结构力学3桁架

合集下载

第五章静定平面桁架(李廉锟_结构力学)全解

第五章静定平面桁架(李廉锟_结构力学)全解

除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆
内力仍可首先求得。
返回
退出
02:31
§5-3 截面法
结构力学
示例1:试求图示桁架中杆EF、ED,CD,DG的内力。
截面如何选择?
退出
返回
02:31
§5-3 截面法
解: (1) 求出支座反力FA和FB。
结构力学
(2) 求下弦杆CD内力,利用I-I截面 ,力矩法 取EF和ED杆的交点E为矩心, CD杆内力臂为竖杆 高h,由力矩平衡方程∑ME=0,可求CD杆内力。
结构力学
退出
返回
02:31
§5-1 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
结构力学
2. 三角形桁架
3. 抛物线桁架
退出
返回
02:31
§5-1 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
结构力学
2. 联合桁架 (combined truss)
3. 复杂桁架 (complicated truss)
1 F A
2 F
退出
返回
02:31
§5-2 结点法
结点法计算简化的途径:
结构力学
2.对称结构受对称荷载作用, 内力和反力均为对称:
受反对称荷载作用, 内力和反力均为反对称。
E 点无荷载,红色杆不受力 垂直对称轴的杆不受力 对称轴处的杆不受力
FAy FAy
FBy FBy
退出
返回
02:31
§5-3 截面法
退出
返回
02:31
§5-2 结点法
10 kN 5 kN 2m

结构力学静定平面桁架

结构力学静定平面桁架
三角形:内力分布不均
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C


E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN

=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)

桁架与拱 结构力学

桁架与拱 结构力学

A
M x [解] 由式 y x H

ql 2
ql 2
先列出简支梁的弯矩方程
q M x x l x 2
拱的推力为:
MC ql 2 H f 8f
注意
*合理轴线对应的是
一组固定荷载; *合理轴线是一组。
所以拱的合理轴线方程为:
q 8f 4f y x x l x 2 2 x l x 2 ql l
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 3.325 6.796 11.235 11.665 11.700 1.421 3.331 1.060 0.600 1.000 0.472 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125 0.000 0.375 4.500 0.375
B 1 1 2 2 B B
a1
b1
c
y f l2
b2 P2
HB
HA
MB 0
A
1 1
2 2
A
A
x
VA
l1
A
B
l
P1 P2
VB
P1
d c f
c
VA
H
x
VB
l1
VA
M 0 荷载与跨度一定 V l P d H f 0 时,水平推力与 M 矢高成反比 M H f 0 H
y0
d q dS 2 N sin 0 2 N qR
q Rd N d 0
R N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为园弧。

结构力学——静定桁架

结构力学——静定桁架

静定桁架的稳定性分析方法
静定桁架的稳定性分析原理
静定桁架的稳定性分析方法: 能量法、力法、位移法等
静定桁架的定义和分类
静定桁架的稳定性提高静定桁架稳定性的措施
增加桁架的刚度:通过增加桁架的截面尺寸、材料强度等方法提高桁架的刚度,从而提高桁架的 稳定性。
静定桁架的杆 件受力可以分 为轴向力、剪 力和弯矩三种, 其中轴向力和 剪力是主要的
受力形式。
静定桁架的受 力特性还与桁 架的支座条件 有关,不同的 支座条件会影 响桁架的受力 分布和变形情
况。
03
静定桁架的组成与分类
静定桁架的基本组成
桁架:由杆件组成的结构,用于 承受荷载
荷载:施加在桁架上的力,包括 集中荷载和分布荷载
优化桁架制造工艺:通过优化桁架的制造工艺,提高桁架 的质量和生产效率
优化桁架安装工艺:通过优化桁架的安装工艺,提高桁架 的安装质量和效率
THNK YOU
汇报人:XX
静定桁架的应力计算方法: 截面法、图乘法、矩阵位移 法等
矩阵位移法:利用矩阵位移 法计算桁架的位移和内力,
适用于复杂桁架结构
静定桁架的变形计算
变形计算的基本原理:利用静定桁架的平衡条件求解 变形计算的方法:图乘法、解析法、有限元法等 变形计算的应用:预测桁架的变形情况,优化桁架设计 变形计算的注意事项:考虑桁架的材质、截面尺寸、载荷等因素的影响
静定桁架的内力分布规律
桁架的内力主要由轴力和剪力组成
轴力沿桁架的轴线方向分布,剪力沿桁架的横截面方向分布
桁架的内力分布与桁架的杆件布置、荷载分布等因素有关
通过静定桁架的内力分析,可以确定桁架各杆件的内力大小和方向,为桁架的设计和优 化提供依据
内力分析中的注意事项

