高等代数张禾瑞版教案第章矩阵

高等代数张禾瑞版教案第章矩阵
高等代数张禾瑞版教案第章矩阵

第五章矩阵教学目的:

1.掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。

2.了解几种特殊矩阵的性质。

教学内容:

5.1矩阵的运算

1矩阵相等

我们将在一个数域上来讨论。令F是一个数域。用F的元素a ij作成的一个m行n列矩阵

叫做

(a ij

一个

F

(a+b)A=Aa+Ba;

a(bA)=(ab)A;

这里A,B和C表示任意m*n矩阵,而a和b表示F中的任意数。

利用负矩阵,我们如下定义矩阵的减法:

A—B=A+(—B)。

于是有

A+B=C?A=C—B。

由于数列是矩阵的特例,以上运算规律对于数列也成立。

4乘法

定义3数域F 上的m*n 矩阵A=(a ij )与n*p 矩阵B=(b ij )的乘积AB 指的是这样的一个m*p 矩阵。这个矩阵的第I 行第j 列(I=1,2,…,m;j=1,2,…p )的元素c ij 等于A 的第I 行的元素与B 的第j 列的对应元素的乘积的和:

c ij =a i1b 1j +a i2b 2j+…+a in b nj 。

注意,两个矩阵只有当第一个矩阵的列数等于第二个矩阵的行数时才能相乘。

我们看一个例子:

=???

?

???-+?+-?-?-+?+??+?-+-?-?+?-+?0)2(11)3(3)5()2(2113001)1()3(2)5(02)1(12 =???? ??--81570.

5 矩阵乘法的运算规律:

B np 和B nm A nn 那么u il 因此(1)l (2)111l k k ===由于双重求和符号可以交换次序,所以(1)和(2)的又端相等.这就证明了结合律.

我们知道,数1乘任何数a 仍得a.对距阵的乘法来说,存在这样的距阵,他们有类似于数1的性质. 我们把主对角线上(从左上角到右下角的对角线)上的元素都是1,而其它元素都是0的n 阶正距阵

1 0 0

01 0

…………

001

叫做n 阶单位距阵,记作I n ,有时简记作I.

I n 显然有以下性质:

I n A np =A np ;A mn I n =A mn .

距阵的乘法和加法满足分配律:

A(B+C)=AB+AC;

(B+C)A=BA+CA;

这两个式子的验证比较简单,我们留给读者。注意,由于距阵的乘法不满足结合律,所以着两个式子并不能互推。

距阵的乘法和数与距阵的乘法显然满足以下运算规律:

a(AB)=(aA)B=A(aB).

给了任意r 个距阵A 1,A 2,……A r ,只要前一个距阵的列数等于后一个距阵的行数,就可以把它们依次相乘,由于距阵的乘法满足结合律,作这样的乘积时,我们可以把因子任意结合,而乘积A 1A 2……A r 有完全确定的意义。特别,一个n 阶正方阵A 的r 次方(r 是正整数)有意义

我们再约定

A 0=I

这样一来,一个n 阶距阵的任意非负整数次方都有意义。

是f(A)如果u u 定义A=a a m1把A a 11a 叫A d) (aA)=aA’

我们只验证(5),其它三个规律容易验证.设

A=??????? ??a a a a a a a a a mn m m n n 2122221

11211,B=??????? ??b b b b

b b b b b np n n p p 212222111211首先容易看出,(AB)’和B ’A ’都是pm 矩阵.其次,位于(AB)’的第i 行第j 列的元素就是位于AB 的第j 行第i 列的元素,因而等于

a j1

b 1i +a j2b 2i +…+a jn b ni .位于B ’A ’的第i 行第j 列的元素等于B ’的第i 行的元素与A ’的第j 列的对应元素的乘积之和,因而等于B 的第i 列的元素与A 的第j 行的对应元素的乘积之之和:

b 1i a j1+b 2i a j2+…+b ni a jn 上面两个式子显然相等,所以(5)成立..

