第1章 随机过程的基本概念
随机过程的基本概念
Home
联合 分布 函数
设 X (t ) 和Y (t ) ,t1 , t 2 ,, t n ,t1 , t 2 ,, t m T
n + m维随机向量
Y , { X (t1 ) , X (t 2 ) ,„, X (t n ) , (t1 ) Y (t 2 ) ,„, (t m ) } Y
则称随机过程 X (t ) 和Y (t ) 相互独立
Home
例1
袋中放有一个白球,两个红球,每隔单位时 间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量
t , X (t ) 3 e t ,
如果t 时取得红球 如果t 时取得白球
试求这个随机过程的一维分布函数族。
分析 先求 是两个随机过程
对任意 t1 , t 2
T , 则 RXY (t1 , t 2 ) E[ X (t1 )Y (t 2 )]
称为随机过程X (t ) 与Y (t ) 的互相关函数
注
CXY (t1 , t2 ) = R XY (t1 , t 2 ) m X (t1 )mY (t 2 )
四维
Home
说明3 原因:
{ X (t ) , t T }是定义在 T 上的二元函数
“随机” 性
对固定的样本点t0∈T,X(t0)=X(t0,ω) 是定义在(Ω,F,P) 上的一个随机变量,其取值随着试验的结果而变化,变 化有一定的规律,用概率分布刻画。 对固定的样本点ω0∈Ω,X(t,ω0) 是定义在T上的 一个函数(确定性函数),称为 X(t) 的一条样本 路径或一个样本函数,或轨道、现实。
Home
3.协方差函数
随机过程X (t ) 在t1 , t 2 T 的状态X (t1 ) 和X (t 2 )
随机过程_第一章
则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
由此定义出发,可推出概率的其它一些性质:
(4) P(F) 0;
(5) 若A, B F , A B, 则P( B A) P( B) P( A), 且P( B) P( A)
FY ( y ) P(Y y ) P( X , Y y ) F (, y )
分别称FX(x)和FY(y)为 F ( x, y ) 关于X和关于Y的 边缘分布函数。
离散型随机变量(X,Y)边缘分布律计算如下
P( X xi ) pi pij
, i 1,2,
设X,Y是两个随机变量,若对任意实数x,y有
P( X x, Y y) P(( X x) (Y y)) P( X x)P(Y y)
则称X,Y为相互独立的随机变量。
若X,Y为相互独立随机变量,则有
F ( x, y ) FX ( x) FY ( y ) f ( x, y ) f X ( x ) f Y ( y )
注:所谓某个事件在 试验中是否出现,当且仅 当该事件所包含的某个样本点是否出现,因此 一个事件实际上对应于的一个确定的子集。 事件的概率论运算 Ω子集的集合论运算。
样本空间 W 也是一个事件, 称 W 为必然事件,
空集 F 称为不可能事件。
注:由于事件是集合,故集合的运算(并、交、 差、上极限、下极限、极限等)都适用于事件。
定义1.5 设( Ω ,F,P)是概率空间,X=X(e) =(X1(e),…,Xn(e))是定义在Ω上的n维空间Rn中 取值的向量函数。如果对于任意x=(x1,…,xn) ∈Rn, {e:X1(e) ≤x1,…,Xn(e) ≤xn} ∈F,则称X=X(e)为n维 随机变量。称
随机过程基本概念
定义
随机过程{(X(t),Y(T)), tÎT}的任意有限维分布都是正态分布
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立的充要条件是不相关
复值二阶矩过程
数字特征
独立增量过程
实值随机过程{X(t), tÎT},对任意的 相互独立
,随机变量
二阶矩过程{X(t), tÎT}是独立增量过程,其中T=[a,¥),且X(a)=c,c为实常数
性质
非负性 对称性 非负定性
换算
二维随机过程和复值随机过程
二维随机过程 复值随机过程
两个随机过程{X(t), tÎT}和{Y(t), tÎT},{(X(t),Y(T)), tÎT}为二维随机过程,可 简记为{(X(t),Y(T))}或(X(t),Y(T))
二维随机过程{(X(t),Y(T)), tÎT}为m+n维分布函数:
有限维分布族
二维随机过程{(X(t),Y(T)), tÎT}的所有1+1维分布函数、1+2维分布函数、2+1 维分布函数···构成的分布函数族为二维随机过程{(X(t),Y(T)), tÎT}有限维分布函 数组
独立
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立
数字特征
二维随机过程{(X(t),Y(T)), tÎT},随机过程{X(t), tÎT}和{Y(t), tÎT}的互相关函 数