桁架与拱 结构力学解剖

桁架与拱 结构力学解剖
对于平面桁架,由于平面任意力系的独立平衡方程数 为3,因此所截断的杆件数一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
n
m
1
A 2.5FP
34
n2m
FP
FP
FP
FP
FP
6 5m
6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离体, 不管其上有几个轴力,如果某
三、按几何组成分类
简单桁架 (simple truss)
先组成三角形,再由 加二元体组成
联合桁架 (combined truss)
由几个简单桁架通过 二、三刚片规则组成
复杂桁架 (complicated truss)
四、按受力特点分类:
1. 梁式桁架
2. 拱式桁架
竖向荷载下将 产生水平反力
结点法(nodal analysis method)
桁架结构(truss structure)
横梁
主桁架
纵梁
弦杆
上弦杆 斜杆 竖杆 腹杆
下弦杆
桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只受结点荷载 作用的直杆、铰结体系”的工程结构.
特性:只有轴力,而没有弯矩和剪力。轴力又称为 主内力(primary internal forces)。
实际结构中由于结点并非是理想铰,同时还将产生弯矩、 剪力,但这两种内力相对于轴力的影响是很小的,故称为 次内力(secondary internal forces)。
以只有一个结点的隔离体为研究对象,用汇交 力系的平衡方程求解各杆内力的方法

结构力学自测题(第三单元三铰拱、桁架、组合结构内力计算)

结构力学自测题(第三单元三铰拱、桁架、组合结构内力计算)

结构力学自测题(第三单元三铰拱、桁架、组合结构内力计算)姓名学号一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)1、图示拱在荷载作用下, N DE为30kN 。

()2、在相同跨度及竖向荷载下,拱脚等高的三铰拱,其水平推力随矢高减小而减小。

()3、图示结构链杆轴力为2kN(拉)。

()2m2m4、静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。

()5、图示桁架有:N1=N2=N3= 0。

()a a a a二、选择题(将选中答案的字母填入括弧内)1、在径向均布荷载作用下,三铰拱的合理轴线为:A.圆弧线;B.抛物线;C.悬链线;D.正弦曲线。

()2、图示桁架C 杆的内力是:A. P ;B. -P/2 ;C. P/2 ;D. 0 。

()3、图 示 桁 架 结 构 杆 1 的 轴 力 为 :A.2P ;B. -2PC.2P /2; D. -2P /2。

( )a a a a a a4、图 示 结 构 N DE ( 拉 ) 为:A. 70kN ;B. 80kN ;C. 75kN ;D. 64kN 。

( )4m 4m4m4m三 、填 充 题( 将 答 案 写 在 空 格 内 )1、图 示 带 拉 杆 拱 中 拉 杆 的 轴 力N a = 。

6m6m2、图 示 抛 物 线 三 铰 拱 , 矢 高 为 4m , 在 D 点 作 用力 偶 M = 80kN ·m ,M D 左 =_______,M D 右 =________。

8m 4m 4m3、图 示 半 圆 三 铰拱 , α 为 30°, V A = qa (↑), H A = qa /2 (→), K 截 面 的 ϕK =_______,Q K =________,Q K 的 计 算 式 为 __________________________________。

qAB Kαaa4、图 示 结 构 中 , AD 杆上 B 截 面 的 内 力M B =______ ,____面 受 拉 。

结构力学专题三(桁架影响线)

结构力学专题三(桁架影响线)