等式(4)和(5)显然可以推广到n个矩阵的情形,也就是说,以下等式成立: (A1+A2+…+A n)’=A1’+A2’+…+A n’,

(A1A2…A n)’=A n’A n-1’…A2’A1’

5.2可逆矩阵矩阵乘积的行列式

教学目的:

1掌握逆矩阵的概念及逆矩阵存在的充要条件。

2掌握求逆矩阵的方法,尤其能利用矩阵的行初等变换求逆矩阵。

教学内容:

1逆矩阵的定义:令A是数域F上的一个n阶矩阵。若是存在F上n阶矩阵B,使得AB=BA=I,

那么A叫作一个可逆矩阵(或非奇异矩阵),而B叫作A的逆矩阵。

若是矩阵A可逆,那么A的逆矩阵由A唯一决定。

事实上,设B和C都是A的逆矩阵:

AB=BA=I,AC=CA=I。

那么

(A

一个

而B是任意一个2阶矩阵。那么乘积AB的第二行的元素都是零,

因此不存在二阶矩阵B,使AB=I,从而A不是可逆矩阵。

3初等变换

首先注意以下事实:对于一个矩阵施行一个行或列初等变换

相当于把这个矩阵左乘或右乘以一个可逆矩阵。

我们把以下的三种正方阵叫做初等矩阵:

i列j列

1

1

0…1i行

1

P ij=

1

1…0j行

1

1

i列

m×n矩阵A A的第i后加到第i T ij(-k)

P-1ij

那么

因为

引理5.2.1说明,矩阵是否可逆这一性质不因施行初等变换而有所改变。

由定理4.1.2,给了任意一个m×n矩阵A,总可以通过行初等变换和交换两列的初等变换,把A化为以下的一个矩阵:

10...0c1,r+1 (1)

01?...0c2,r+1 (2)

……………………………

(3)00…1c r,r+1…c rn

0 0

……………………………

0 0

继续对(3)施行第三种列初等变换,显然可以把c ij都化为零,因此,我们有

定理5.2.2一个m ×n 矩阵A 总可以通过初等变换化为以下形式的一个矩阵。

A =???? ??----O O O I r n r m r r m r

n r ,,, 这里I r 是r 阶单位矩阵,O st 表示s ×t 的零矩阵、r 等于A 的秩。

特别,当A 是一个n 阶矩阵时,上面的矩阵ā是一个对角矩阵(即主对角线以外的元素都是0的矩阵)。

根据引理5.2.1,n 阶矩阵A 是否可逆,决定于ā是否可逆。然而对角矩阵ā是否可逆很容易看出。 当ā等于单位矩阵I 时,ā可逆。因为I 本身就是I 的逆矩阵。当ā不等于I 时,ā至少有一个元素全是零的行,因而右乘ā以任意一个n 阶矩阵B ,所得的乘积āB 中也至少有一个元素全是零的行,所以ā不可逆。

这样,n 阶矩阵A 可逆,当且仅当它可以通过初等变换化为单位矩阵I 。

阵E a n1a |A|第一种还是要用到初等变换。

先说明以下事实:一个n 阶可逆矩阵A 可以通过行初等变换化为单位矩阵I 。事实上,根据定理5.2.4,|A|≠0。因此A 的第一列至少有一个元素不等于零。我们显然可以通过行初等变换把A 化为

这里A1是一个n-1阶矩阵。行列式|A1|显然等于矩阵(4)的行列式,而后者与|A|最多差一个不等于零的因子,因此|A1|≠0,从而A1的第一列至少有一个元素不等于零。于是通过行初等变换可由(4)得到

这里A 2是一个n-2阶矩阵。这样下去,最后我们得到单位矩阵I 。

但对于一个矩阵施行行初等变换相当于以初等矩阵左乘这个矩阵,因此给了一个可逆矩阵A ,可以找到一些初等矩E 1,E 2,…,E s ,使

(5)Es …E 2E 1A=I

用A-1右乘这个等式的两端,得

(6)Es …E 2E 1I =A -1

比较矩式(5)和(6)。

5 求矩阵的方法:

在通过行初等变换把可逆矩阵A 化为单位矩阵I 时,对单位矩阵I 施行同样的初等变换,就得到A 的逆矩阵A-1。

例1求矩阵

A=2

010131

21---

的逆矩阵。

我们写下A ,并把单位矩阵I 写在A 的右边:

设n 这里A *那么(7)AA *=A *A=|

A |000|A |000

|A |

我们把矩阵A *叫做矩阵的伴随矩阵。

当A 是可逆矩时,由定理5.2.5,|A|≠0,因此由(7)得

A ???? ??*A |A |1=???

