湖北汽车工业学院复变函数习题册答案

合集下载

复变函数课后习题答案

复变函数课后习题答案

复变函数课后习题答案习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)(2)(3)(4)解:(1),因此:,(2),因此,,(3),因此,,(4)因此,,2.将下列复数化为三角表达式和指数表达式:(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)3.求下列各式的值:(1)(2)(3)(4)(5)(6)解:(1)(2)(3)(4)(5)(6)4.设试用三角形式表示与解:,所以,5.解下列方程:(1)(2)解:(1)由此,(2),当时,对应的4个根分别为:6.证明下列各题:(1)设则证明:首先,显然有;其次,因固此有从而。

(2)对任意复数有证明:验证即可,首先左端,而右端,由此,左端=右端,即原式成立。

(3)若是实系数代数方程的一个根,那么也是它的一个根。

证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,,由此得到:由此说明:若为实系数代数方程的一个根,则也是。

结论得证。

(4)若则皆有证明:根据已知条件,有,因此:,证毕。

(5)若,则有证明:,,因为,所以,,因而,即,结论得证。

7.设试写出使达到最大的的表达式,其中为正整数,为复数。

解:首先,由复数的三角不等式有,在上面两个不等式都取等号时达到最大,为此,需要取与同向且,即应为的单位化向量,由此,,8.试用来表述使这三个点共线的条件。

解:要使三点共线,那么用向量表示时,与应平行,因而二者应同向或反向,即幅角应相差或的整数倍,再由复数的除法运算规则知应为或的整数倍,至此得到:三个点共线的条件是为实数。