例3:求作图示桁架1、2杆轴力影响线。
1
2
h
B 5d
作业: 4—9、 4—10 4—11*、4—12*
复习静力法作静定结构影响线的方法,及 各种结构的影响线形状。
2
3
45
4m
1
3m 3m 3m 3m 3m 3m 3m 3m
求FN2
截面法
荷载作用在上弦:
0.75
荷载作用在下弦:
9/8
3
4
27
FN2影响线
16
例2:求做图示桁架1-5杆轴 3m 3m 3m 3m 3m 3m
求FN3
截面法
荷载作用在上弦:
13
8
荷载作用在下弦:
13
4
3 13
荷载作用在下弦:
1
0.5
0.5
FN5影响线
小结 作桁架影响线时应注意:
(1)荷载作用在上、下弦时,影响线不同; (2)列影响线方程与求桁架内力相同(结点法、 截面法),所取隔离体也相同;
(3)用结点法时,注意荷载是否作用在结点上; (4)用截面法时,注意左、右影响线方程不同;
(5)结点间影响线按直线规律变化。
第四章 影响线
§4-5 桁架影响线
桁架承受的是结点荷载。 经结点传荷的主梁影响线的做法同样适用于桁架。 用静力法求各杆影响线等同于用静力法求各杆轴力。
例2:求做图示桁架1-5杆轴力。
2
3
45
4m
1
3m 3m 3m 3m 3m 3m 3m 3m
求FN1
截面法
1.5
FN1影响线
例2:求做图示桁架1-5杆轴力。
16
13 4
FN3影响线

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。

二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。

采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。

计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。

结点法一般适用于求简单桁架中所有杆件轴力。

2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。

T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。

X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。

K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。

若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。

Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。

若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。

对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。

结构力学桁架截面法例题

结构力学桁架截面法例题

结构力学桁架截面法例题
结构力学桁架截面法例题
一、题目:
一根钢桁架有两种不同截面,桁架长度为3m,端部修里夹具为α=60°,桁架的两个截面信息如下:
截面1:
a1=20mm,b1=10mm,I1=40×104mm4
截面2:
a2=50mm,b2=20mm,I2=500×104mm4
请用桁架截面法计算其承载力。

二、解答:
1、计算桁架的顶点角度θ和抗弯矩Mx:
利用转矩定理,可以得到桁架承载力P的表达式:
P=Mx/l*cosθ
用已知量计算得θ=30°,Mx=12.33×104N·m
2、求解桁架的承载力P:
将计算得的θ和Mx代入表达式:
P=12.33×104N·m/3m*cos30° = 4.11×104N
3、计算桁架的屈曲应力σbb:
利用屈曲应力的表达式:
σbb=Mx/S
用已知量计算得S=12.5×104mm2,σbb=0.99MPa。

以上便是本题的答案。

桁架承载力P=4.11×104N,屈曲应力σbb=0.99MPa。

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0

结构力学——静定桁架

结构力学——静定桁架

C FP
D FP
E
关于桁架计算简图的三个假定
FN
上弦杆
2
斜杆 竖杆 h 桁高
2 FS2=0 1
1
下弦杆
d
节间长度 跨度l
FN
FS1=0
1)各结点都是光滑的理想铰。 2)各杆轴线都是直线,且通过结点铰的中心。 3)荷载和支座反力都作用在结点上,且通过铰的中心。 满足以上假定的桁架,称为理想桁架
第一节
第三节
桁架计算的截面法
截面法计算步骤:
1.求反力;
2.判断零杆;
3.合理选择截面,使待求内力的杆为单杆;
4.列方程求内力
第三节
桁架计算的截面法
具体处理方法 —— 两刚片
F
D
S
组成分析法
E
FP C
FN1
FN2
F
K
DABFx来自AFy FN3
F m m
x K S
0 0 0
FN1 FN2 FN3
FAy
O
FP
E
II
D
5a
H
J
FBy
FN3 XN3 2 a / 3
13 a / 3
a
A
C
D
FAy
YN3
3a
m
O
0
YN3
FN3
第三节
桁架计算的截面法
有些杆件利用其特殊位置可方便计算 任意隔离体中,除某一杆 件外,其余杆都汇交于一 点(或相互平行),则此 杆称截面单杆。
截面单杆性质:
投影方程 由平衡方程直接求单杆内力
柳州市维义大桥主桥采用(108+288+108)m中承式连续钢桁 拱桥结构,为双向8车道城市桥梁,主桁由2片钢桁架组成,采用