? ??*|A |1A A=I 这就是说

(8)A -1=|

A |1A* 这样,我们得到了一个求逆矩阵的公式。

利用这个公式去求逆矩阵,计算量一般很大,公式(8)的意义主要在理论方面。例如,我们可以应用它来给出克莱姆规则的另一种推导法。

考虑线性方程组

a 11x 1+a 12x 2+…+a 1n x n =

b 1,

a 21x 1+a 22x 2+…+a 2n x n =

b 2

………………………………

a n1x 1+a n2x 2+…+a nn x n =

b n

利用矩阵的乘法可以把这个线性方程组写成

(9)

??A-1 ??x x x n i 1首先证明

引理5.2.6一个n 阶矩A 总可以通过第三种行和列的初等变换化为一个对角矩阵

A =??????

? ??d d d n 0021 , 并且|A|=|ā|=d 1d 2…dn

证如果A 的第一行和第一列的元素不都是零。那么必要时总可以通过第三种初等变换使左上角的元素不为零。于是再通过适当的第三种初等变换可以把A 化为

??????

? ??000011A d . 如果A 的第一行和第一列的元素都是零,那么A 已经具有(10)的形式。对A1进行同样的考虑,易见可用第三种初等变换逐步把A 化为对角矩阵。根据行列式的性质,我们有

|A|=|ā|=d 1d 2…dn

定理5.2.7设A ,B 是任意两个n 阶矩阵。那么

|AB|=|A||B |

证先看一个特殊情形,即A 是一个对角矩阵的情形。设

令AB=,T 2,…,T q ,使

于是=|由这个定理显然可以得出,对于m 个n 阶矩阵A 1,A 2,…,A m 来说,总有

|A 1A 2…A m |=|A 1||A 2|…|A m |

6 关于矩阵乘积的秩

定理5.2.8两个矩阵乘积的秩不大于每一因子的秩。特别,当有一个因子是可逆矩阵时,乘积的秩等于另一因子的秩。

证设A 是一个m ×n 矩阵,B 是一个n ×p 矩阵,并且秩A=r 。由定理5.2.2,可以对A 施行初等变换将A 化为

ā=???

? ??000I r . 换句话说,存在m 阶初等矩阵E 1,…,E p 和n 阶初等矩阵E p+1,…,E q,使

E 1…E pA E p+1…E q =ā.

于是 =B A B A E E p q =-+-1

11

, 这里B=.1

11

B E E p q -+- ,显然,B A 除前r 行外,其余各行的元素都是零,所以秩B A ≤r 。另一方面,E 1…E p AB 是由AB 通行初等变换而得到的,所以它与AB 有相同的秩。这样就证明了秩AB ≤秩A ,同理可证秩AB ≤秩B 。

如果A ,B 中有一个,例如A 是可逆矩阵。那么一方面,秩AB ≤秩B ;另一方面,由于B=A -1

(AB ),所以秩B ≤秩AB 。因此,秩AB=秩B 。

这个定理也很容易推广到任意m 个矩阵的乘积的情形。任意m 个矩阵乘积的秩不大于每一因子的秩。

5.3矩阵的分块

教学目的:

1、掌握矩阵运算的分块技巧。

教学内容:

设A是一个矩阵。我们在它的行或列之间加上一些线,把这个矩阵分成若干小块。

例如,设A是一个4*3矩阵

a11a12a13

a21a22a23

A=a31a32a33

a41a42a44

我们可以如下地把它分成四块:

A,B

A=

Ap1

而a

A11+B11…………A1q+B1q

A+B=………………………………

Ap1+Bp1…………Apq+Bpq

Aa11…………Aa1q

Aa= ……………………

aAp1…………aApq

这就是说,两个同类的矩阵A,B,如果按同一种分法进行分块,那么A与B相加时,只需要最常用到的是矩阵的分块乘法。为了说明这个方法,先看一个例子。设

a11a12a13

a21a22a23

A11A12

A=a31a32a33=A21A22

a41a42a43

b11b12B11

B=b21b22=

------------B21

b31b32

分块乘法就是在计算AB时,把各个小块看成矩阵的元素,然后按照通常矩阵乘法把它们相乘。用式子写出,就是

A11A12B11A11B11+A12B21C1

AB=A21A22B21=A21B11+A22B21=C2

一般地说,设A=(aij)是一个m*n矩阵,B=(bij)是一个n*p矩阵。把A和B如下地分块,使A的列的分法和B的行的分法一致:

n1n2

的数

这里

Cij也是

由于

1≤i

可以假定

i=m1+…+m h-1+u,1≤u≤mk;

(4)j=p1+…+p k-1+v,1≤v≤pk

于是与cij对应的是小块矩阵Chk中第u行第v列的元素的和,即Ah1,…,Ahs的第u行分别与

B1k,…,Bsk的第v列的乘积的和。但由(4),Ah1,…,Ahs的第u行凑起来就是A的第i行,而

B1k,…,Bsk的第v列凑起来就是B的第j列。所以

b1j

(5)c uv=(ai1…ain1)┊+(ai,n1+)

bn1j

比较(3)和(5),得cij=c uv。

在某些情形,对矩阵进行适当的分块,可以简化计算。我们看两个例子。

例1 设

10001032

A=0100B=-1201

-12101041

1100-1-120

为了求乘积AB,我们可以对A,B如下地分块

1000

0100IO

A==A1I

-1210

1100

因此求得:

1032

于是

A1O

OA2

OO…

OO

OO

OO

-1O…O

A

A-1=OA2-1…O.