9.写出过两点的直线的复参数方程。

解:过两点的直线的实参数方程为:,因而,复参数方程为:其中为实参数。

10.下列参数方程表示什么曲线?(其中为实参数)(1)(2)(3)解:只需化为实参数方程即可。

(1),因而表示直线(2),因而表示椭圆(3),因而表示双曲线11.证明复平面上的圆周方程可表示为,其中为复常数,为实常数证明:圆周的实方程可表示为:,代入,并注意到,由此,整理,得记,则,由此得到,结论得证。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此, 31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此, 35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此, Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-, 所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++, 那时0,1,2,3k =, 对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次, 因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可, 首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此, 左端=右端, 即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根, 那么a bi -也是它的一个根.证明:方程两端取共轭, 注意到系数皆为实数, 而且根据复数的乘法运算规则, ()n n z z =, 由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根, 则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件, 有1aa =, 因此:11()a b a b a b a ab aa ab a a b a---====---, 证毕. (5)若1, 1a b <<, 则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<, 所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-, 即11a b ab-<-, 结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式, 其中n 为正整数, a 为复数.解:首先, 由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜, 为此, 需要取n z 与a 同向且1n z =, 即n z 应为a 的单元化向量, 由此, n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线, 那么用向量暗示时, 21z z -与31z z -应平行, 因而二者应同向或反向, 即幅角应相差0或π的整数倍, 再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍, 至此获得: 123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而, 复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==, 因而暗示直线y x =(2)cos ,sin x a t y b t ==, 因而暗示椭圆22221x y a b+= (3)1,x t y t==, 因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=, 其中a 为复常数, c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==, 并注意到222x y z zz +==, 由此 022z z z z zz A B c i+-+++=, 整理, 得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=, 则2A Bi a -=, 由此获得 0zz az az c +++=, 结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先, arg z 在原点无界说, 因而不连续.对00x <, 由arg z 的界说不难看出, 当z 由实轴上方趋于0x 时, arg z π→, 而当z 由实轴下方趋于0x 时, arg z π→-, 由此说明0lim arg z x z →不存在, 因而arg z 在0x 点不连续, 即在负实轴上不连续, 结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =, 其方程可暗示为1z yi =+, 代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++, 消去参数y , 得 2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=, 其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中, 得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-, 消去参数θ, 得2214u v +=, 暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集, 并做图: 解:(1)0 (0)z z r r -=>, 说明动点到0z 的距离为一常数, 因而暗示圆心为0z , 半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合, 即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数, 因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等, 因而是i 和i -连线的垂直平分线, 即x 轴.(5)arg()4z i π-=, 幅角为一常数, 因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形, 并指出是有界还是无界, 单连通还是多连通.(1)23z <<, 以原点为心, 内、外圆半径分别为2、3的圆环区域, 有界, 多连通(2)arg (02)z αβαβπ<<<<<, 极点在原点, 两条边的倾角分别为,αβ的角形区域, 无界, 单连通(3)312z z ->-, 显然2z ≠, 而且原不等式等价于32z z ->-, 说明z 到3的距离比到2的距离年夜, 因此原不等式暗示2与3 连线的垂直平分线即x =x =2后的点构成的集合, 是一无界, 多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=, 化为实方程为 2244115x y -=, 再注意到z 到2与z 到-2的距离之差年夜于1, 因而不等式暗示的应为上述双曲线左边一支的左侧部份, 是一无界单连通区域.(5)141z z -<+, 代入z x iy =+, 化为实不等式, 得 所以暗示圆心为17(,0)15-半径为815的圆周外部, 是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点, 并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数, 商时分母不为0), 根据和、差、积、商的导数公式及复合函数导数公式, 再注意到区域上可导一定解析, 由此获得:(1)5(1)z -处处解析, 54[(1)]5(1)z z '-=-(2)32z iz +处处解析, 32(2)32z iz z i '+=+(3)211z +的奇点为210z +=, 即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导, 何处解析, 并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此, 函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此, 函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线, 构不成区域, 因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续, 因而 ,u v 处处可微, 而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此, 函数处处可导, 处处解析, 且导数为(4)2211()x iy f z x iy x yz +===-+, 2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠, 故此, ,u v 处处不满足柯西—黎曼方程, 因而函数处处不成导, 处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =, 由(2)得3, 3n m l =-=-, 因而, 最终有4.证明:若()f z 解析, 则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知, 左端22=+222222()()x x x x uu vv uu vv uv vu u v +++-=+=+ 2()f z '==右端, 证毕. 5.证明:若()f z u iv =+在区域D 内解析, 且满足下列条件之一, 则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u = (5)231u v +=证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-, 因其解析, 故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1)而由()f z 的解析性, 又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知, 0x y x y u u v v ===≡, 因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡, 那么由柯西—黎曼方程得 0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关, 因而 2v c ≡, 从而12()f z c ic ≡+为常数.