有限维分布函数族:一维,二维···分布函数族的全体
有限维分布函数的性质
对称性 相容性
对(1,2,···,n)的任一排列(j1,j2,···,jn)有 对m<n,有
密度函数
一维密度函数:对每一个tÎT,X(t)有密度函数 一维密度函数族: n维密度函数: n维密度函数族:
第02讲_随机过程的基本概念1
•均值与方差的物理意义:
2 2 E { X 2 ( t )} X (t ) m X (t )
消耗在单位电阻上 的总的平均功率
平均交 流功率
直流 功率
8
随机过程的统计描述
相关函数(correlation function)
举例:两个均值和方差大致相同的随机过程,相关性差异很大
i 1 j 1
其中 pij (t1 , t2 ) P{ X (t1 ) xi (t1 ), X (t2 ) x j (t2 )} •协方差函数
K X (t1 , t2 ) [ xi (t1 ) mX (t1 )][x j (t2 ) mX (t2 )] pij (t1 , t2 )
例2 接收机的噪声电压信号 用示波器来观察记录某个接收机输出的噪声电压波形
5
第一次观测
x1 (t )
0 -5 5 0 50 100 150 200
第二次观测
x2 ( t ) x3 (t )
0 -5 5 0 50 100 150 200
第三次观测
0 -5 5 0 50 100 150 200
角度1:所 有可能观测 结果 { xi (t )} 构成 X ( t )
E[ X (t1 ) X (t2 )] mX (t1 )mX (t2 ) RX (t1 , t2 ) mX (t1 )mX (t2 )
如果 K X (t1 , t 2 ) 0,则称 X (t1 )和 X (t 2 ) 是不相关的 如果 RX (t1 , t2 ) 0 ,则称 X (t1 ) 和 X(t2 ) 是相互正交的 如果 f X ( x1 , x2 , t1 , t 2 ) f X ( x1 , t1 ) f X ( x2 , t 2 ),则称随机过程在
第一章 随机过程 第二节 随机过程的基本概念
FX ( x1 , t1 ) f X ( x1 , t1 ) x1
2 、二维概率分布 为了描述S.P在任意两个时刻t1和t2的状态间的 内在联系,可以引入二维随机变量[X(t1),X(t2)]的分 布函数FX(x1,x2;t1,t2),它是二随机事件{X(t1)≤x1} 和{X(t2)≤x2}同时出现的概率,即
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
称为随机过程X(t)的二维分布函数。 若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在, 则 2 F ( x , x ;t ,t )
f X ( x1 , x2 ; t1 , t 2 )
X 1 2 1 2
x1x2
E[cos ] cos f ( )d cos
0 0
2
2
同理
1 d 0 2
E[sin ] 0
mx (t ) 0
2 2 x (t ) 2 (t ) mx (t ) 2 (t ) E[ x2 (t )] x x (2)
2 = E[sin (0t )] E [1 cos(20t 2 )]
t 离散型随机过程:对随机过程任一时刻1 的取值X (t1 ) 都是离散型随机变量。
连续随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是连续型随机变 量,即时间是离散的。相当于对连续型随 机过程的采样。 离散随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是离散型随机变 量,即时间和状态是离散的。相当于采样 后再量化 。
随机过程的基本概念及类型
第七章 随机过程的基本概念及类型
第一章 概率论基础
目录 Contents
7.1
随机过程的基本概念
7.2
随机过程的分布率和数字特征
7.3
复随机过程
7.4
几种重要的随机过程
7.1 随机过程的基本概念
通俗地讲, 用于研究随机现象变化过程的随机变量 族称为随机过程.
7.1.1 随机过程的实例
当 t1 t2 t 时,
DX (t )
2 X
(t)
BX
(t,t)
RX
(t,t
)
m
2 X
(t)
最主要的数字特征
mX (t) E[X (t)]
均值函数
RX(t1, t2 ) E[X (t1 )X (t2 )] 自相关函数
7.2 随机过程的分布律和数字特征
例7.2 设随机过程 X (t ) Y cos( t) Z sin( t), t 0, 其中 Y , Z 是相互独立的随机变量, 且 EY EZ 0, DY DZ 2 , 求 {X (t ) t 0}的均值函数 mX (t) 和 协方差函数 BX (s, t).