结构力学的桁架的受力与稳定探究

结构力学的桁架的受力与稳定探究

结构力学的桁架的受力与稳定探究结构力学是研究物体在外部力作用下的受力和变形规律的学科。

而桁架是一种由组成的纵杆和连接节点构成的空间结构,广泛应用于建筑、航空航天等领域。

本文将探究桁架结构的受力和稳定性。

一、桁架结构的基本概念桁架结构由众多的杆件和节点组成,杆件通常为直线段,节点则是杆件的连接点。

其中,水平杆件称为横杆,垂直杆件称为竖杆。

在桁架结构中,杆件只受轴力作用,不受弯矩和剪力的影响。

二、桁架结构的受力分析1. 杆件内力的计算桁架结构的受力分析首先需要计算杆件的内力。

根据牛顿第三定律,桁架结构中连接在每个节点上的杆件上的力大小相等、方向相反。

利用平衡条件和受力平衡方程,可以计算出每个杆件的轴向力大小。

2. 节点受力的平衡在桁架结构中,节点是连接杆件的关键部分。

对每个节点进行受力分析,根据受力平衡条件,可以得到节点处的合力为零。

利用这个平衡条件,我们可以解算出各个杆件的内力分布情况。

三、桁架结构的稳定性分析1. 稳定性的定义桁架结构的稳定性是指结构在受到外部力作用时不产生失稳或坍塌的能力。

稳定性分析是桁架结构设计的重要一环,合理的结构稳定性可以保证结构的安全可靠。

2. 稳定性的影响因素桁架结构的稳定性受到多种因素的影响,包括节点的刚度、杆件的长度和截面尺寸、外部荷载的大小和作用方向等。

较长的杆件容易发生弯曲,导致稳定性下降,因此需要增加支撑节点或采用增加截面尺寸的方法来提高结构的稳定性。

3. 稳定性的评估方法评估桁架结构的稳定性通常采用稳定系数方法。

稳定系数表示结构在受到外力作用时的稳定程度,通常取值为0到1之间。

稳定系数越接近1,结构的稳定性越好。

通过计算各个节点的稳定系数,可以评估整个桁架结构的稳定性。

四、桁架结构的应用与发展桁架结构由于其轻质、高强度、良好的稳定性等特点,在建筑、桥梁、航空航天等领域得到广泛应用。

随着材料科学和结构设计理论的不断发展,桁架结构的设计和制造技术也在不断完善,为各行各业提供了更多的解决方案。

同济大学结构力学第三章-8(桁架)

同济大学结构力学第三章-8(桁架)

因为
FN=±M0/r ±
其中:M0为同样跨度的简支梁相应位置的弯矩, 其中: 为同样跨度的简支梁相应位置的弯矩, 其中 为弦杆内力对矩心的力臂。 r 为弦杆内力对矩心的力臂。
平行弦杆的竖杆内力及斜杆的竖向 分力等于简支梁相应位置的剪力, 简支梁相应位置的剪力, 简支梁相应位置的剪力 由中间向两端递增。 由中间向两端递增。
I
12 G E 4m
M图(kN . m)
B 2m 4m
C -6
D 4m 2m 2m
I
3 kN
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件返Leabharlann 回§3-7 静定结构的一般性质
在线性弹性范围内,静定结构满足平衡 条件的反力和内力解答是唯一的。 非荷载因素不引起静定结构的反力和内 力。 非荷载因素:温度变化、支座位移、材
§3-5 静定组合结构
特点 既有桁架杆, 既有桁架杆,又有弯曲杆 一般有一些关键的联系杆 求解的关键点 选择恰当方法解决关键杆内力计算 选择截面时, 选择截面时,必须注意区分两类杆
组合结构的计算
组合结构——由链杆和受弯杆件混合组成的结构。 由链杆和受弯杆件混合组成的结构。 组合结构 由链杆和受弯杆件混合组成的结构 8 kN A FN图(kN) 5 kN 4 -6 F 6 12
抛物线形弦杆的上弦符合合理 抛物线形弦杆的上弦符合合理 拱轴线,腹杆内力为零。 拱轴线,腹杆内力为零。
三角形桁架的腹杆内力由中间向两 三角形桁架的腹杆内力由中间向两 端递减。 端递减。
小 结
熟练掌握 计算桁架内力的基 本方法: 结点法和截面法 本方法: 采取最简捷 最简捷的途径计算桁架 采取最简捷的途径计算桁架 内力
§3-4 静定平面桁架-续 静定平面桁架-

结构力学第5章

结构力学第5章

F
x
0
FN 3 0
M
B
3-5 静定平面桁架
例 求桁架各杆内力 Ⅰ A 4×d FP FP Ⅰ B Ⅱ
解 Ⅰ-Ⅰ:
FxA A FyA
FP
FP
FxB FyB
M
Ⅱ-Ⅱ: C Ⅱ 4×d C FP
A
0
FyB FP
FyB FxB
同理可求出A、C两点的约束力。 进而可求其它杆件的内力
M
C
0
由比例关系得
Ⅲ-Ⅲ:
Fx1 FP 3
FN1 5FP 3