(3)由已知, 2220()f z u v c =+≡为常数, 等式两端分别对,x y 求偏导数, 得 220220x x y y uu vv uu vv +=+=----------------------------(1)因()f z 解析, 所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2), 得 0x y x y u u v v ===≡, 说明,u v 皆与,x y 无关, 因而为常数, 从而()f z 也为常数. (4)同理, 2v u =两端分别对,x y 求偏导数, 得 再联立柯西—黎曼方程, x y y x u v u v ==-, 仍有(5)同前面一样, 231u v +=两端分别对,x y 求偏导数, 得 考虑到柯西—黎曼方程, x y y x u v u v ==-, 仍有0x y x y u u v v ===≡, 证毕.6.计算下列各值(若是对数还需求出主值)(1)2i eπ- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i ei i πππ-=-+-=-(2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+,k 为任意整数,主值为:1()2ln i i π-=-(3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++ 4ln5(arctan 2)3k i ππ=+-+, k 为任意整数主值为:4ln(34)ln5(arctan )3i i π-+=+-(4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k iiLn i i eeeππππ++--++===24(cosln sin k ei ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====, 当k 分别取0, 1, 2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+7.求2z e 和2z Arge 解:2222z x y xyie e-+=, 因此根据指数函数的界说, 有2z e22x y e-=, 222z Arge xy k π=+, (k 为任意整数)8.设i zre θ=, 求Re[(1)]Ln z -解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+, 因此9.解下列方程:(1)1ze =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i =解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系, 应有(3)由三角函数公式(同实三角函数一样), 方程可变形为 因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数(4)由双曲函数的界说得 2z ze e shz i --==, 解得 2()210z z e ie --=, 即z e i =, 所以(2)2z Lni k i ππ==+ , k 为任意整数10.证明罗比塔法则:若()f z 及()g z 在0z 点解析, 且000()()0, ()0f z g z g z '==≠, 则000()()lim()()z z f z f z g z g z →'=', 并由此求极限 00sin 1lim ; lim z z z z e z z→→-证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f zg z '=', 由此, 00sin cos lim lim 11z z z zz →→==11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz =解:记i z re θ=, 则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++, 其中的,k m 为任意整数.显然, 左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++, 而右端却取不到这一值), 因此两端不相等.(2)左端221]ln (2)22m i Ln rer m k i θπθππ+==+++右端11[ln (2)]ln ()222r n i r n i θθππ=++=++其中,k n 为任意整数, 而 0,1m =不难看出, 对左端任意的k , 右端n 取2k 或21k +时与其对应;反之, 对右端任意的n , 当2n l =为偶数时, 左端可取,0k l m ==于其对应, 而当21n l =+为奇数时, 左端可取2,1k l m ==于其对应.综上所述, 左右两个集合中的元素相互对应, 即二者相等.12.证明sin sin , cos cos z z z z == 证明:首先有(cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== , 因此sin 2i z i z e e z i--==, 第一式子证毕.同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin yy z e ≤≤) 证明:首先, sin 222iz izizizy y ye e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次, 由复数的三角不等式又有sin 2222iz izy yy yiz ize e e e e ee e z i--------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥, 因此接着上面的证明, 有sin 2y y e ez y --≥≥, 左端不等式获得证明.14.设z R ≤, 证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式, 有sin 2222iz iz y y iz iz y y e e e e e e e ez ch y i ----+-++=≤===,由已知, y z R ≤≤, 再主要到0x ≥时chx 单调增加, 因此有sin z ch y chR ≤≤,同理,cos 2222iz izy yizizy y e e e e e e e ez ch y chR----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z +试求流动的速度及流线和等势线方程.解:只需注意, 若记()(,)(,)f z x y i x y ϕψ=+, 则 流场的流速为()v f z '=, 流线为1(,)x y c ψ≡, 等势线为2(,)x y c ϕ≡, 因此, 有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++ 流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡, 等势线为 222(1)x y c -+≡ (2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡, 等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z zv f z z z --'===++, 流线为 122222(1)4xyc x y x y ≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底 1.计算积分2()cx y ix dz -+⎰, 其中c 为从原点到1i +的直线段解:积分曲线的方程为, x t y t ==, 即z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得2.计算积分z ce dz ⎰, 其中c 为 (1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→,从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→, 代入积分表达式中, 得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+, :01t →, 代入积分表达式中, 得1100()(1)(cos sin )zt titce dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰,对上述积分应用分步积分法, 得3.积分2()cx iy dz +⎰, 其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中, 得4.计算积分cz dz ⎰, 其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =, 代入, 得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→, 代入, 得5.估计积分212c dz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上, z =1, 因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界, 则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤, 则由积分估计式得122n n M M R R Rππ-==, 因1n >, 因此上式两端令R →+∞取极限, 由夹比定理, 得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因, 其中积分曲线c 皆为1z =.(1)2(2)c dzz +⎰ (2)224cdzz z ++⎰(3)22cdzz +⎰(4)cos c dzz ⎰ (5)z cze dz ⎰解:各积分的被积函数的奇点为:(1)2z =-, (2)2(1)30z ++=即1z =-±, (3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析, 无奇点不难看出, 上述奇点的模皆年夜于1, 即皆在积分曲线之外, 从而在积分曲线内被积函数解析, 因此根据柯西基本定理, 以上积分值都为0. 8.