RW (s, t) E[W (s)W (t)] E[( X (s) Y (s))( X (t ) Y (t ))]
E[ X (s)X (t) X (s)Y (t) Y (s)X (t ) Y (s)Y (t)]
7.2 随机过程的分布律和数字特征
E[ X (s)X (t)] E[ X (s)Y (t)] E[Y (s)X (t)] E[Y (s)Y (t)]
◎ 显然有关系式 BX (s, t) RX (s, t) mX (s)mX (t) , s, t T .
随机过程的基本概念和分类
随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。
它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。
本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。
1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。
在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。
根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。
离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。
连续时间的随机过程是在连续时间上的函数,例如天气的变化。
在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。
随机过程可以用概率分布函数来表达。
对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。
对于离散时间的随机过程,概率分布可以用概率质量函数来描述。
概率分布函数可以通过研究随机过程的瞬时状态来推导。
随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。
2. 随机过程的分类随机过程可以按照多种方式进行分类。
以下是一些常见的分类方式。
2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。
马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。
根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。
离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。
2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。
这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。
平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。
应用随机过程 期末复习资料
第一章 随机过程的基本概念一、随机过程的定义例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。
例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。
令X n 表示第n 次统计所得的值,则X n 是随机变量.为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。
例3:一个醉汉在路上行走,以概率p 前进一步,以概率1—p 后退一步(假设步长相同)。
以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。
例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候.乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X (t )表示t 时刻的队长,用Y(t )表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T }和{Y(t), t ∈T }都是随机过程。
定义:设给定参数集合T ,若对每个t ∈T, X (t )是概率空间),,(P ℑΩ上的随机变量,则称{X(t ), t ∈T}为随机过程,其中T 为指标集或参数集。
E X t →Ω:)(ω,E 称为状态空间,即X(t )的所有可能状态构成的集合。
例1:E 为{0,1} 例2:E 为[0, 10]例3:E 为},2,2,1,1,0{ -- 例4:E 都为),0[∞+注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。
(2)参数集T 通常代表时间,当T 取R, R +, [a ,b]时,称{X(t), t ∈T }为连续参数的随机过程;当T 取Z , Z +时,称{X (t), t ∈T}为离散参数的随机过程。