………………

OO…As-1

近世代数教案 (2)

近世代数教案 西南大学 数学与统计学院 张广祥 学时数:80(每周4学时) 使用教材:抽象代数——理论、问题与方法,科学出版社2005 教材使用说明:该教材共10章,本课程学习前6章,覆盖通用的传统教材(例如:张禾瑞《近世代数基础》)的所有内容,但本教材更强调抽象代数理论的应用和方法特点。本教材的后4章有一定难度和深度,可作为本科近世代数(二)续用。如果不再开设近世代数(二),则可以供有兴趣的学生自学、自读,进一步了解现代代数学更加前沿的内容,拓宽知识面。 教学方法:由于该教材首次在全年级使用,采用教研室集体备课的方式,每2周一次参加

教学的教师集体研讨备课。 每节配有3—5题常规练习作业。每章提供适量的(3—4题)思考问题供学生独立思考,学生完成的思考题成绩可记入平时成绩。 整学期可安排1—2次相关讲座,介绍现代代数学的研究方法或研究成果。本学期已经准备讲座内容:群与Goldbach猜想。 教学手段:黑板板书与Powerpoint 课件相结合。 主要参考书: 1.张禾瑞,近世代数基础,1952第一版,1978年修订版,高等教育出版社 2.刘绍学, 近世代数基础,(面向21世纪课程教材,“九五”国家级重点教材) 高等教育出版社,1999 3.石生明, 近世代数初步, 高等教育出版社2002 4.B.L.Van der Waerden,代数学,丁石孙,曾肯成,郝鈵新,曹锡华译,1964卷1,1976卷2,科学出版社 5. M.Kline, 古今数学思想,卷1-4,张理京,张锦炎,江泽涵译,上海科技出版社2002 第二章数环与数域 本章教学目标: 1. 熟悉整数剩余类环的运算,了解整数剩余类环在数论研究中的作用。 2. 数环就是数系,熟悉各种不同形态的数环与数域;有限的、无限的;交换的、不交换的。 3. 学习整环的分式域、素域与扩域的理论。 4. 综合应用数环与数域的初等方法证明欧拉二平方和定理、Lagrange四平方和定理。 5. 本章通过若干数论定理的学习,使学生了解和熟悉环论的初等方法,为第3章与第5章学习系统的扩域理论奠定基础。 教学时数:共6节,8学时 2.1 整数剩余类环 复习引入:通过整数的整除性问题,了解引入整数剩余类环的必要性,一方面使学生知道

高职高专高等数学第一章教案

第一章 函数、极限、连续 教学要求 1.了解分段函数、复合函数、初等函数等概念。 2.理解数列极限、函数极限的定义。 3.掌握极限的四则运算法则。 4.了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。理解无穷小的性质。 5.了解夹逼准则和单调有界数列极限存在准则。熟练掌握两个重要极限求极限。 6.理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。 教学重点 函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;函数的连续性。 教学难点 函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 函数 一、函数的定义与性质 1.集合; 2.邻域; 3.常量与变量; 4.函数的定义; 5.函数的特性。 二、初等函数 1.反函数; 2.复合函数; 3.初等函数。 三、分段函数 一、 函数的定义与性质 1集合定义 具有某种特定性质的事物的总体;组成这个集合的事物称为该集合的元素,元素a 属于集 合A ,记作a A ∈, 元素a 不属于集合A, ,a A ? 2集合的表示法: 列举法 12{,, ,}n A a a a = 描述法 {}M x x =所具有的特征 3集合间的关系: 若,x A ∈则必,x B ∈就说A 是B 的子集,记做A B ?;若A B ?且A B,≠ A B 则称是的真子集;若A B ?且B A ?,则A B =。