计算下列积分:(1)240ize dz π⎰ (2)2sin iizdz ππ-⎰(3)10sin z zdz ⎰解:以上积分皆与路径无关, 因此用求原函数的方法:(1)4220240111()(1)222ii izz e dz ee e i πππ==-=-⎰ (2)21cos2sin 2sin []224iiii i iz z zzdz dz ππππππ----==-⎰⎰(3)111100sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算22cdzz a-⎰, 其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±, 根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外, 则在c 内被积函数解析, 因而由柯西基本定理(2)a 在c 内, a -在c 外, 则1z a+在c 内解析, 因而由柯西积分公式:22112z a c c dz z a dz i i z a z a a z a ππ=+===-+-⎰⎰ (3)同理, 当a -在c 内, a 在c 外时, (4)a ±皆在c 内此时, 在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:注:此题若分解221111()2a z a z a z a=--+-, 则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰, 由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i , 故此同上题一样:(3)2232(1)(4)z dzz z =++⎰在积分曲线内被积函数有两个奇点i ±, 围绕,i i -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(4)4221z zdz z -=-⎰, 在积分曲线内被积函数只有一个奇点1,故此 (5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±, 围绕1,1-分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(6)22, (1)nnz z dz n z =-⎰为正整数, 由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰, 其中c 为 (1)12z = (2)112z -= (3)2z =解:(1)由柯西积分公式 (2)同理, 由高阶导数公式 (3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e=-, 其中, 12,c c 为2z =内分别围绕0, 1且相互外离的小闭合曲线.12.积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰解:首先, 由柯西基本定理, 1102z dz z ==+⎰, 因为被积函数的奇点在积分曲线外.其次, 令(cos sin )z r i θθ=+, 代入上述积分中, 得 考察上述积分的被积函数的虚部, 便获得2012cos 054cos d πθθθ+==+⎰, 再由cos θ的周期性, 得 即012cos 054cos d πθθθ+=+⎰, 证毕.13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析, 且在c 上 ()()f z g z =, 证明在c 内也有()()f z g z =. 证明:由柯西积分公式, 对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知, 在积分曲线c 上, ()()f z g z =, 故此有 再由0z 的任意性知, 在c 内恒有()()f z g z =, 证毕. 14. 设()f z 在单连通区域D 内解析, 且()11f z -<, 证明(1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰ 证明:(1)显然, 因为若在某点处()0,f z =则由已知 011-<, 矛盾!(也可直接证明:()1()11f z f z -<-<, 因此1()11f z -<-<, 即0()2f z <<, 说明()0f z ≠)(3)既然()0f z ≠, 再注意到()f z 解析, ()f z '也解析, 因此由函数的解析性法则知()()f z f z '也在区域D 内解析, 这样,根据柯西基本定理, 对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰, 证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数, 因此只需求出其共轭调和函数(,)v x y , 则(,)v x y c =即是所要求的曲线族.为此, 由柯西—黎曼方程2x y v u y =-=-, 因此(2)2()v y dx xy g y =-=-+⎰, 再由 2y x v u x ==-知, ()0g y '≡, 即0()g y c =为常数, 因此02v xy c =-+, 从而所求的正交曲线族为xy c ≡(注:实际上, 本题的谜底也可观察出, 因极易想到 222()2f z z y x xyi =-=--解析)16.设sin px v e y =, 求p 的值使得v 为调和函数. 解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数, 即在某区域内上述等式成立, 必需210p -=, 即1p =±.17.已知22255u v x y xy x y +=-+--, 试确定解析函数 解:首先, 等式两端分别对,x y 求偏导数, 得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2)再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u , 得这样, 对x u 积分, 得25(),u x x c y =-+再代入y u 中, 得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--, 因此200()5f z u iv z z c c i =+=-+-, 其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+, 对y 积分, 得212()2v xy y c x =++, 再由x y v u =-得2()2y c x x y '+=-+, 因此201(), ()2c x x c x x c '=-=-+, 所以22011222v xy y x c =+-+,因()1f i =-, 说明0,1x y ==时1v =, 由此求出012c =, 至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题, 除上题采纳的方法外, 也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++, 所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得, 12c =, 故此(3)arctan , (0)yv x x=>同上题一样, ()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值, 0c 为任意实常数. (4)(cos sin )x u e x y y y =-, (0)0f =(sin sin cos )x x y v u e x y y y y =-=++, 对x 积分, 得再由y x v u =得()0c x '=, 所以0()c x c =为常数, 由(0)0f =知, 0x y ==时0v =, 由此确定出00c =, 至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++,整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析, 且()1f z ≤, 证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式, 得1112122z ds πππ=≤==⎰, 证毕. 20.若()f z 在闭圆盘0z z R -≤上解析, 且()f z M ≤, 试证明柯西不等式 ()0!()n n n f z M R≤, 并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式, 得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界, 无妨设()f z M ≤, 那么由柯西不等式, 对任意0z 都有0()Mf z R'≤, 又因()f z 处处解析, 因此R 可任意年夜, 这样, 令R →+∞, 得0()0f z '≤, 从而0()0f z '=, 即 0()0f z '=, 再由0z 的任意性知()0f z '≡, 因而()f z 为常数, 证毕.习题四谜底1. 考察下列数列是否收敛, 如果收敛, 求出其极限.(1)1n n z i n=+解:因为lim n n i →∞不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}nz 不收敛.(2)(1)2n n i z -=+解:1sin )22i i θθ+=+, 其中1arctan 2θ=, 则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=, 所以()lim cos sin 0nn n i n θθ→∞-=由界说4.1知, 数列{}n z 收敛, 极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=, 1lim 0n n →∞=, 所以21lim 0n i n enπ-→∞= 由界说4.1知, 数列{}n z 收敛, 极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+, 则()cos 2sin 2n n z z n i n zθθ==+, 因为lim cos 2n n θ→∞, lim sin 2n n θ→∞都不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =, 由正项级数的比值判别法知该级数收敛, 故级数1!nn i n ∞=∑收敛, 且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n n ππ∞∞∞====+∑∑∑, 因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数, 根据交错级数的莱布尼兹审敛法知该级数收敛, 同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛, 故级数2ln nn i n∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑, 因为211n n ∞=-∑发散, 故级数21ln n n ∞=∑发散, 从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑, 因级数102nn n e ∞+=∑发散, 故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()035!!nn n i n n ∞∞==+=∑∑, 由正项正项级数比值判别法知该级数收敛, 故级数()035!nn i n ∞=+∑收敛, 且为绝对收敛.3.试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n nn n z n∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n e n++→∞→∞→∞+=⋅==++, 故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==, 故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =, 则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nnn c n c ++→∞→∞+==-, 故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <, 即22z <, 从而幂级数221212n n n n z ∞-=-∑的收敛域为z <, 收敛半径为R =.4.