高考专项训练-二项分布、超几何分布

合集下载

二项分布超几何分布正态分布总结归纳及练习

二项分布超几何分布正态分布总结归纳及练习

专题:超几何分布与二项分布● 假定某批产品共有100个,其中有5个次品,采用不放回和放回抽样方式从中取出10件产品,那么次品数X 的概率分布如何?一、先考虑不放回抽样:从100件产品中随机取10件有C 10100种等可能基本事件.{X = 2}表示的随机事件是“取到2件次品和8件正品”,依据乘法原理有C 25C 895种基本事件,根据古典概型,得P (X = 2) = C 25C 895C 10100则称X 服从超几何分布类似地,可以求得X 取其它值时对应的随机事件的概率,从而得到次品数X 的分布列X 0 12345P C 05C 595C 10100C 15C 495C 10100C 25C 395C 10100C 35C 295C 10100C 45C 195C 10100C 55C 095C 10100二、再考虑放回抽样:从100件产品中有放回抽取10次,有10010种等可能基本事件.{X = 2}表示的随机事件是“取到2件次品和8件正品”,依据乘法原理有C 210·52·958种基本事件,根据古典概型,得P (X = 2) = C 210·52·95810010= C 210(5100)2(95100)8. 一般地,若随机变量X 的分布列为P (X = k ) = C k n p k qnk,其中0 < p < 1,p + q = 1,k = 0,1,2,…,n ,则称X 服从参数为n ,p 的二项分布记作X ~B (n ,p )。

例1: 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴; 12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为22,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布超几何分布与二项分布练习:1.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 2、.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布;(2)求甲、乙两人至少有一人入选的概率.3、已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ).4、某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ.5、有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.6、一个口袋中装有大小相同的2个白球和3个黑球.(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率; (2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

专题43 二项分布、超几何分布--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题43  二项分布、超几何分布--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题43二项分布、超几何分布【热点聚焦】离散型随机变量的均值与方差是高考的热点题型,以解答题为主,以实际问题为背景考查离散型随机变量的分布列求法、均值与方差在实际问题中的应用.(1)考查取有限个值的离散型随机变量及其分布列的概念及其性质;(2)考查超几何分布、二项分布及其应用、n 次独立重复试验的模型及其应用.(3)二项分布的分布列及其概率分布往往与离散型随机变量的数字特征结合命题.【重点知识回眸】(一)n 次独立重复试验(1)定义一般地,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.(2)公式一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,(k =0,1,2,…,n ).(二)二项分布1.若将事件A 发生的次数设为X ,发生的概率为P ,不发生的概率q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k (k =0,1,2,…,n )于是得到X 的分布列X 01…k…nPC 0n p 0qn C 1n p 1qn-1…C k n p k qn-k…C n n p n q0由于表中第二行恰好是二项式展开式(q +p )n =C 0n p 0q n +C 1n p 1q n -1+…+C k n p k q n -k +…+C n n p n q 0各对应项的值,称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).2.二项分布的期望、方差:若(),X B n p ,则()E X np =.若(),X B n p ,则()()1D X np p =-.(三)超几何分布1.在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=k n kM N MnNC C C --,k =0,1,2,…,m ,其中m =mi n {M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称随机变量X 服从超几何分布.X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…k n k M N Mn NC C C --2.超几何分布的均值:若X 服从参数为N ,M ,n 的超几何分布,则()nME X N=.