Fx 0
FN3 cos 45 Fx1 0
FP
FP
FP
FP
FN3 2 FP 3
3-5 静定平面桁架
求解由两个刚片组成的体系
FN3
FN2 FN1
利用三个平衡方程,求FN1、FN2、FN3。 然后,求解内外两个三角形各杆轴力。
2 FP 2
2 FP 2
F
FP/2 FN图
G
3-7 组合结构
例 FP 做组合的内力图 E D

FP
再请学 生判断 零杆。 FNEC FNDC FNDB
a
A a C B a
FN DB FP
FN EC 2FP
FN DC 0
FPa
2FPa
FP 2FP
M图 FQ图 2FP FP
FN图
3-7 组合结构
3-5 静定平面桁架
例 求指定杆轴力
2 A FP1 FP2 5×d 3 FP3 1 B A FP1 FP2 FN2 FN3 解 取出一个三角形刚片
FN1
取出另一个三角形刚片

结构力学讲稿

结构力学讲稿

第五章静定平面桁架§5-1 概述梁刚架:受载后主要弯矩,应力不均匀(变截面;截面形式工形拱式结构:M小N大,应力分布比较均匀;施工复杂,需要坚固的结构支承桁架:M小,应力分布均匀,适用于较大空间,用料省自重轻大跨屋架、托架、吊车梁、南京长江大桥主体结构一、桁架定义:桁架:由若干直杆在其两端全用铰连接而成的结构,当荷载只作用在结点上时,各杆只有N,截面上的应力分布均匀,可以充分发挥材料的作用。

桁架可分为{ 平面桁架:空间桁架:(网架、井架)实际桁架(较复杂、结合实例)1)}结点:焊接、铆接、近乎刚结、介于铰于刚结之间。

2)}轴线:不能绝对平、直。

3)}杆的结合区:各杆也不一定完全相交于一点。

有个结合区域、应力十分复杂。

4)}自重:非结点荷载,荷载、支反力:不全是作用在结点上。

但经过实验和工程实践证明:以上因素对于桁架属次要因素,对桁架受力影响较小。

取桁架的计算简图时,引入如下假定:(计算时)理想桁架:(计算简图)满足这些假定的桁架1)桁架结点:所有结点为理想铰,光滑、无摩擦。

2)杆件的轴线:绝对平直、在平面内、通过铰的中心(理想轴)。

3)荷载、支反力:所有外力作用于结点上并且位于桁架平面内。

(结点荷载)4)线弹性材料,小变形。

主应力(基本应力):按理想平面桁架计算得到的应力。

按理想桁架计算,可以反映桁架的主要受力性能次应力(附加应力):实际桁架与理想桁架之间的差异引起杆件弯曲,产生附加的弯曲内力由此产生的应力理想桁架,各杆只产生轴力(二力杆、轴力杆)二、桁架的组成名称(坡屋顶、房子屋架)弦杆(上弦杆、下弦杆)、腹杆(竖杆、斜杆)、端斜杆(端柱)d:节间距离,l:跨度,H:桁高三、桁架的分类(结合图例)按外形特点分:平行弦桁架三角形桁架抛物线桁架折弦桁架按支座反力的性质分:梁式桁架(无推力桁架)拱式桁架(有推力桁架)按静力特性:静定桁架(有无多余约束、计算方法)拱式桁架超静定桁架按几何组成方式分:简单桁架:由基础或一个基本的铰结三角形开始,每次用不在同一直线上的两链杆联结一新结点联合桁架:由简单桁架组成;按两刚片规则组成的联合桁架、按三刚片规则组成的联合桁架复杂桁架:凡不属于前两类的均为此类。