设级数0n n α∞=∑收敛, 而0n n α∞=∑发散, 证明0n n n z α∞=∑的收敛半径为1. 证明:在点1z =处,nnnn n z αα∞∞===∑∑, 因为0n n α∞=∑收敛, 所以n nn z α∞=∑收敛, 故由阿贝尔定理知, 1z <时, 0n nn z α∞=∑收敛, 且为绝对收敛, 即0n n n z α∞=∑收敛.1z >时, 0nn n n n z αα∞∞==>∑∑, 因为0n n α∞=∑发散, 根据正项级数的比力准则可知, 0nn n z α∞=∑发散, 从而0n n n z α∞=∑的收敛半径为1, 由定理4.6, 0n n n z α∞=∑的收敛半径也为1.5.如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛, 证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时, 由阿贝尔定理, 0n n n c z ∞=∑绝对收敛.0z z =时, 00nnn n n n c z c z ∞∞===∑∑, 由已知条件知, 00n n n c z ∞=∑收敛,即0nn n c z ∞=∑收敛, 亦即0n n n c z ∞=∑绝对收敛.6.将下列函数展开为z 的幂级数, 并指出其收敛区域.(1)221(1)z + 解:由于函数221(1)z +的奇点为z i =±, 因此它在1z <内处处解析, 可以在此圆内展开成z 的幂级数.根据例4.2的结果, 可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导, 即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠-- 解:①a b =时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =, 因此它在z a <内处处解析, 可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a -++++<. ②a b ≠时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析, 可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb ++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z解:由于函数sin z e z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式, 并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++, 022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-, 所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n n n n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅--------------- =100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑.展开式成立的区域:3(1)113z i i--<-, 即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z=,'''22tan 2sec (2tan 1)z z z =+, ……,'24tan sec 24z z ππ===, ''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……, 故有因为tan z 的奇点为,2z k k Z ππ=+∈, 所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+- 解:2221112()(1)(2)5211z z z z z z =--+--++,222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞- 解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9.将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±, 所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈, 所以对,0R R ∀<<+∞, 0z R <<内都有()f z 的奇点, 即()f z 以0z =为环心的处处解析的圆环域不存在, 所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点, 说明其类型, 如果是极点, 指出它的级. (1)221(1)z z z -+解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++- 由性质5.2知, 0z =是函数的1级极点, z i =±均是函数的2级极点. (2)3sin zz 解:函数的孤立奇点是z =, 因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+, 由极点界说知, 0z =是函数的2级极点. (3)ln(1)z z+ 解:函数的孤立奇点是0z =, 因0ln(1)lim1z z z→+=, 由性质5.1知,0z =是函数可去奇点.(4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =, 即0z =时, 因4223(1)2!!n zz z z e z n +-=++++所以0z =是2(1)z z e -的3级零点, 由性质5.5知, 它是21(1)z z e -的3级极点②2z k i π=, 0k ≠时, 令2()(1)z g z z e =-, '2()2(1)z z g z z e z e =-+, 因(2)0g k i π=, '2(2)(2)0g k i k i ππ=≠, 由界说 5.2知,2(0)z k i k π=≠是()g z 的1级零点, 由性质5.5知, 它是21(1)z z e -的1级极点 (5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++, ''22()2(1)4(1)z z z g z e ze e z πππππ=++++①0z i =±时, 0()0g z =, '0()0g z =, ''0()0g z ≠, 由界说5.2知,0z i =±是()g z 的2级零点, 由性质5.5知, 它是21(1)(1)z z e π++的2级极点, 故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时, 1()0g z =, '1()0g z ≠, 由界说5.2知, 1(21),1,2,z k i k =+=±是()g z 的1级零点, 由性质5.5知, 它是21(1)(1)z z e π++的1级极点, 故是2(1)(1)z zz e π++的1级极点.(6)21sin z解:函数的孤立奇点是0z =, 1,2,z z k ==±= 令2()sin g z z =, '2()2cos g z z z =,①0z =时, 因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++, 所以0z =是()g z 的2级零点, 从而它是21sin z 的2级极点.②1,2,z z k ==±=时, ()0g z =, '()0g z ≠, 由界说5.2知,1,2,z z k ==±=是()g z 的1级零点, 由性质5.5知,它是21sin z的1级极点. 2. 指出下列各函数的所有零点, 并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈, 记()sin f z z z =,'()sin cos f z z z z =+①0z =时, 因4222sin (1)3!(21)!n nz z z z z n +=-++-++, 故0z =是sin z z的2级零点.②,0z k k π=≠时, ()0z k f z π==, '()0z k f z π=≠, 由界说5.2知,,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =, 因242222(1)2!!n z z z z e z z n =+++++, 所以由性质5.4知, 0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =, 1z k π=, 22z k i π=, 0k ≠,记2()sin (1)z f z z e z =-, '22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时, 0z =是sin z 的1级零点, , 1z e -的1级零点, 2z 的2级零点, 所以0z =是2sin (1)z z e z -的4级零点.②1z k π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 1z k π=, 0k ≠是()f z 的1级零点.③22z k i π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 22z k i π=, 0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-, 则'()cos 2f z z chz =+-, ''()sin f z z shz =-+,'''()cos f z z chz =-+, (4)()sin f z z shz =+, (5)()cos f z z chz =+, 将0z =代入, 得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====, (5)()0f z ≠, 由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点, 故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点, 那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点, 所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠, 即''''2000()(())(())0m f z f z f z -====, '10(())0m f z -≠, 由界说5.2知, 0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==, 且0,2z z ==均是其1级。