简述随机过程的基本概念
简述随机过程的基本概念随机过程是概率论的一个重要分支,研究随时间变化的随机现象。
它描述的是随机变量随时间的变动规律,并通过概率论的方法研究其统计特性。
随机变量是随机过程的基本组成部分,表示在给定的实验空间中,某一随机事件所对应的数值。
随机变量可以是离散的(比如抛硬币的正反面),也可以是连续的(比如投掷骰子的点数)。
随机过程可分为离散时间随机过程和连续时间随机过程两种类型。
离散时间随机过程是指在离散的时间点上进行观测,比如某一事件在每个小时的发生概率。
离散时间随机过程通常用随机序列来描述,其中每个随机序列代表不同的事件。
连续时间随机过程是指在连续的时间段内进行观测,比如某一事件在每个时间段内的发生概率。
连续时间随机过程可以通过概率密度函数来描述。
随机过程有两个重要的性质:平稳性和马尔可夫性。
平稳性是指随机过程的统计特性在时间上保持不变。
强平稳性要求整个随机过程的概率分布在时间上保持不变,弱平稳性只要求随机过程的均值和自相关函数在时间上保持不变。
马尔可夫性是指在给定过去的条件下,未来的状态只与当前状态有关。
这意味着给定当前的状态,过去的状态对于预测未来的状态是无关的。
随机过程可以通过随机过程的定义、概率密度函数、特征函数等进行建模和描述。
常用的随机过程模型包括泊松过程、马尔可夫链、布朗运动等。
泊松过程是离散时间且符合强平稳性和马尔可夫性的随机过程。
泊松过程描述了在一段时间内随机事件发生的次数,常用于描述到达某个服务中心或系统的流量。
马尔可夫链是具有马尔可夫性的随机过程。
在马尔可夫链中,系统的状态在不同的时间段内转移,且转移的概率只与当前的状态有关。
这种随机过程常用于描述具有一定变化规律的系统,如天气系统、金融市场等。
布朗运动是连续时间且连续状态的随机过程,它具有良好的连续性和马尔可夫性质。
布朗运动常用于建模和描述股票价格、汇率波动等金融领域中的随机变动。
随机过程的研究可以用于预测和分析各种现实生活中的随机变化。
随机过程的基本概念与应用
随机过程的基本概念与应用随机过程是概率论中研究一系列随机事件在时间上的演化规律的重要分支。
它在各个领域都有着广泛的应用,在通信、控制、金融、生物、物理等方面都发挥着重要作用。
一、随机过程的基本概念1.1 随机过程的定义随机过程是指一组随机变量${X_t}$,其中$t$表示时间,$X_t$表示在时间$t$时刻随机变量的取值。
随机过程是随机变量的函数族,常用记号为${X_t:t\in T}$。
其中$t$取遍$T$所表示的时间集合,$T$可以是实数集、整数集或其他有限或无限集合。
1.2 随机过程的分类随机过程根据其时间变化的连续性与离散性可以分为连续时间随机过程和离散时间随机过程两种。
连续时间随机过程是指随机变量在时间上是连续的,如布朗运动、泊松过程等。
离散时间随机过程是指随机变量在时间上是离散的,如马尔可夫过程、随机游走等。
1.3 随机过程的性质随机过程具有多种性质,包括平稳性、独立性、齐次性等。
其中比较重要的平稳性是指在时间平移下,随机过程的统计性质保持不变,即一个随机过程是平稳的,当且仅当对于任意$t_1,t_2$,其一阶矩和二阶矩不随时间变化而改变。
例如,设随机过程${X_t:t\geq 0}$的均值为$\mu$,方差为$\sigma^2$,则其平稳性条件为:$$\mathbb{E}[X_t]=\mu, \ \forall t\geq 0$$$$\mathbb{E}[(X_s-\mu)(X_t-\mu)]=\sigma^2, \ \forall s,t\geq 0$$二、随机过程的应用随机过程在许多领域中都有着广泛的应用。
以下列举其中几个典型应用。
2.1 通信领域随机过程在通信领域中是必不可少的工具。
通信信号可以看作是一种随时间变化的随机过程,而信道则可看作是一种将输入信号映射成输出信号的随机过程。
因此,随机过程在信号调制、信噪比估计、编码等方面都有着广泛的应用。
2.2 控制领域在控制领域中,随机过程被广泛用于表示、建模和分析控制系统的动态特性。
随机过程-第一章
• {X(t, e),t∈T ,e∈Ω} 为一随机过程。
• 其实际意义就是: 若一物理过程,当时间t(或广义时间)固定,
过程所处的状态是随机的(不确定的),则此
过程就为随机过程。对该过程的一次记录(或
一个观察)就是一个现实,或称作随机过程的
一个样本函数或样本曲线。 • 固定t0,X(t0)是随机变量。 • 固定e0,X(t,e0)是一个现实,是t的函数,记 为 x(t)。
例4:具有随机初位相的简谐波。 X(t)=acos(ω0t+Φ),-∞<t<+∞, 其中a与ω0是正常数, Φ是在[0,2π]上均匀分布的随机变量。 一方面,随机过程X(t)是一族随机变量。 对每个固定t0, X(t0)= acos(ω0t+Φ)是个 随机变量。对(-∞,+∞)上有多少个t, 就对应多少个随机变量。∴对(-∞,+∞) 所有t,X(t)看作一族随机变量。 另一方面,随机过程是一族样本函数(曲线) 对样本空间Ω中每个基本事件e对应一个样本 函数,本例,Φ在Ω=[0,2π] 上任给定一个 相 位φi=e,就对应一个样本曲线,如:书P 4。