【典型考题解析】热点一独立重复试验的概率【典例1】(山东·高考真题(理))位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率为()A .51()2B .2551()2C C .14/E mgd q=D .235551()2C C 【典例2】(2021·天津外国语大学附属外国语学校高三阶段练习)若某射手每次射击击中目标的概率均为23,每次射击的结果相互独立,则在他连续4次射击中,恰好有两次击中目标的概率为()A .49B .827C .481D .881【典例3】(2021·天津·高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.【规律方法】1独立重复试验的特点(1)每次试验中,事件发生的概率是相同的.(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.2.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解;在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.3.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验;4.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.热点二二项分布及其应用【典例4】(2022·全国·高三专题练习)若随机变量X 服从二项分布15,3B ⎛⎫⎪⎝⎭,则()4P X ==______.【典例5】(2022·全国·高三专题练习)如果随机变量X 服从二项分布120,3B ⎛⎫⎪⎝⎭,Y 服从二项分布220,3B ⎛⎫ ⎪⎝⎭,那么当,X Y 变化时,关于()()k k P X x P Y y ===成立的(),k k x y 的个数为______.【典例6】(2019·天津·高考真题(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【总结提升】1.二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数.2.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为kn kp q-.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()k k n kn n P k C p q -=,0,1,2,,k n = .它恰好是()np q +的二项展开式中的第1k +项.热点三二项分布有关的均值与方差问题【典例7】(2022·河南·上蔡县衡水实验中学高三阶段练习(理))已知随机变量()~10,0.6X B ,则()21D X +=()A.4.8B.5.8C.9.6D.10.6【典例8】(2018·全国·高考真题(理))某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数, 2.4DX=,()()46P X P X=<=,则p=A.0.7B.0.6C.0.4D.0.3【典例9】(2017·全国·高考真题(理))一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=____________.【规律方法】与二项分布有关的期望、方差的求法(1)求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).热点四超几何分布及其应用【典例10】(2022·四川·成都七中模拟预测(理))袋中有6个大小相同的黑球,编号为123456,,,,,,还有4个同样大小的白球,编号为7,8,910,,现从中任取4个球,则下列结论中正确的是()①取出的最大号码X服从超几何分布;②取出的黑球个数Y服从超几何分布;③取出2个白球的概率为1 14;④若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为1 14A.①②B.②④C.③④D.①③④【典例11】(2022·广东广州·一模)某从事智能教育技术研发的科技公司开发了一个“AI作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI 作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们的“向量数量积”知识点掌握的情况进行调查,样本调查结果如下表:甲校乙校使用AI作业不使用AI作业使用AI作业不使用AI作业基本掌握32285030没有掌握8141226假设每位学生是否掌握“向量数量积”知识点相互独立.(1)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,用ξ表示抽取的2名学生中使用“AI作业”的人数,求ξ的分布列和数学期望;(2)用样本频率估计概率,从甲校高一学生中抽取一名使用“AI作业”的学生和一名不使用“AI 作业”的学生,用“X=1”表示该名使用“AI作业”的学生基本掌握了“向量数量积”,用“X=0”表示该名使用“AI作业”的学生没有掌握“向量数量积”,用“Y=1”表示该名不使用“AI作业”的学生基本掌握了“向量数量积”,用“Y=0”表示该名不使用“AI作业”的学生没有掌握“向量数量积”.比较方差DX和DY的大小关系.【典例12】(2018·天津·高考真题(理))已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【总结提升】超几何分布的实际应用问题,主要是指与两类不同元素的抽取问题的概率计算和离散型随机变量的分布列、期望及方差的求解等有关的问题.描述的是不放回抽样问题,其实质是古典概型,主要用于抽检产品、摸不同类别的小球等概率模型.解题方法步骤:①定型:根据已知建立相应的概率模型,并确定离散型随机变量服从的分布的类型,特别要区分超几何分布与二项分布.②定参:确定超几何分布中的三个参数N,M,n.即确定试验中包含的元素的个数、特殊元素的个数及要抽取的元素个数.③列表:根据离散型随机变量的取值及其对应的概率列出分布列.④求值:根据离散型随机变量的期望和方差公式,代入相应数值求值.