复变函数_习题集(含答案)

复变函数_习题集(含答案)
21.用留数定理计算积分 .
22.用留数定理计算积分 .
23.用留数定理计算积分 .
24.用留数定理计算积分 .
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
33.试给出函数 在 处的泰勒展开式.
34.试将函数 分别在圆环域 内展开为洛朗级数.
35.试给出函数 在 处的泰勒展开式.
36.设 在区域 解析,证明在区域 内 满足下列等式

37.证明方程 的全部根均圆环 内.
故 ,即 在 上为 的上升函数.
(2)如果存在 及 使得 ,则有 .于是在 内 恒为常数,从而在 内 恒为常数.
39.证明:取 ,解析且连续到边界.
.
(根据Rouche定理)
故结论成立.
40.证明: 是调和函数.
使得 解析,
解析,
也是调和函数.
一、填空题1
(略)……
证明区域d上的调和函数我们有ixy上任何点处可微且满足cr条件
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
14.计算积分 ,其中路径为(a)自原点到点 的直线段;(b)自原点沿虚轴到 ,再由 沿水平方向向右到 .

复变函数习题第一章答案

复变函数习题第一章答案
点 z 的轨迹表示以 z = −2 + 3i 为圆心,以 5 为半径的圆周. (2) 设 z = x + iy , 则由 z + 2i ≥ 1得 x + i( y + 2) ≥ 1,
即 x 2 + ( y + 2)2 ≥ 1. 点 z 的轨迹表示以 z = −2i 为圆心,以1为半径的圆的外面. (3) 设 z = x + iy , 由 Re(z + 2) = −1得, x + 2 = −1 , 即 x = −3 . 点 z 的轨迹表示 x = −3 这条直线. (4) 设 z = x + iy , 则 iz = i(x − iy) = y + ix ,
(4) Re(i z) = 3 ; (6) z + 3 + z + 1 = 4 ; (8) 0 < arg z < π .
解 (1) 设 z = x + iy ,则由 z + 2 − 3i = 5 得 (x + 2) + i( y − 3) = 5 , 即 (x + 2)2 + ( y − 3)2 = 25 .
3
3
所以 (−1 + i 3)10 = 210 (cos 20π + i sin 20π )
3
3
= 1024(cos 2π + i sin 2π )
3
3
= −27(cos(−π ) + i sin(−π )) ,
所以
3 − 27 = 3 27 (cos( − π + 2kπ ) + i cos( − π + 2kπ )) (k = 0,1,2) ,

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数第二章习题答案

复变函数第二章习题答案

复变函数第二章习题答案第二章 解析函数1-6题中:(1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。

(3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。

(4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。

解析函数求导:x x iv u z f +=')(4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。

(1)证明:因为)(z f 在区域上解析,所以。

令),(),()(y x iv y x u z f +=,即x v y u y v x u ∂∂-=∂∂∂∂=∂∂,0=∂∂+∂∂='yvi x u z f )(。

由复数相等的定义得:00=∂∂-=∂∂=∂∂=∂∂xv y u y v x u ,。

所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。

5、证明函数在平面上解析,并求出其导数。

(1)()()0f z z D '=∈z (cos sin )(cos sin ).x xe x y y y ie y y x y -++证明:设=则,;;满足xvy u y v x u ∂∂-=∂∂∂∂=∂∂,。