4常见的数集 N----自然数集;Z----整数集;Q----有理数集;R----实数集 它们间关系: ,,.N Z Z Q Q R ??? 5例 {1,2}A =,2{320}C x x x =-+=,则A C = 不含任何元素的集合称为空集, 记作? 例如, 2 {,10}x x R x ∈+==? 规定 空集为任何集合的子集. 6运算 设A 、B 是两集合, 则 1) 并 A ?B ? {x ∣x ∈A 或x ∈B}; 2) 交 A ?B ?{x ∣x ∈A 且x ∈B} 3) 差“A \B” ?{x ∣x ∈A 且x ?B} 4) 补(余)?S/A ,其中S 为全集 5) 其运算律 (1) A ?B= B ?A , A ?B =B ?A (2)(A ?B )?C =A ?(B ?C) , (A ?B)= A ?(B ?C) (3)(A ?B ) ? C =(A ? C )?(B ? C) (A ? B ) ? C =(A ? C ) ? (B ? C) (4) (),()c C C c c c A B A B A B A B ?=??=? 注意A 与B 的直积A ?B ?{(x,y)∣x ∈A 且y ∈B} 例如:R ?R={(x,y)∣x ∈R 且y ∈R} 表示xoy 面上全体点的集合, R R ?常记为2 R 7邻域: 设a 与δ是两个实数且0δ>,称集合{}x a x a δδ-<<+为点a 的δ邻域。点a 叫做这邻域的中心,δ叫做这邻域的半径。记作(){}U a x a x a δδδ=-<<+ 点a 的去心δ邻域记做0 ()U a δ ,0(){0}U a x x a δδ=<-<。 注意:邻域总是开集。 8常量与变量: 在某个过程中变化着的量称为变量,保持不变状态的量称为常量, 注意:常量与变量是相对于“自变量变化过程”而言的. x δ δ

抽象代数电子教案

《抽象代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:黑板板书与口授教学法。 教学时数:12学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数讲义(电子教案)

《近世代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数电子教案

近世代数电子教案 第一章基本概念 在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除。数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算。这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算。近世代数(抽象代数)的主要内容就是研究所谓代数系统,即带有运算的集合。近世代数在数学的其它分支和自然科学的许多部门里都有重要的应用。近二十多年来,它的一些成果更被直接应用于某些新兴的技术。 我们在高等代数里已经初步接融到的群、环、域是三个最基本的代数系统。在本书里我们要对这三个代数系统做略进一步的介绍。 在这一章里,我们先把常要用到的基本概念介绍一下。这些基本概念中的某一些,例如集合和影射,在高等代数里已经出现过。但是为了完整起见,我们不得不有所重复。 §1.1 集合 ●课时安排约1课时 ●教学内容(《近世代数》张禾瑞著) 集合的概念,元素,空集合,集合与集合之间的包含、交、并、积,子集的 概念 例题: 例1 A={1.2.3} B={2.5.6} 那么A∩B={2} A={1.2.3} B={4.5.6} 那么A∩B=空集合 例2 A={1.2.3} B={2.4.6} 那么A∪B={1.2.3.4.6} A={1.2.3} B={4.5.6} 那么A∪B={1.2.3.4.5.6} 1 习题选讲P 4 ●教学难点 元素与集合的关系(属于)集合与集合的关系(包含) ●教学要求 掌握集合元素、子集、真子集。集合的交、并、积概念 2 ●布置作业P 4 ●教学辅导 精选习题:(侧重概念性、技巧性的基本问题) 1.B A,但B不是A的真子集,这个情况什么时候才能出现? §1.2 映射 ●课时安排约1课时 ●教学内容(《近世代数》张禾瑞著) 映射,象,原象,映射相同的定义及映射的表示方法

高等数学上册第一章教案

第一章:函数、极限与连续 教学目的与要求 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 所需学时:18学时(包括:6学时讲授与2学时习题) 第一节:集合与函数 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