热点五概率统计综合问题【典例13】(2022·四川省南部中学高三阶段练习(理))我省将在2025年全面实施新高考,取消文理科,实行“312++”,其中,“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在高中学业水平考试的物理、历史科目中选择其中一科;“2”为再选科目,考生可在化学、生物、思想政治、地理4个科目中选择两科.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[)15,45称为中青年,年龄在[)45,75称为中老年),并把调查结果制成下表:年龄(岁)[)15,25[)25,35[)35,45[)45,55[)55,65[)65,75频数515101055了解4126521(1)把年龄在[)15,45称为中青年,年龄在[)45,75称为中老年,请根据上表完成22⨯列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计(2)若从年龄在[)55,65的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为X ,求X 的分布列以及()E X .20()P K k ≥0.050.0100.0010k 3.8416.63510.828附:()()()()()()22a b c d ad bc K a b c d a c b d +++-=++++.【典例14】(2022·重庆市二0三中学校高三阶段练习)2022年冬季奥林匹克运动会主办城市是北京,北京成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市.为迎接冬奥会的到来,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)在这10所学校中随机选取3所来调查研究,求在抽到学校至少有一个参与“自由式滑雪”超过40人的条件下,“单板滑雪”不超过30人的概率;(2)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作中至少有2个动作达到“优秀”.则该轮测试记为“优秀”,在集训测试中,小明同学3个动作中每个动作达到“优秀”的概率均为1 3,每个动作互不影响且每轮测试互不影响.如果小明同学在集训测试中要想获得“优秀”的次数的平均值达到3次,那么理论上至少要进行多少轮测试?【典例15】(2022·四川·达州外国语学校高三阶段练习(理))某观影平台为了解观众对最近上映的某部影片的评价情况(评价结果仅有“好评”、“差评”),从平台所有参与评价的观众中随机抽取216人进行调查,部分数据如下表所示(单位:人):好评差评合计男性68108女性60合计216(1)请将22⨯列联表补充完整,并判断是否有99%的把握认为“对该部影片的评价与性别有关”?(2)若将频率视为概率,从观影平台的所有给出“好评”的观众中随机抽取3人,用随机变量X 表示被抽到的男性观众的人数,求X的分布列和数学期望.(参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.)()2P K k≥0.100.050.0250.0100.0050.0010k 2.706 3.841 5.024 6.6357.87910.828【精选精练】一、单选题1.(2022·全国·高三专题练习)设50个产品中有10个次品,任取产品20个,取到的次品可能有X 个,则EX =()A .4B .3C .2D .1A .12B .1C .2D .23.(2023·全国·高三专题练习)已知随机变量()~4,X B p ,若()()209E X D X +=,则()1P X ≥=()A .1681B .6581C .89D .494.(2022·全国·高三专题练习)已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =()A .2B .1C .43D .235.(2023·全国·高三专题练习)已知袋子中有除颜色外完全相同的4个红球和8个白球,现从中有放回地摸球8次(每次摸出一个球,放回后再进行下一次摸球),规定每次摸出红球计3分,摸出白球计0分,记随机变量X 表示摸球8次后的总分值,则()D X =()A .8B .169C .163D .166.(2022·江西赣州·高三阶段练习(理))下列四个命题中,正确的个数的是()①.若随机变量(100,)X B p ~,且()20E X =,则1152D X ⎛⎫+= ⎪⎝⎭②.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则A 与B C D 是互斥事件,也是对立事件③.一只袋内装有m 个白球,n m -个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,(2)P ξ=等于23()A A mnn m -④.由一组样本数据()()()1122,,,,,,n n x y x y x y 得到回归直线方程y bx a =+,那么直线y bx a =+至少经过()()()1122,,,,,,n n x y x y x y 中的一个点A .1个B .2个C .3个D .4个7.(2022·全国·高三专题练习)盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么概率是310的事件为()A .恰有1个是坏的B .4个全是好的C .恰有2个是好的D .至多有2个是坏的8.(2022·全国·高三专题练习)一箱中装有6个同样大小的红球,编号为1,2,3,4,5,6,还有4个同样大小的黄球,编号为7,8,9,10.现从箱中任取4个球,下列变量服从超几何分布的是()A .X 表示取出的最小号码B .若有放回的取球时,X 表示取出的最大号码C .取出一个红球记2分,取一个黄球记1分,X 表示取出的4个球的总得分D .若有放回的取球时,X 表示取出的黄球个数二、多选题9.