例6: 利用抛掷硬币的试验定义一个随机过程。
X(t) { sin π t,出现正面 ,记为记为 ω 0 e ,出现反面, 记 ω 1
t
(t R)
写出X(t)的所有样本函数(现实)
二、随机过程的的分布(有限维分布族) 1、对任意固定的t0∈T,随机过程X(t)的状态 X(t0)是一维随机变量, 其分布函数是P{X(t0)≤x} F(x,t0) 由于t的任意性,称F(x; t) = P{X(t) ≤x } 为随机过程X(t)的一维分布函数。 F(x,t)是与t有关的一维分布函数,在t,x平 面上是X(t)落在区间(X(t) ≤x)上的概率。
什么是随机过程(一)
什么是随机过程(一)引言概述:随机过程是概率论和数学统计学中的重要概念,用于描述随机事件在时间和空间上的演化规律。
它在实际问题建模和分析中具有广泛的应用,涵盖了大量的领域,如通信系统、金融市场、生物学等。
本文将介绍随机过程的基本概念和特征,并探讨其在实际中的应用。
正文:1. 随机过程的定义1.1 随机过程的基本概念1.2 随机变量与随机过程的关系1.3 不同类型的随机过程(如离散随机过程、连续随机过程等)2. 随机过程的特征2.1 随机过程的时间域特征2.2 随机过程的统计特征2.3 随机过程的独立性和相关性2.4 随机过程的平稳性2.5 随机过程的马尔可夫性质3. 随机过程的应用3.1 通信系统中的随机过程3.2 金融市场中的随机过程3.3 生物学中的随机过程3.4 物理学中的随机过程3.5 工程控制中的随机过程4. 随机过程的建模和分析方法4.1 马尔可夫链模型4.2 随机演化方程模型4.3 随机微分方程模型4.4 随机过程的仿真方法4.5 随机过程的参数估计方法5. 随机过程的未来发展5.1 随机过程在人工智能中的应用5.2 随机过程在时空数据分析中的应用5.3 随机过程在大数据分析中的应用5.4 新兴领域中的随机过程研究5.5 随机过程理论与实际应用的结合总结:本文介绍了随机过程的定义、特征和应用,并讨论了随机过程的建模和分析方法。
随机过程作为概率论和数学统计学的重要分支,具有广泛的应用前景。
随着人工智能和大数据分析的发展,随机过程在各个领域中的应用将进一步扩展。
值得期待的是,未来随机过程理论和实际应用的结合将推动该领域的进一步发展。
随机过程的基本概念与分类
随机过程的基本概念与分类随机过程是概率论的一个重要分支,在不同领域如金融、通信、生物学等都有广泛的应用。
它描述的是一组随机变量的演化规律,具有许多重要的特性和分类方式。
本文将介绍随机过程的基本概念和分类方法。
一、基本概念随机过程由一个或多个随机变量组成,这些随机变量的取值取决于一个或多个参数,如时间。
随机过程可以定义为函数的族,其中函数的输入参数是随机变量,输出是实数或向量。
常用的随机过程有离散时间和连续时间两种。
在离散时间随机过程中,随机变量类似于离散的时间点,通常用n表示。
每个时间点上都有一个随机变量X(n)与之相关。
连续时间随机过程则对应于时间变量连续变化的情况,通常用t表示。
每个时间点上都有一个随机变量X(t)与之相关。
随机过程的演化可以通过转移概率描述。
转移概率表示从一个时间点到另一个时间点的跳转概率,常用P(i,j)表示从状态i到状态j的概率。
二、分类方法1. 马尔可夫链马尔可夫链是一个简单的、具有重要应用的随机过程。
它具有马尔可夫性质,即未来状态只与当前状态有关,与历史状态无关。
马尔可夫链有着平稳分布,并且可以通过转移概率矩阵进行描述。
2. 马尔可夫过程马尔可夫过程是一种时间连续的随机过程。
它的转移概率与时间无关,但与前一状态有关。
常见的马尔可夫过程有泊松过程、连续时间马尔可夫链等。
3. 马尔可夫决策过程马尔可夫决策过程是一种在马尔可夫过程基础上引入决策的模型。
它包括状态空间、决策空间、转移概率、奖励函数等要素。
马尔可夫决策过程在决策分析、控制理论等领域有广泛应用。
4. 平稳随机过程平稳随机过程是指在统计特性上不随时间改变的过程。
平稳随机过程具有恒定的概率分布和自相关函数。
常见的平稳随机过程有白噪声、自回归过程等。
5. 随机游走随机游走是一种具有随机性的移动方式。
它可以用来模拟股市价格、随机漫步等现象。
随机游走中的步长和方向通常是随机变量,可以是离散的或连续的。
6. 马尔可夫随机场马尔可夫随机场是一种描述多变量间关系的图模型。
随机过程基本概念
注释:(1) 随机过程{X(t), ∈T}是定义在 ×T上的 ),t ( ),
二元函数,因此可以从两个角度去理解, 因而有如上的 两个定义。 在理论分析往往用随机变量族的描述方式,在实际 测量和处理中往往采用样本函数族的描述方式。
(2)通常将随机过程{X(t), ∈T }解释为一个物理系统, ( ), ),t X(t)表示系统在时刻t所处的状态,X(t)的所有可能状 () () 态所构成的集合称为状态空间,记为I,对于给定的 t0 ∈T,及x ∈I,X(t0)= 说成是在时刻t0,系统处于状态 ( )=x x. (3)从定义2的角度上看,随机过程是有限维随机变量的 推广.