四年制本科教学指导计划

数理与信息工程学院数学与应用数学专业(师范) 四年制本科教学指导计划 一、培养目标和基本规格 (一)培养目标 培养德、智、体、美全面发展,具有良好的科学素质,扎实的数学专业基础和现代教育技术,能适应基础教育改革发展需要,具有创新精神和实践能力的中等学校数学教师、教育科学研究人员及其它教育工作者。 (二)基本规格 掌握马列主义、毛泽东思想和邓小平理论的基础原理及“三个代表”重要思想,逐步树立科学的世界观和为人民服务的人生观,具有良好的职业道德,自觉为社会主义现代化建设服务的精神。 敬业爱岗,诚实守信,乐于奉献,遵纪守法,团结合作,为人师表,热爱教育事业。有良好的思想品德、社会公德和职业道德。有理想,有强烈的社会责任感。 毕业生应获得以下几方面的知识和能力: 1.具有扎实的数学基础,初步掌握数学科学的思想方法,其中包括数学建模、数学计算、解决实际问题的基本能力。 2.具有良好的使用计算机的能力,能够进行简单的程序编写,熟练掌握与专业课程相关的计算机应用知识(包括常用语言、工具及数学软件),能够对教学软件进行简单的二次开发。计算机应用能力应达到规定的等级要求。 3.具备良好的教师职业素养和从事数学教学的基本能力。熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论。 4.了解近代数学的发展概貌及其在社会发展中的作用,了解数学科学的某些新发展,数学教学领域的一些最新研究成果和教学方法,了解相近专业的一般原理和知识;学习文理渗透的课程,获得广泛的人文和科学修养。 5.有较强的语言表达能力和班级管理能力。 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科研能力。 7.掌握一种外国语,达到规定的等级要求。 二、学制

数学电子书

数学电子书(提供下载地址) 本帖来自: 数学中国作者: clanswer 日期: 2010-4-12 22:46 您是本帖第1289个浏览者 / A8 a" u& l, e' h( }" G4 ? 《中等数学》连载《高中奥数训练题》59套.pdf 1-50界莫斯科数学竞赛(含详细答案,PDF版).pdf 20世纪数学经纬(张奠宙).pdf 500个最新世界著名数学智力趣题.pdf 数学,确定性的丧失.chm IMO中的数论.pdf 抽屉原则与涂色问题.pdf 最优系统控制.pdf FOURIER分析与逼近论第一卷(上册).pdf Fourier分析-河田龙夫.pdf (课件)图论讲义.pdf (课件)数值分析.pdf (课件)矩阵论.pdf N阶幻方的一种简易解法.pdf 奥林匹克数竞赛解迷(高中部分)(康纪权).pdf 奥数教程初一年级第一版.pdf 奥数教程初二年级第一版.pdf 奥数教程初三年级第一版.pdf 奥数教程高一年级(第3版).pdf 奥数教程高二年级(第3版).pdf 奥数教程高三年级(第3版).pdf 半群的S-系理论.pdf 不等式论文50篇.pdf 不等式入门.pdf 不等式与区域.pdf 不等式与线性规划初步.pdf 不可思议的e.pdf 蔡国武___素数具有无穷多项的新证明方法.pdf 蔡国武___心算(速算)多个多位数相乘的统一速算算法设计.pdf 蔡国武猜想(未证明)___对任意方程ZN=X2+Y2存在正整数组解(X,Y)情况的猜想.pdf 测度论.pdf 测度论基础.pdf 测度论讲义.pdf 常微分方程.pdf 陈景润,邵品琮-世界数学名题欣赏丛书.pdf 陈省身文集.pdf 乘电梯·翻硬币·游迷宫·下象棋.pdf 抽象代数学卷1基本概念.pdf 抽象代数学卷2线性代数.pdf

《高等数学》教案 第一章 函数

第一章函数 函数是积分的主要研究对象,后边关于微积分性质的研究都是对函数性质的研究。本章首先引入集合,然后研究两个实数集合之间的一种对应关系——函数关系,并介绍函数的基本性质和常见的初等函数。 §1.1 集合 一、概念 集合是具有某种属性的事物的全体,或者说是一些确定对象的汇总。构成集合的事物或对象,称为集合的元素。 举例: 有限集合:由有限个元素构成的集合。 无限集合:由无限个元素构成的集合。 集合通常用大写字母A、B、C、X、Y等表示。元素由小写字母a、b、c、x、y等表示。如果a是集合A的元素,记作a∈A;否则记作a?A。 二、表示方法 1、列举法:按任意顺序列出集合的所有元素,并用花括号“{ }”括起来。如:A ={a,b,c,d} 即列出集合中所有元素,不计较顺序,但不能遗漏和重复。 2、描述法:设P(a)为某个与a有关的条件或法则,A为满足P(a)的一切a 构成的集合,记为A ={a∣P(a)}。如:A ={x∣x2-5x+6=0} 即把集合中元素所具有的某个共同属性描述出来,用{a∣a具有的共同属性}。 3、文氏图:可以表示集合以及集合间的关系。 三、全集与空集 由所研究的所有事物构成的集合称为全集,记为U。全集是相对的。 不包含任何元素的集合称为空集,记为Φ。 四、子集 1、定义:如果集合A的每一个元素都是集合B的元素,即“如果a∈A,则