(2023·全国·高三专题练习)如图是一块高尔顿板示意图,在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为0,1,2,3,…,10,用X 表示小球落入格子的号码,则()A .()()519512P X P X ====B .()()1191024P X P X ====C .()5D X =D .()52D X =10.(2023·全国·高三专题练习)在某独立重复实验中,事件,A B 相互独立,且在一次实验中,事件A 发生的概率为p ,事件B 发生的概率为1p -,其中()0,1p ∈.若进行n 次实验,记事件A 发生的次数为X ,事件B 发生的次数为Y ,事件AB 发生的次数为Z .则下列说法正确的是()A .()()E X E Y =B .()()D X Y D =C .()()E Z D X =D .()()()n D Z D X D Y ⋅=⋅11.(2023·全国·高三专题练习)若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X ,则()A .3~4,5XB ⎛⎫⎪⎝⎭B .4(3)25P X ==C .X 的期望8()5E X =D .X 的方差24()25D X =12.(2022·全国·高三专题练习)已知随机变量~(2,)B n p ξ,*n ∈N ,2n ≥,01p <<,记()()f t P t ξ==,其中t ∈N ,2t n ≤,则()A .20()1nt f t ==∑B .20()2nt tf t np==∑C .011(2)(21)2n nt t f t f t ==<<-∑∑D .若6np =,则()(12)f t f ≤三、填空题13.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))若随机变量()~6,X B p ,()32D X =,则()32E X -=______.14.(2022·全国·高三专题练习)把半圆弧分成4等份,以这些分点(包括直径的两端点)为顶点,作出三角形,从中任取3个不同的三角形,则这3个不同的三角形中钝角三角形的个数X 不少于2的概率为______.15.(2022·全国·高三专题练习)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是______.16.(2022·全国·高三专题练习)一批产品共100件,其中有3件不合格品,从中随机()N n n ∈件,若用X 表示所抽取的n 件产品中不合格品的件数,则使1X =的概率取得最大值时,n =______.四、解答题17.(2022·山东潍坊·高三阶段练习)为了加强地下水管理,防治地下水超采和污染,保障地下水质量和可持续利用,推进生态文明建设,由国务院第149次常务会议通过的《地下水管理条例》自2021年12月1日起施行.某市水务部门组织宣传小分队进行法律法规宣传,某宣传小分队记录了前9周每周普及的人数,得到下表:时间/x 周123456789每周普及的人数y8098129150203190258292310并计算得:9111909i i y y ===∑,()92160i i x x =-=∑,()92155482i i y y =-=∑,()()911800i i i x x y y =--=∑.(1)从这9周的数据中任选4个周的数据,以X 表示4周中每周普及宣传人数不少于240人的周数,求X 的分布列和数学期望;(2)由于统计工作人员的疏忽,第5周的数据统计有误,如果去掉第5周的数据,试用剩下的数据求出每周普及的人数y 关于周数x 的线性回归方程.附:线性回归方程ˆˆy bx a =+中,()()()112211ˆn ni i i i i i n n i i i i x x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-.18.(2022·广西南宁·高三阶段练习(理))广西新高考改革方案已正式公布,根据改革方案,将采用“3+2+1”的高考模式.其中,“3”为语文、数学、外语3门参加全国统一考试.选择性考试科目为政治、历史、地理、物理、化学、生物6门.由考生根据报考高校以及专业要求,结合自身实际情况,首先在物理和历史中选择1门,再从政治、地理、化学、生物中选择2门,形成自己的“高考选考组合”.(1)由于物理和历史两科必须选择1科,某校想了解高一新生选科的需求,随机选取100名高一新生进行调查,得到如下统计数据,判断是否有95%的把握认为“选科与性别有关”?选择物理选择历史合计男生4050女生合计30100(2)该校将从参与调查的学生中抽取2人进行访谈,设选到“选择历史”的人数为X ,求X 的分布列和数学期望.附:()()()()22(),n ad bc K n a b c d a b c d a c b d -==+++++++.()20P K k ≥0.100.050.0250.010.0050k 2.706 3.841 5.024 6.6357.87919.(2022·四川省邻水县第二中学高三阶段练习(理))2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成功着陆,航天员翟志刚,王亚平,叶光富顺利出舱,神舟十三号载人飞行任务圆满完成.为纪念中国航天事业成就,发扬并传承中国航天精神,某校高一年级组织2000名学生进行了航天知识竞赛并进行纪录(满分:100分)根据得分将数据分成7组:[20,30),[30,40),..,[80,90],绘制出如下的频率分布直方图(1)用频率估计概率,从该校随机抽取2名同学,求其中1人得分低于70分,另1人得分不低于80分的概率;(2)从得分在[]60,90的学生中利用分层抽样选出8名学生,若从中选出3人参加有关航天知识演讲活动,求选出的3人竞赛得分不低于70分的人数X的分布列及数学期望. 20.(2022·广东·福田外国语高中高三阶段练习)为了了解一个智力游戏是否与性别有关,从某地区抽取男女游戏玩家各200名,其中游戏水平分为高级和非高级两种.