即函数在平面上),(y x 可微且满足C-R 条件,故函数在平面上解析。

8、(1)由已知条件求解析函数iv u z f +=)(,xy y x u +-=22,i i f +-=1)(。

复变函数习题及解答

复变函数习题及解答

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。

复变函数经典习题及答案

复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C

O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6

第1章复变函数习题答案习题详解

第1章复变函数习题答案习题详解

第1章复变函数习题答案习题详解第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231+解:()()()132349232323231231i i i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫ ⎝⎛+i Re 虚部:132231-=⎪⎭⎫ ⎝⎛+i Im 共轭复数:1323231i i +=⎪⎭⎫ ⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg2) iii --131 解:()()()2532332113311131312ii i i i i i i i ii i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫ ⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫ ⎝⎛--i i i Im 共轭复数:253131i i i i +=⎪⎭⎫ ⎝⎛-- 模:234434253131222==+=--iii辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3) ()()ii i 25243-+ 解:()()()22672267272625243ii i i i i i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫ ⎝⎛-+i i i Re 虚部:()()1322625243-=-=⎪⎭⎫ ⎝⎛-+i i i Im 共轭复数:()()226725243i i i i +-=⎪⎭⎫ ⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛-+4) ii i+-2184解:ii i i i i31414218-=+-=+- 实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im共轭复数:()ii i i 314218+=+- 模:1031422218=+=+-i i i辐角:()()πππk arctg k arctg k i i i i i i Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()iiy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。

复变函数课后习题答案

复变函数课后习题答案

习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。

复变函数练习题及答案

复变函数练习题及答案

复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。

定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。

(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。

(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。

(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。

(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。

(3分) 二、验证计算题(共16分)。

1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。

(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。

由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。

(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。

2zz +2z z -i z z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。

三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。

解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。

解:3、写出复数 的代数式。

解:+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i ii i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-i i i i -+-114、求根式 的值。

解:四、证明题1、证明若 ,则a 2+b 2=1。

复变函数—课后答案习题五解答

复变函数—课后答案习题五解答
1 z4 1 2 1 3 ⎤ ⎡ ⎢1 − 1 − 2 z − 2! 4 z − 3! 8 z "⎥ ⎣ ⎦
知 Res[ f (z ),0] = c−1 = −
4 3
4 ⎡ ⎤ 3 3 1+ z ⎢( z − i) ( z 2 + 1)3 ⎥ = − 8 i , ⎣ ⎦
1 d2 3) Res ⎡ ⎣ f ( z ) ,i ⎤ ⎦ = lim z →i 2! dz 2
(7)
1 ; 2 z (e z − 1)
z ( z 2 + 1) 1
2
(8)
(9)
1 . sin z 2
解(1) f ( z ) =
是有理函数,故奇点只是极点,满足 z z + 1 =0,故 z = 0 ,与 z = ± i 为
2
(
)
2
其奇点, z = 0 为一级极点,而 z = ± i 为其二级极点。 (2)因 lim
m −1
ϕ (z ) + (z − z 0 )m ϕ ' (z ) = (z − z0 )m−1 [mϕ (z ) + (z − z0 )ϕ ' (z )]
故 z0 是 f ' (z ) 的 m-1 级零点。 3.验证: z = 解 由 ch
πi
2
是 ch z 的一级零点。
πi
2
= cos
π
2
= 0 , (ch z ) ' z = π i = sh

z → z0
lim
ϕ ( z ) + ( z − z0 )ϕ '( z ) f ( z) ϕ ( z) f '( z ) ϕ ( z) , lim ,即 = lim = lim = lim g ( z ) z → z0 ψ ( z ) z → z0 g '( z ) z → z0 ψ ( z ) + ( z − z0 )ψ '( z ) z → z0 ψ ( z )

复变函数习题及答案

复变函数习题及答案

第一章习题一、选择题1.设z=3+4i,,则Re z2=( )A.-7 B.9C.16 D.252.arg(2-2i)=()A. B.C. D.3.设0<t≤2,则下列方程中表示圆周的是( )A.z=(1+i)t B.z=e it+2iC.z=t+D.z=2cost+i3sint4.复数方程z=3t+it表示的曲线是()A.直线B.圆周C.椭圆D.双曲线5.复方程所表示的曲线为________.. 直线;.抛物线;.双曲线;.圆二、填空题1. 设点,则其辐角主值arg z (-π<arg)为_______.2.设点, 则其辐角主值arg z (-π<arg)为_______.3.若,则=___________.4.arg(1+i)= .5.复数的模为_____, 幅角主值为_______.6.复数的模为_________,辐角为____________.7.设z=x+iy, 则曲线|z-1|=1的直角坐标方程为.一.选择1.下列集合为无界多连通区域的是()A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.二、填空1.设,则Imz=______________________。