它在任一确定时刻的值是随机变量.
二、随机过程的分类
1.按状态空间I和时间是可列集还是连续集分类: 按状态空间I和时间是可列集还是连续集分类:
(1). 连续型随机过程:T是连续集,且∀t∈T,X(t)是连续型 () 随机变量,则称过程{X(t),t∈T}为连续型随机过程. () (2).离散型随机过程:T是连续集,且∀t∈T,X(t)是离散型 () 随机变量,则称过程{X(t),t∈T}为离散型随机过程。 () (3).连续型随机序列: T是可列集,且∀t∈T,X(t)是连续型 () 随机变量,则称过程{X(t),t∈T}为连续型随机序列. ()
例4:(热噪声电压)电子元件或器件由于内部微观粒子
(如电子)的随机热骚动所引起的端电压称为热噪声电 压,在无线电通讯技术中,接收机在接收信号时,机内 的热噪声电压要对信号产生持续的干扰,为要消除这种 干扰(假设没有其他干扰因素),就必须考虑热噪声电 压随时间变化的过程,现以电阻的热噪声电压为例说明 这种变化过程的描述方法,我们通过某种装置对电阻两 端的热噪声电压进行长时间的测量,并把结果记录下来, 作为一次试验结果,便得到一个电压-时间函数(即电压 关于时间t的函数)V1(t),如图.
随机过程的基本概念
证明:
随机过程的平稳性
严平稳随机过程
定义,
设有随机过程 ,对任意正整数n及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为严平稳随机过程。
严平稳随机过程的性质,
严平稳随机过程的一维分布函数与时间无关,二维分布函数仅与时间间隔有关而与时间本身无关。
K级平稳随机过程,
设有随机过程 ,对任意正整数n<K及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为K级严平稳随机过程。
定义1,马尔可夫过程(使用条件概率密度函数,或条件概率分布函数来表示)
设有一个随机过程 , ,若在这些时刻观察到随机过程的值是 ,若它的条件概率密度和条件分布函数满足条件,
或
则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。
性质,马尔可夫过程的有限维概率密度
定义2,马尔可夫链(使用转移概率、条件概率)
宽平稳随机过程
定义,
设有一个二阶矩随机过程 ,它的均值是常数,相关函数仅是 的函数,则称它为宽平稳随机过程或广义平稳随机过程。
正态平稳随机过程,
既是广义平稳的随机过程,又是严平稳的随机过程。
性质1,
或 , 。对于实宽平稳随机过程 ,而实自相关函数是偶函数。证明(略)
性质2,
, 是随机过程的均值。
证明,
证明,(略)
考虑到
因此有
性质3,
,
证明,
以上证明中、第一个不等式成立是:随机变量平均的模小于等于随机变量模的平均;第二个不等式成立是:Schwartz不等式,随机变量乘积取模统计平均的平方,小于等于随机变量取模平方统计平均的乘积。
因此有
同理有, 。
性质4,
cp3_1随机过程的基本概念
若X与Y不相关,不一定统计独立。
不相关的充要条件为:CXY= rxy=0 …协方差为0
《 通信原理》第三章 随机过程
3-1-14
第1节随机过程的基本概念
例3.1-1 随机变量X取离散值2,5,8,概率分别为0.5、 0.2、0.3,求该随机变量的方差。
m x E[ x ] xi P( x xi ) xi P( xi ) =2×P(2)+5×P(5)+8×P(8)
3-1-8
第1节随机过程的基本概念
随机变量的数字特征 ⑴数学期望:随机变量X的统计平均值。 …………X为连续随机变量
m x E[x]
xf ( x)dx
m x E[ x ] xi P( x xi ) xi P( xi )
i 1 i 1
… X为离散随机变量
连续型随机变量:X的可能取值为整个区间的任意值。如接收
机输出电压噪声。
离散型随机变量: X的可能取值为有限值。如掷殺子。
《 通信原理》第三章 随机过程
3-1-3
第1节随机过程的基本概念