(1)根据题意完善下列22⨯列联表,依据小概率值α=0.01的独立性检验,能否认为智力游戏水平高低与性别有关联?高级非高级合计女40男140合计(2)按照性别用分层抽样的方法从这些人中抽取10人,从这10人中抽取3人作为游戏参赛选手;(ⅰ)若甲入选了10人名单,求甲成为参赛选手的概率;(ⅱ)设抽取的3名选手中女生的人数为X,求X的分布列和期望.附:22()()()()()n ad bca b c d a c b dχ-=++++,n a b c d=+++.α0.100.050.0100.0050.001 xα 2.7063.841 6.6357.87910.828进货前,要求食品安检部门对每箱蔬菜进行三轮各项指标的综合检测,只有三轮检测都合格,蔬菜才能在该超市销售.已知每箱这种蔬菜第一轮检测不合格的概率为17,第二轮检测不合格的概率为18,第三轮检测合格的概率为89,每轮检测只有合格与不合格两种情况,且各轮检测是否合格相互之间没有影响.(1)求每箱这种蔬菜不能在该超市销售的概率;(2)如果这种蔬菜能在该超市销售,则每箱可获利400元,如果不能在该超市销售,则每箱亏损200元,现有4箱这种蔬菜,求这4箱蔬菜总收益的分布列.22.(2023·全国·高三专题练习)已知某种植物种子每粒成功发芽的概率都为13,某植物研究所分三个小组分别独立进行该种子的发芽试验,每次试验种一粒种子,每次试验结果相互独立.假定某次试验种子发芽则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.(1)第一小组做了四次试验,求该小组恰有两次失败的概率;(2)第二小组做了四次试验,设试验成功与失败的次数的差的绝对值为X,求X的分布列及数学期望;(3)第三小组进行试验,到成功了四次为止,在第四次成功之前共有三次失败的前提下,求恰有两次连续失败的概率.。

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

高中试卷-7.4 二项分布与超几何分布(精练)(含答案)

7.4 二项分布与超几何分布(精练)【题组一 二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A .2764B .964C .364D .34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为14所以3位患者中恰有1为患者被治愈的概率为12133194464P C æöæö=´´=ç÷ç÷èøèø故选:B 2.(2020·北京高二期末)已知随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( )A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =【答案】D【解析】随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =,故选:D.3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).A .60,24B .80,120C .80,24D .60,120【答案】D【解析】设该同学20次罚篮,命中次数为X ,则320,5X B æöç÷èø:,所以()320125E X =´=,()3324201555D X æö=´´-=ç÷èø,所以该同学得分5X 的期望为()551260E X =´=,方差为()224551205D X =´=.故选:D4.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X ,已知()3E X =,则m 等于( )A .2B .1C .3D .5【答案】C【解析】根据题意可得出63()()(33kk m k m P X k C m m-==++ ,即3(6,)3X B m ~+ 所以()36333E X m m=´=Þ=+故选C 5.(多选)(2020·全国高二单元测试)若随机变量ξ~B 1(5,)3,则P (ξ=k )最大时,k 的值为( )A .1B .2C .3D .4【答案】AB【解析】依题意5512()33kkk P k C x -æöæö==ç÷ç÷èøèø,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选:AB ..6.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X 表示抽到“好体能”学生的人数,求X 的分布列【答案】(1)众数和中位数分别是5.8,5.8;(2)19140;(3)分布列见解析;【解析】(1)这组数据的众数和中位数分别是5.8,5.8;(2)设至少有2人是“好体能”的事件为A ,则事件A 包含得基本事件个数为;2134124C C C +g 总的基本事件个数为316C ,213412431619()140C C C P A C +==g (3)X 的可能取值为0,1,2,3,由于该校男生人数众多,故X 近似服从二项分布1(3,)4B 3327(0)()464P x ===,1231327(1)()4464P x C ===g ,223139(2)(4464P x C ===g ,311(3)(464P x ===X 的分布列为:X123P276427649641647.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]L 这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.