a∈B”,则称A为B的子集。记为A?B或B?A。 如果A?B成立,且B中确有元素不属于A,则称A为B的真子集。记作A?B或B?A。 2、定义:设有集合A和B,如果A?B且B?A,则称A与B相等。 结论:(1)A?A,即“集合A是其自己的子集”; (2)Φ?A,即“空集是任意集合的子集”; (3)若A?B,B?C,则A?C,即“集合的包含关系具有传递性”。 五、集合的运算 1、定义:设有集合A和B,由A和B的所有元素构成的集合,称为A和B 的并,记为A∪B。即A∪B ={x∣x∈A或x∈B}。 性质:(1)A?A∪B,B?A∪B; (2)A∪Φ = A,A∪U = U,A∪A = A。 2、定义:设有集合A和B,由A和B的所有公共元素构成的集合,称为A 与B的交,记为A∩B。即A∩B ={x∣x∈A且x∈B}。 性质:(1)A∩B?A,A∩B?B; (2)A∩Φ =Φ,A∩U = A,A∩A = A。 3、定义:设有集合A和B,属于A而不属于B的所有元素构成的集合,称为A与B的差,记为A-B。即A-B ={x∣x∈A且x ? B}。 4、定义:全集中所有不属于A的元素构成的集合,称为A的补集,记为A。即A={x∣x∈U且x ? A}。 性质:A∪A =U,A∩A=Φ。 习题7、8:

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--??但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ??=s I PAQ

正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -= . 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题 1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ). (A) AB BA - (B) AB BA + (C) 2()AB (D) BAB (A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵. (A) T A A (B) T A A - (C) 2A (D) T A A - 3.以下结论不正确的是( C ).

最新近世代数期末考试题库教案资料

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射 2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 A 、2 B 、5 C 、7 D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样) 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。 5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B ---------。 2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。 3、环的乘法一般不交换。如果环R 的乘法交换,则称R 是一个------。 4、偶数环是---------的子环。 5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。 8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么---------。 9、一个除环的中心是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换σ和τ分别为:??????=6417352812345678σ,? ? ? ???=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。

近世代数讲义(电子教案)

《近世代数》课程教案 第一章基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

抽象代数电子教案 新 优质文档

《抽象代数》课程全册教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:黑板板书与口授教学法。 教学时数:12学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

近世代数发展简史

近世代数发展简史 根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。 一、近世代数的定义 代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。 二、近世代数的发展 代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。 域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。而域的系统发展是从1910年,施泰尼茨(Steinitz,E.)的著名论文“域的代数理论”开始的。同期,布尔(Boole,G.)研究人的思维规律,于1854年出版《思维规律的研究》,建立了逻辑代数,即布尔代数。但格论是在1933~1938年,经伯克霍夫(Birkhoff,G.D.)、坎托罗维奇(Канторович.П.В.)、奥尔(Ore,O.)等人的工作才确立了在代数学中的地位。另一方面,1843年,哈

高等数学同济七版第一章电子教案

第一章 函数与极限 第一节 函数 一、集合 定义:以点a 为中心的任何开区间称为点a 的邻域,记作()U a . 设δ是任一正数,则开区间(),a a δδ-+就是点a 的一个邻域,这个邻域称为点a 的δ邻域,记作(),U a δ,即()(){}{},,||U a a a x a x a x x a δδδδδδ=-+=-<<+=-<,点a 称为这邻域的中心,δ称为这邻域的半径. 点a 的δ邻域去掉中心a 后,称为点a 的去心δ邻域,记作(),U a δ。 ,即 (),U a δ。 ()(){},,|a a a a x a x a a x a δδδδ=-?+=-<<<<+或{}|0x x a δ=<-< 把开区间(),a a δ-称为a 的左δ邻域,把(),a a δ+称为a 的右δ邻域. 二、函数 1.函数的定义 定义:对于任意x D R ∈?,按照对应法则f ,总存在确定的实数y 与之对应,则称y 是 x 的函数,记()y f x =.自变量x 取值的全体称为f 的定义域.对于用抽象的数学式表示的函数, 由于没有实际意义,通常约定这种函数的定义域是使得算式有意义的一切实数组成的集合,这种定义域称为函数的自然定义域. 例:设x 为任一实数,不超过x 的最大整数称为x 的整数部分,记作[]x ,例如507?? =???? , 1=,[]11-=-,[]3.54-=-,把x 看作变量,则函数[]y x =称为取整函数.显然[]x x ≥,