分布函数 在实际问题中,往往研究X≦xi的概率比研究x=xi的概率更有意义。 随机变量X的取值不超过x的概率P(X ≦x)为X的(概率)分布函数。 记为F(x)= P(X ≦x)。 设离散随机变量X可能取值有6个,x1~x6 ,且x1﹤…﹤x6 ,概率表:
E[g( x )] g ( xi ) P( x xi ) g ( xi ) P( xi )
i 1 i 1
… X为离散随机变量
《 通信原理》第三章 随机过程
3-1-10
第1节随机过程的基本概念
随机过程的基本概念
( t )],
称为随机过程{X(t)}的均方值函数 称为随机过程{X(t)}的均方值函数. {X(t)} 定义R.2.6 我们把随机变量X(t) X(t)的方差 定义R.2.6 我们把随机变量X(t)的方差
2 σ X (t ) = Var [ X (t )] = E { X (t ) − µ X (t )] 2 }, [
定义R.1.3 给定随机过程X(t),t∈T,当时间t取
t1 , t 2 ,⋯, t n ∈ T ,n维随机变量 ( X (t1 ), X (t 2 ),⋯, X (t n ))
的分布函数记为
Ft1 ,t2 ,⋯,tn ( x1 , x2 , ⋯ , xn ) = P ( X (t1 ) ≤ x1 , X (t 2 ) ≤ x2 , ⋯ , X (t n ) ≤ xn ),
Review 随机过程的基本概念
R.1.随机过程的分布函数 定义R.1.1给定随机过程X(t),t∈T,对于每一个固定的 t∈T,X(t)是一个随机变量它的分布函数一般与t有关, 记为
Ft ( x) = P ( X (t ) ≤ x),
称为随机过程的一维分布函数。
若存在非负函数ft(x),使
Ft ( x) = ∫
称为随机过程{X(t)}的方差函数(Varance)
是随机过程在任意二个时刻t 设X(t1)和X(t2)是随机过程在任意二个时刻t1和t2 时的状态. 时的状态. 定义R.2.7 称X(t1)和X(t2)的二阶混合原点矩
R X (t1 , t 2 ) = E[ X (t1 ) X (t 2 )]
为随机过程{X(t)}的自相关函数(correlation),简称相关函数 定义R.2.8 称X(t1)和X(t2)的二阶混合中心矩
教学大纲_随机过程
教学⼤纲_随机过程《随机过程》教学⼤纲课程编号:121213A课程类型:□通识教育必修课□通识教育选修课□√专业必修课□专业选修课□学科基础课总学时:48 讲课学时:32实验(上机)学时:16学分:3适⽤对象:数学与应⽤数学(⾦融数学)、统计学先修课程:数学分析、⾼等代数、概率论毕业要求:1.掌握数学、统计及计算机的基本理论和⽅法;2.建⽴数学、统计等模型解决⾦融实际问题;3.具备国际视野,并且能够与同⾏及社会公众进⾏有效沟通和交流。
⼀、教学⽬标随机过程是对随时间和空间变化的随机现象进⾏建模和分析的学科,在物理、⽣物、⼯程、⼼理学、计算机科学、经济和管理等⽅⾯都有⼴泛的应⽤。
本课程介绍随机过程的基本理论和⼏类重要随机过程模型与应⽤背景,通过本课程的学习,使学⽣获得随机过程的基本知识和基本运算技能,同时使学⽣在运⽤数学⽅法分析和解决问题的能⼒得到进⼀步的培养和训练,为学习有关专业课程提供必要的数学基础。
⼆、教学内容及其与毕业要求的对应关系(⼀)教学内容随机过程的基本概念(有限维分布、数字特征,复值随机过程,特征函数),⼏种重要随机过程(独⽴过程,独⽴增量过程,伯努利过程,正态过程,维纳过程),泊松过程(定义(计数过程)与例⼦,泊松过程的叠加与分解,时间间隔与等待时间的分布,复合泊松过程,⾮齐次泊松过程),更新过程介绍,马尔科夫过程(离散时间的马尔科夫过程定义及转移概率,C-K⽅程,马⽒链的分布,遍历性与平稳分布,状态分类与分解,马⽒链的应⽤,连续时间的马尔可夫链的定义与基本性质,鞅论初步),平稳随机过程(平稳过程及相关函数,随机微积分,各态历经,谱密度)。
(⼆)教学⽅法和⼿段教师课上讲授理论知识内容及相关基本例题,学⽣课下练习及教师答疑、辅导相结合。
