2=(x+y)2;或(x2+2xy)-(y2+2xy)=x2-y2=(x+y)(x-y);或(y2+2xy)-(x2+2xy)=y2-x2=(y+x)(y-x).20.由题意可得|m+4|+(n-1)2=0,所以40,10.mn+=-=⎧⎨⎩解得4,1.mn=-=⎧⎨⎩所以,原式=x2+4y2+4xy-1=(x+2y)2-1=(x+2y+1)(x+2y-1).21.4a2+b2+4a-6b-8=(4a2+4a+1)+(b2-6b+9)-18=(2a+1)2+(b-3)2-18,当2a+1=0,b-3=0时,原多项式有最小值.这时a=-12,b=3,这个最小值是-18.。

浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)

浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)

2.
2
当 x= 156,y= 144 时,
原式=
1 2×(156+ 144)
2 =45000.
[ 点评 ]
本题应先把
x2 的系数
1 2提出来,使其他各项的系数均为整数.
并且分解因式要分解到每个因
7
16.解:- a4b2+ 4a3b3- 4a2 b4=- a2b2(a 2- 4ab+4b2) =- a2b2(a - 2b) 2.
4.3 用乘法公式分解因式
第 2 课时 用完全平方公式分解因式
知识点 1 完全平方公式分解因式 由完全平方公式可得: a2+ 2ab+b2= (a + b) 2, a2- 2ab+ b2=(a - b) 2. 即两数的平方和,加上 ( 或者减去 ) 这两数的积的 2 倍,等于这两数和 ( 或者差 ) 的平方. 1.把下列各式分解因式: (1)a 2- 8a+ 16;
分解因式: x 4+4.
4
解: x + 4
=x 4+4x 2+ 4- 4x2
=(x 2+ 2) 2- 4x2
=(x 2+ 2x+ 2)(x 2- 2x+ 2) .
以上解法中,在 x 4+ 4 的中间加上一项,使得三项组成一个完全平方式,为了使原式的值保持不变,必须减
去同样的一项.按照这个思路,试把多项式
2
=(x - y- 5) . (4)(x 2+ 4) 2- 16x2 =(x 2+ 4+ 4x)(x 2+ 4- 4x) =(x + 2) 2(x -2) 2. (5) 原式= (x 2-2x+ 1) 2 =[(x - 1) 2] 2 =(x - 1) 4. 14.解: (1)96 2+96×8+ 16 =962+2×96×4+ 42 =(96 + 4) 2

全效学习八上数学同步训练14.3.2 第2课时 运用完全平方公式因式分解

全效学习八上数学同步训练14.3.2 第2课时 运用完全平方公式因式分解

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

第2课时运用完全平方公式因式分解1.[2013·张家界]下列各式中能用完全平方公式进行因式分解的是() A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-6x+92.下列因式分解正确的是() A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2D.a2-2a+1=(a-1)23.多项式4x2+1加上一个数或单项式后,使它成为一个整式的完全平方,那么加上的数或单项式可从①-1,②4x,③-4x,④-4x2中选取() A.②B.③C.②③D.①②③④4.分解因式:(1)[2014·菏泽]2x3-4x2+2x=________________________________;(2)[2014·泸州]3a2+6a+3=__________;(3)[2014·南充]x3-6x2+9x=__________;(4)[2014·邵阳]m2n-2mn+n=____________________________;(5)[2014·呼和浩特]6xy2-9x2y-y3=________________________________;(6)[2014·聊城]4a3-12a2+9a=__________________________________;(7)[2014·哈尔滨]3m2-6mn+3n2=______________________________;(8)[2013·威海]-3x2+2x-13=_________________________________.5.用合适方法因式分解:(2a-b)2+8ab=__________.6.(1)[2013·徐州]当m+n=3时,式子m2+2mn+n2的值为________;(2)[2013·泰州]若m=2n+1,则m2-4mn+4n2的值是________.7.把下列多项式因式分解:(1)-3x2-12+12x;(2)3ax2+6axy+3ay2;(3)4(x+y)2-20(x+y)+25.8.(1)若x2+2kx+9是一个完全平方式,则k=________;(2)若x2+8x+k2是一个完全平方式,则k=________.9.请添加一项________________________使得k2+4是完全平方式.10.已知a2+2ab+b2=0,求式子a(a+4b)-(a+2b)(a-2b)的值.11.阅读以下文字,解答问题.对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x +a)2的形式,但是对于二次三项式x2+2ax-3a2,就不能直接运用完全平方公式了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-4a2=[(x+a)+2a][(x+a)-2a]=(x+3a)(x-a).用上述方法将下列各式因式分解:(1)m2-6m+8;(2)x4+4.参考答案1.D 2.D 3.D4.(1)2x(x-1)2(2)3(a+1)2(3)x(x-3)2(4)n(m-1)2(5)-y(3x-y)2(6)a(2a-3)2(7)3(m-n)2(8)-13(3x-1)25.(2a+b)2 6.(1)9(2)17.(1)-3(x-2)2(2)3a(x+y)2(3)(2x+2y-5)28.(1)±3(2)±49.4k或-4k或k44或-410.011.(1)(m-2)(m-4)(2)(x2+2+2x)(x2+2-2x)关闭Word文档返回原板块。