结构力学 第三章桁架讲解

结构力学  第三章桁架讲解

上弦杆
腹杆
下弦杆
理想与实际的偏差:并非理想铰接, 并非理想直杆, 并非为二力杆。
主内力:按计算简图计算出的内力,次内力:实际内力与主内力的差值
2.桁架的分类
按几何组成分类:
简单桁架—在基础或一个铰结三角形上依次加二元体构成 联合桁架—由简单桁架按基本组成规则构成 复杂桁架—非上述两种方式组成的静定桁架
第三章 静定结构受力分析
§3-4 静定桁架受力分析
(Statically determinate trusses)
1. 桁架的特点
(1)桁架的结点都是光滑无摩擦的铰结点; 理想桁架:
(2)各杆的轴线都是直线,并通过铰的中心;
结论:理想桁 架中的杆件均
(3)荷载和支座反力都作用在结点上。
是“二力杆”
对称,方向反对称的荷载
Fp
Fp
Fp
Fp
对称荷载
反对称荷载
对称结构的受力特点:在对称荷载作用下内力是对称的, 在反对称荷载作用下内力是反对称的。
Fp
Fp
Fp
Fp
E
D
0
A
B
C
Fp
Fp
E
D
A
B
C
既对称 又平衡 NCE NCD 0
E
D
既反对称
E
D
NED 0
又平衡
例:试求图示桁架A支座反力.
B
F
0, NDF

N DA
Fp

其它杆件轴力求 法类似.
求出所有轴力后, 2 / 2 应2把2F轴p 力标在杆件旁.
F
0, N DE

2Fp / 2
对于简单桁架,若与组成顺序相反依 次截取结点,可确保求解过程中一个方程 只包含一个未知力。

结构力学(拱与桁架)

结构力学(拱与桁架)

4. 结点法计算举例
(1)首先由 桁架的整体平衡 条件求出支反力 . (2)截取各 结点解算杆件内力 .取结点G隔离体
SGE
HB=120kN
B
+60 45
75
D
0
-45
+60 40 30
50
E 20 G
15kN 4m
3m
+15
HA=120kN
A
60 C
15kN 4m
25
-120 VA=45kN
4m
YDG=SDGsinα=-(RA-P1-P2-P3)
YDG XDG RA

返回
3 . 几点结论
(1) 用截面法求内力时,一般截断的 杆件一次不能多于三个(特殊情况例外). (2) 对于简单桁架,求全部杆件内力 时, 应用结点法;若只求个别杆件内力, 用截面法. 合杆件的内力求出,然后再对各简单桁架 进行分析(见图).
返回
(1)力矩法 以例说明

设支反力已求出. 求CD杆的内力. 作截面Ⅰ-Ⅰ, 取左部分 为隔离体.
RA

RB
由∑ME=0 得

RAd-P1d-P2×0-SCDh=0
SCD R Ad P1d P2 × 0 = h
(2)投影法

求DG杆内力 作Ⅱ—Ⅱ截面, 取左部分为隔离体. 由∑Y=0 有 RA-P1-P2-P3+YDG=0
如图,FN—斜杆的内力 Fx—FN水平分力 Fy—FN竖向分力 l—斜杆的长度 lx—l水平投影 ly—l竖向投影
由比例关系可得
FN Fx Fy = = l lx ly
对于简单桁架,分析时与组成顺序相反 依次截取结点.

结构力学第05章桁架结构和组合结构

结构力学第05章桁架结构和组合结构

结点荷载
15-3-25
力力 学 教 研 室
7
第五章 桁架结构和组合结构
桁架结构(truss structure)
力力 学 教 研 室
第五章 桁架结构和组合结构
力力 学 教 研 室
第五章 桁架结构和组合结构
力力 学 教 研 室
第五章 桁架结构和组合结构 3、桁架简图
上承荷载
斜杆 下弦杆 节间
竖杆
Ø 力力矩法: (适用用于另外两个力力相交) 力力矩方方程 结论: 弦杆的水水平分力力等于X=±Mo/h 三个杆件不能相交于一一点。 限制: Ø 投影法: (适用用于另外两个力力平行行) 投影方方程 结论: 腹杆竖向分力力等于YDG=±V0 限制: 三个杆不能完全互相平行行。 示示例
15-3-25
Ø 复杂桁架: 不属于以上两类桁架之外的其它桁架。
l静 力力特性 Ø 静定桁架: 无无多余约束的几几何不变体 Ø 超静定桁架: 有多余约束的几几何不变体
15-3-25
力力 学 教 研 室
14
第五章 桁架结构和组合结构 三、桁架分析方方法
l 支支座反力力: 与梁或者拱一一致 P3 P2 G F P E
4m
D
0
+60 40 30
E
15
3m
!
20 Ê -20
15kN 4m
+15
C
-20
15kN 4m
F
G
15kN
力力 学 教 研 室
第五章 桁架结构和组合结构
练习
力力 学 教 研 室
第五章 桁架结构和组合结构
以节点为平衡对象,画出受力力图:
FC y F BC FB A FA B FA D FD B FD A FD y FBD FD C FC B FC FC