(三)考核⽅式实⾏过程考核和期末考试相结合的⽅式,期末闭卷考试为主(70%),平时过程考核为辅(30%)。
学期期末闭卷考试⼀次,采⽤统⼀的考题和统⼀的评分标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显然
随机变量 的可能取值只有0,1两种可能,于是
所以
再求F(x,1)
显然
所以
(2)计算
于是
3.设随机过程 共有三条样本曲线
且 试求随机过程 数学期望EX(t)和相关函数Rx(t1,t2)。
解:数学期望
相关函数
4.设随机过程
其中X是具有分布密度f(x)的随机变量。试求X(t)的一维分布密度。
因此 的数字期望为:
当 时
求其协方差函数:
当 且 时
当 且 时
当 但 即 时
类上当 时
当 时
当 时
13.设随机过程 (随机变量),向 , ,试求 的数字期望和协方差。
解:
14.设随机过程 ,向随机矢量 的协方差阵为 ,试求 的协方程函数。
解:
而
15.设随机过程 其中X,Y,Z只是相互独立的随机变量,各自的数学期望的0,方差为1,试求 的协方差函数。
(4)Yn的相关函数RY(n, m)。
解:(1)∵Y1=X1故概率分布则为
(2)∵ 可能的取值为0或2,-2
=
(3) 的数字期望为
(4)自样关函数
当m≥n时
∵ ( 相互独立)
∵
∴
∴ 当m≥n时
8.设随机过程 的数字期望为 协方差为 ,而 是一个函数。试求随机过程 的数字期望和协方差函数。
解:随机过程 的数字期望为
(1)
证明:
(2)若 是常数,则
证明:
=
20.设 是均方可导的随机过程,试证
这里 是区间 上的连续函数
证明:只要证
由于
即 [证毕]
其中0<p<1。试求X(t)的一维和二维分布,并求x(t)的数学期望和自相关函数
解:一维分布
二维分布:
X(t)的数字期望
随机过程X(t)的自相关函数为
且 ; 且 ; 且
7.设 是独立同分布的随机序列,其中 的分布列为
Xj
J=1,2,…
P
定义 。试对随机序列 求
(1)Y1的概率分布列;(2)Y2的概率分布列;(3)Yn的数字期望;
解:对于任意t>0因为
∴当x>0时
∴
当 时
∴ 随机过程 的一维分布密度为
5.在题4中,假定随机变量X具有在区间(0,T)中的均匀分布,试求随机过程的数字期望 和自相关函数
解:∵ 随机变量X的概率密度函数为
因此:
6.设随机过程 在每一时刻t的状态只能取0或1的数值,而在不同时刻的状态是相互独立的,且对于任意固定的t有
第一章随机过程的基本概念
1.设随机过程 ,其中 是正常数,而 是标准正态变量。试求 (t)的一维概率分布
解:∵当 即 即 时
若 即 时
当 时
此时
若 时
同理有
综上当: 即 时
2.利用投掷一枚硬币的试验,定义随机过程为
假定“出现正面”和“出现反面”的概率各为 。试确定 的一维分布函数 和 ,以及二维分布函数
解:根据定义
11.设随机过程 ,其中 是正常数,A和Ф是相互独立的随机变量,且A服从在区间[0,1]上的均匀分布,而 服从在区间[0,2π]上的均匀分布,试求 的数字期望和相关函数。
解:
12.设随机过程 ,其中 在区间 中均匀分布的随机变量。试求 的数字期望和协方差函数。
解:∵ 是区间 上均匀分布的随机变量,于是 的概率密度为
的协方差函数为
而
∴
思考:有没有更为简单的方法呢?
9.给定随机过程 ,对于任意一个数 ,定义另一个随机过程
试证: 的数字期望和相关函数分别为随机过程 的一维和二维分布函数。
证明:设 的一维和二维概率密度分加别为 和
则
若考虑到对任意的 是离散型随机变量,则有:
10.给定一个随机过程 和常数a,试用 的相关函数表示随机过程 的相关函数。
解:
16.设随机过程 的均方导数存在,试证
证明:
证毕
17.设 是相互独立分别服从正态分布 的随机变量,作随机过程 。试求下则随机变量的数学期望。
解:
18.试证明均方导数的下列性质。
(1)
证明:
(2)若a,b为常数,则
证明:
(3)若 为可微函数,则ቤተ መጻሕፍቲ ባይዱ
证明:定义范数: ,易证
又
19.试证明均方极限的下列性质。