公式法因式分解练习题及答案

公式法因式分解练习题及答案

公式法因式分解练习题及答案题型:把下列各式分解因式1、x2?42、9?y2、1?a24、4x2?y、1?25b26、x2y2?z27、m2?0.01b、a2?x、36?m2n210、4x2?9y211、0.81a2?16b 12、25p2?49q2 13、a2x4?b2y14、x4?115、16a4?b 16、题型:把下列各式分解因式1、2?2、 2?23、162?9、92?425、2?26、4a2?214a?16b4m814919题型:把下列各式分解因式1、x5?x2、4ax2?ay23、2ab3?2ab4、x3?16x5、3ax2?3ay、x2?47、x3?4xy、32x3y4?2x、ma4?16mb416mx2?9mx10、?8a2?2a311、?ax4?16a 12、题型:利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。

2、计算⑴7582?258 ⑵4292?1712⑶3.52?9?2.52?4⑷2222234910题训练二:利用完全平方公式分解因式题型:把下列各式分解因式1、x2?2x?12、4a2?4a?1、 1?6y?9y2m24、1?m?5、 x2?2x?1 、a2?8a?167、1?4t?4t28、m2?14m?499、b2?22b?12110、y2?y? 11、25m2?80m?612、4a2?36a?81x213、4p?20pq?25q14、?xy?y 15、4x2?y2?4xy2214 题型:把下列各式分解因式1、2?6?、a2?2a?23、4?12?92、2?4m?4m25、?46、2?4a?4a2题型:把下列各式分解因式1、2xy?x2?y2、4xy2?4x2y?y33、?a?2a2?a3题型:把下列各式分解因式1、x2?2xy?2y22、x4?25x2y2?10x3y3、ax2?2a2x?a4、?4x2y25、2?6、4?182?81题型:利用因式分解解答下列各题1、已知: x?12,y?8,求代数式x2?xy?y2的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解练习题(完全平方公式)一、选择题
1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±4 2.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32
C.x2-2xy+4y2D.4a2-4a+1
3.下列各式属于正确分解因式的是()
A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2
C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)2 4.把x4-2x2y2+y4分解因式,结果是()
A.(x-y)4B.(x2-y2)4
C.[(x+y)(x-y)]2D.(x+y)2(x-y)2
二、填空题
5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)2
7.-4x2+4xy+(_______)=-(_______).
8.已知a2+14a+49=25,则a的值是_________.
三、解答题
9.把下列各式分解因式:
(1)a2+10a+25 (2)m2-12mn+36n2
(3)xy3-2x2y2+x3y (4)(x2+4y2)2-16x2y2
(5)a4-6a2+9 (6)4a2+12ab+9b2 10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
四、探究题
12.你知道数学中的整体思想吗解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.
你能用整体的思想方法把下列式子分解因式吗
①(x+2y)2-2(x+2y)+1 ②(a+b)2-4(a+b-1)
13、已知a2+10ab+25b2与|b-2|互为相反数,求a+b的值。

相关文档
最新文档