3-2 静定平面桁架

3-2 静定平面桁架

§3-2 静定平面桁架1. 教学内容和要求本节主要学习静定平面桁架结构的受力特点和结构特点以及桁架结构的内力计算方法——结点法、截面法、联合法。

通过学习,熟练掌握桁架结构计算的方法,能够判断零杆、计算桁架的轴力。

2. 主要内容1. 桁架的结构特点2. 结点法(1)3. 结点法(2)4. 结点法(3)5. 结点法(4)6. 截面法(1)7. 截面法(2)8. 联合法3. 学习指导桁架内力计算中主要是应用平面力系的平衡方程,因此,应正确理解平衡方程的特点和结构的受力特点,最关键的是利用力系的可解条件,从而使问题可解。

学习中应注重理解方法特点,多做练习、分析,从而达到灵活应用。

4. 参考资料《结构力学教程(Ⅰ)》P39~P493.2.1 静定平面桁架的特点1. 静定平面桁架:由若干直杆在两端铰接组成的静定结构。

桁架在工程实际中得到广泛的应用,但是,结构力学中的桁架与实际有差别,主要进行了以下简化:(1)所有结点都是无摩擦的理想铰;(2)各杆的轴线都是直线并通过铰的中心;(3)荷载和支座反力都作用在结点上。

2. 桁架的受力特点桁架的杆件都在两端受轴向力,因此,桁架中的所有杆件均为二力杆。

3. 桁架的分类简单桁架:由一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。

(图3-11a)联合桁架:由几个简单桁架,按两刚片法则或三刚片法则所组成的几何不变体。

(图3-11b)复杂桁架:不属于前两种的桁架。

(图3-11c)图3-11a图3-11b图3-11c4.桁架内力计算的方法结点法、截面法、联合法。

3.2.2 结点法结点法:截取桁架的一个结点为脱离体计算桁架内力的方法。

结点上的荷载、反力和杆件内力作用线都汇交于一点,组成了平面汇交力系,因此,结点法是利用平面汇交力系求解内力的。

※结点平衡的特殊情,常见的以下几种情况可使计算简化:图3-12a1图3-12a2图3-12b 1.零杆的判定:(1)不共线的两杆结点,当无荷载作用时,则两杆内力为零(图3-12a1),N1=N2=0。

结构力学3静定结构的受力分析-桁架

结构力学3静定结构的受力分析-桁架

3)适用:简单桁架
4)计算要点:
①一般结点上的未知力不能多于两个。
②计算顺序按几何组成的相反次序进行,即从最后一个 二元体开始计算。
3.6 静定平面桁架
12
1、结点法 4)计算要点: ②计算顺序按几何组成的相反次序进行,即从最后一个二元体开 始计算。
③结点单杆 以结点为平衡对象能 仅用一个方程求出内力的杆件, 称为结点单杆。
FN
平面桁架:当桁架各杆轴线和外
力都作用在一个平面内。
FN
4.理想桁架中杆的内力 主内力—轴力,拉力为正,压力为负。
3. 5静定平面桁架
7
5、桁架的特点及各部分的名称
斜杆
上弦杆
竖杆
桁高
下弦杆 斜杆
腹杆 竖杆
节间
l 跨度
3. 5静定平面桁架
8
6、桁架的分类
1)按弦杆外形分类
a) 平行弦桁架
b)抛物线桁架
P 2P P
A
B
3.7 静定结构受力分析总述
2、静定结构派生性质 ③构造变换的特性
P
A
B
37
P
A
B
当静定结构的一个内部几何不变部分作构造变换时,其 余部分的内力不变。
3.7 静定结构受力分析总述
38
35
2、静定结构派生性质
②静定结构的平衡力系特性(局部平衡特性)
当平衡力系加在静定结构的某一内部几何不变部分时,其
余部分都没有内力和反力。
P 2P P
aa
P
P
aa
P
P
局部平衡部分也可以是几何可变的 只要在特定荷载作用下可以维持平衡
3.7 静定结构受力分析总述
36
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a/4 a/4
Ⅰ1
a/4 a/4 a/4 a/4
3FP /4
t
FN1
3FP /4
F 0
FN1 3FP 4
例 求指定杆轴力法2 D结点 FN1 t FP D
a A a