三、计算题1.解方程z4=.2. 考察函数在处的极限。

复变函数第一章单元测试题一、判断题(正确打√,错误打)1.复数. ( )2.若为纯虚数,则. ( )3.。

()4.在点连续的充分必要条件是在点连续。

()5.参数方程(为实参数)所表示的曲线是抛物线. ( )二、填空题1.若等式成立,则______, _______.2.方程表示的曲线是__________________________.3.方程的根为_________________________________.4.复变函数的实部_________,虚部_________.5.设,,则= _ _____.6.复数的三角表示式为_________________,指数表示式为_________________.三、计算、证明题1.求出复数的模和辐角。

《复变函数》习题及答案

《复变函数》习题及答案

第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。

( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。

( ) 12、有界整函数必为常数。

( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。

( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。

( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。

( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。

( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。

复变函数习题答案

复变函数习题答案

复变函数习题答案复变函数习题答案复变函数是数学中的一个重要分支,它研究的是定义在复数域上的函数。

复变函数理论在物理学、工程学以及金融学等领域有着广泛的应用。

为了更好地理解和应用复变函数,我们需要进行大量的习题练习。

在本文中,我将为大家提供一些复变函数习题的答案,希望能够帮助大家更好地掌握这一领域的知识。

1. 求函数f(z) = z^2 - 1的解析性条件。

解答:根据复变函数的定义,函数f(z)在复平面上解析的条件是其对z的偏导数存在且连续。

对于函数f(z) = z^2 - 1,我们可以计算其对z的偏导数:∂f/∂x = 2x∂f/∂y = 0由于∂f/∂x存在且连续,而∂f/∂y为0,所以函数f(z) = z^2 - 1在复平面上解析。

2. 求函数f(z) = e^z的导数。

解答:根据复变函数的导数定义,对于函数f(z) = e^z,我们需要计算其对z的偏导数:∂f/∂x = e^x * cos(y)∂f/∂y = e^x * sin(y)因此,函数f(z) = e^z的导数为:df/dz = ∂f/∂x + i * ∂f/∂y = e^x * cos(y) + i * e^x * sin(y)3. 求函数f(z) = z^3 - 3z的奇点。

解答:奇点是指函数在某一点上不解析的点。

对于函数f(z) = z^3 - 3z,我们需要找到其奇点。

奇点的定义是函数在该点处不解析,即其导数不存在或者无穷大。

首先,我们计算函数f(z)的导数:df/dz = 3z^2 - 3然后,我们令导数等于零,解得z = ±1。

所以,函数f(z) = z^3 - 3z的奇点为z = ±1。

4. 求函数f(z) = sin(z)/z的留数。

解答:留数是指函数在奇点处的特殊值。

对于函数f(z) = sin(z)/z,我们需要计算其在奇点z = 0处的留数。

根据留数的计算公式,我们可以将函数f(z)在z = 0处展开为泰勒级数:f(z) = sin(z)/z = (z - z^3/3! + z^5/5! - ...) / z可以看出,分子中的z可以约去,所以:f(z) = 1 - z^2/3! + z^4/5! - ...因此,在z = 0处的留数为1。

复变函数课后答案习题四解答

复变函数课后答案习题四解答

in ;
n=1 n
n=2 ln n
∑ ∑ 3)
∞ n=1
(6+5i)n 8n

4)
∞ n=2
cos in 2n

∑ ∑ 解
1)由 in = cos nπ
+ i sin nπ


cos nπ 2


sin nπ 2
为收敛的交错项实级数,
2
2 n=1 n
n=1 n
∑ ∑ 所以 ∞ in 收敛,但 in = 1 ,故 ∞ in 发散,原级数条件收敛;
n→∞ n
2
= 0, lim 1 sin n→∞ n
nπ 2
=0,

α
n
收敛,
lim
n→∞
α
n
=
0
2.证明:
⎧0,
|α |<1,
limα n
n→∞
=
⎪⎪∞, ⎨⎪1,
|α |>1, α = 1,
⎪⎩不存在, |α|=1,α ≠ 1.
3.判断下列级数的绝对收敛性与收敛性:
∑ ∑ 1) ∞ in ;

2)
,而
lim
n→∞
chn 2n

0
,故
∞ n=2
cos in 2n
发散。
4.下列说法是否正确?为什么?
(1)每一个幂级数在它的收敛圆周上处处收敛;
(2)每一个幂级数的和函数在收敛圆内可能有奇点;
(3)每一个在 z0 连续的函数一定可以在 z0 的邻域内展开成 Taylor 级数。

∑ 解(1)不对。如 zn 在收敛圆 z < 1内收敛,但在收敛圆周 z = 1上并不收敛; n=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档