定义域为R ,值域为Z .注:若整数[]n x >,则n x >. 指数函数:x y a =(0a >且1a ≠) 幂函数:y x μ=(R μ∈是常数) 对数函数:log a y x =(0a >且1a ≠),特别地,当e a =时,记为ln y x = 三角函数:sin y x =,cos y x =,tan y x =,1cot tan y x x ==,1sec cos y x x ==, 1 csc sin y x x == 反三角函数:arcsin y x =,arccos y x =,arctan y x =,arccot y x = arcsin y x =:定义域[1,1]-,值域[,]22 ππ - arccos y x =:定义域[1,1]-,值域[0,]π

高等代数(张禾瑞版)备课教案-第5章矩阵

第五章 矩 阵 教学目的: 1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。及其基本性质,并熟练地对矩阵进行运算。 2. 了解几种特殊矩阵的性质。 教学内容: 5.1 矩阵的运算 1 矩阵相等 我们将在一个数域上来讨论。令F 是一个数域。用F 的元素a ij 作成的一个m 行n 列矩阵 A= ?????? ? ??a a a a a a a a a mn m m n n 2 1 222 2111211 叫做F 上一个矩阵。A 也简记作(a ij )。为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。 一个 m 行n 列矩阵简称为一个m*n 矩阵。特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。 F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。 以下提到矩阵时,都指的是数域F 上的矩阵。 我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。 先引入前两种运算。 2 矩阵的线性运算 定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。 注意 ,我们只能把行数相同,列数相同的两个矩阵相加。 以上两种运算的一个重要特例是数列的运算。 现在回到一般的矩阵。我们把元素全是零的矩阵叫做零矩阵,记作0。如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。 3 矩阵线性运输的规律 A+B=B+A ; (A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ; 这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。

高等数学精品课教案

高等数学精品课教案 摘要:一个量无论多么小,都不能是无穷小,零唯一例外.当...的导数的相关公式和运算法...设均可导,则(1);(2)(为常数);(3)30.复合函数的求导法则设,均可导,则复合... 关键词:论,算法,导 类别:专题技术 来源:牛档搜索(https://www.360docs.net/doc/3d18918463.html,)

本文系牛档搜索(https://www.360docs.net/doc/3d18918463.html,)根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。不代表牛档搜索(https://www.360docs.net/doc/3d18918463.html,)赞成本文的内容或立场,牛档搜索(https://www.360docs.net/doc/3d18918463.html,)不对其付相应的法律责任!

《高等数学》精品课教案 课 题:§1.1函数及其性质 教学目的:1.理解函数、分段函数的概念,会求函数的定义域、表达式及函数值 2.了解函数的有界性、单调性、奇偶性、周期性及反函数的定义 教学重点:初等函数的概念、图形及性质 教学难点:分段函数的概念 课 型: 讲授课 课 时:2课时 教学过程 一、导入新课 在自然界中,某一现象中的各种变量之间,通常并不都是独立变化的,它们之间存在着依赖关系,我们观察下面几个例子: 例如:某种商品的销售单价为p 元,则其销售额L 与销售量x 之间存在这样的依赖关系:L =px 又例如:圆的面积S 和半径r 之间存在这样的依赖关系:2 r S π= 不考虑上面两个例子中量的实际意义,它们都给出了两个变量之间的相互依赖关系,这种关系是一种对应法则,根据这一法则,当其中一个变量在其变化范围内任意取定一个数值时,另一个变量就有确定的值与之对应。两个变量间的这种对应关系就是函数概念的实质。 二、讲授新课 (一)函数的定义 定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 定义10 (集合的观点)A ,B 为两个数集,对任意的x ∈D ,存在f ,在B 中有唯一确定的值与之对应。记作:f :A →B 函数两要素:对应法则、定义域(有的可直接看出,有的需计算),而函数的值域一般称为派生要素。 例1 f(x)=2x 2 +3x-1就是一个特定的函数,f 确定的对应法则为: f( )=2( )2 +3( )-1 例10:设f(x+1)=2x 2 +3x-1,求f(x). 解:设x+1=t 得x=t-1,则 f(t)=2(t-1)2+3(t-1)-1=2t 2 -t-2 ∴f(x)=2x 2 – x – 2 其对应法则:f( )=2( )2 - ( ) -2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 ④y=x 0 (x ≠0 ) ⑤y=tanx(x ≠Z k k ∈+ ,2 π π)等. 例2 求函数y=6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有:

相关文档
最新文档