a
C

方法1
Ⅰ-Ⅰ截面 FP D FN1 B
零杆
M
B
0 FN1 FP
C
F 0
t
3、复杂桁架:除上述两种 桁架以外,均为复杂桁架。
6.2
结点法 (method of joints)
方法:由结点平衡条件求轴力; 特点:只有两个平衡条件,一次最多能解出两个轴力。 顺序:与去掉二元体的顺序相同(简单桁架)。
假设拉力为正 +
例:
3
-90
5
7
结点2
4m
FN 23 40
FN 24 60
3 Fx13 80 60 4 5 FN 13 80 100 4
结点3
3
60
80 40 Fy34
Fx13
FN35 Fx34 FN 34 40 5 50
FN 35 90
FN12
FN12 Fx13 0
FN12 60
FN 35 30 60 0
0 FyA 5FP 4
M 0 F 0
C y
方法:用截出来的部分桁架的平衡条件,求轴力。
力矩法:除所求杆外,其余各杆都相交于一点。 投影法:除所求杆外,其余各杆都平行。
特点:只有三个平衡方程,一次最多能求三个未知数。 例 求指定杆轴力 FP
Ⅰ a/4

1 求支反力 2 求轴力 Ⅰ-Ⅰ截面 t
2 求轴力 Ⅰ-Ⅰ截面 D a B 3FP /4 A 5FP /4 FP FN1 C
FP

FP
A a 5FP /4 解
1
3 2
ⅠC
a
2a

M
C
0 FN1 3 2FP 4
FN3 FN2 C D
Ⅱ-Ⅱ截面
1 求支反力
M A 0 FyB 3FP 4 M
B
B 3FP /4
FN3 3FP 4 FN 2 3 2 FP 4
FN1 FP
例 求指定杆轴力 2 求轴力 C Ⅰ E D FP FP 3a Ⅰ -Ⅰ E D FP FP
A 解
2a

B 5FP /2
FN1
B 5FP /2
1 求支反力
M
E
0 FN1 7FP 6
然后,可以继续求解其它杆件的轴力
特殊截面
FP
求解由两个刚片组成的体系 FP k 。
A FyA
3
-90 30
5
-90
7
60 80
Fx1=0
+ 15 75
60
2 40kN
60
4 60kN
75
6 80kN 8
4×3m=12m Fy1=80kN Fy8=100kN
4m
_
40
+
75 _ 40 0 20 80 100
零杆的判定 1 FN1 α≠0 FN2
2
单杆 α≠0
无荷载作用,且α≠0, FN1=FN2=0
无荷载作用,单杆为零杆
特殊结点
2 1 FN1 FN4 α≠0 FN2 FN3
α α
FN1 K结点 FN2
无荷载作用,且α≠0, FN1=FN2 FN3=FN4
无荷载作用,α≠0 FN1=-FN2

求桁架各杆的轴力 D
C
7
10
4
1 C
8
9 A 11
5 6
2
3 B A B
6.3
例 求指定杆轴力

截面法
40
Fx1=0 1 Fy1=80kN
FN23
60 2 40
60
2
60
40kN 4 60kN 6 80kN 8 4×3m=12m Fy8=100kN 5 3 4
FN24
Fy 34 40 80 0 Fy 34 40 3 Fx 34 40 30 4
4
结点1 Fy13
1 80
Fy13 80
M
FP
C
0 FxB FP 2
6.1 平面桁架的特点和组成分类
桁架:铰接平面直杆体系。 特点: 1 2 3 4 所有杆及作用力均在同一平面内; 各杆均以理想铰相连; 均为直杆; 荷载均作用在结点上。
所有杆均 为二力杆
符号:拉为正、压为负。
桁架的分类(按几何构造)
1、简单桁架:由基础或基本三角形,通过增加二元体得到的桁架。
2、联合桁架:由两个简单桁架 连成的几何不变体系。

B FyB FyB
。 k FP FP
简单桁架——一般采用结点法计算; 联合桁架——一般采用截面法计算。
解三个刚片组成的刚架 FP FP
解: Ⅰ -Ⅰ FP FP
Ⅰ A 4×d
Ⅰ B Ⅱ
A
FyB
M
C Ⅱ Ⅱ -Ⅱ
A
0 FyB FP
FyB FxB
6×d
C
同理可求出A、C两点的约束力。 进而可求其它杆件的内力
相关文档
最新文档