【解析】(1)由题意可知120名学生中身高大于1.60米的有18人,所以该校学生身高大于1.60米的频率为180.15120= 记d 为学生身高,则()()31.2 1.3 1.7 1.80.025120p p d d ££=<£== ()()151.3 1.4 1.6 1.70.125120p p d d <£=<£==()()()11.4 1.5 1.5 1.6120.02520.1250.352p p d d <£=<£=-´-´=所以0.0250.250.1m == ,0.125 1.250.1n ==,0.353.50.1t ==;(2)由(1)知学生身高在[]1.41.6, 的概率20.350.7p =´=随机变量X 服从二项分布()~3,0.7X B 则()()33010.70.027p x C ==´-= ()()213110.70.70.189p x C ==´-´=()()1223210.70.70.441p x C ==´-´=()33330.70.343p x C ==´=所以X 的分布列为X0123P0.0270.1890.4410.34330.7 2.1EX =´=8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X ,求X 的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【答案】(1)答案见解析;(2)方案一数学期望为110(元),方案二数学期望为100(元);方案一.【解析】(1)由题意易知,方案一和方案二中单次抽到红球的概率为13,抽到白球的概率为23,依题意,X 的取值可能为90,110,130,150.且30328(90)327P X C æö==×=ç÷èø,1213124(110)339P X C æöæö==××=ç÷ç÷èøèø223122(130)339P X C æöæö==××=ç÷ç÷èøèø,33311(150)327P X C æö==×=ç÷èø其分布列为X 90110130150p8274929127(2)由(1)知选择方案一时最终获得返金券金额的数学期望为8421()90110130150110279927E X =´+´+´+´=(元),选择方案二时,设摸到红球的次数为Y ,最终可能获得返金券金额为Z 元,由题意可知,1~3,3Y B æöç÷èø,得1()313E Y =´=()(100)100()100E Z E Y E Y ===由()()E X E Z >可知,该顾客应该选择方案一抽奖.【题组二 超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3,所以()37310350120p X C C===, ()2731016331120p X C C C===, ()1731022132120p X C C C===,()3103313120p X C C===.所以X 的数学期望()35632119012312012012012010E X =´+´+´+´=.(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ×====,所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:员工编号12345678910捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X ,求X 的分布列和数学期望.【答案】(1)25;(2)分布列见解析,65.【解析】(1)10名员工中捐款数额大于200元的有3人,低于200元的有6人故选取的人中捐款恰有一人高于200元,一人低于200元的概率为:1136210182455C C P C ===(2)由题知,10名员工中捐款数额大于200元的有3人,则随机变量X 的所有可能取值为0,1,2,3()4741035102106C P X C ====,()133********12102C C P X C ====,()2237410623221010C C P X C ====()313741071321020C C P X C ====则X 的分布列为X0123P1612310130()1131601236210305E X =´+´+´+´=;(用超几何分布公式()366105nM E X N ´===计算同样得分)3.(2020·河北省盐山中学高二期末)在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a ,b 的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X ,求X 的分布列及数学期望.【答案】(1)10a =,3b =.(2)61天(3)见解析【解析】(1)由题意知从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天,所以空气质量为Ⅰ级的天数为总天数的12,所以5+a=15,8+4+b=15,可得10a =,950.(2)依题意可知,一年中每天空气质量指数为优的概率为51306P ==,则一年中空气质量指数为优的天数约为1366616´=.(3)由题可知抽取的10天的数据中,Ⅰ级的天数为5,Ⅱ级和Ⅲ级的天数之和为5,满足超几何分布,所以X 的可能取值为0,1,2,3,4,4541051(0)21042C P X C ====,135510505(1)21021C C P X C ====,225541010010(2)21021C C P X C ====,3551410505(3)21021C C P X C ====,4541051(4)21042C P X C ====,X 的分布列为X1234P142 521 1021521 142故151051()0123424221212142E X =´+´+´+´+´=.4.(2020·延安市第一中学)在一个袋中,装有大小、形状完全相同的3个红球、2个黄球.现从中任取2个球,设随机变量x 为取得红球的个数.(1)求x 的分布列;(2)求x 的数学期望()E x 和方差()D x .【答案】(1)详见解析(2)6()5E x =,9()25D x =【解析】(1)x 的取值为0,1,2.()0232251010C C P C x ===,()113225631105C C P C x ====,()2032253210C C P C x ===,则x 的分布列为:x012P11035310(2)()1336012105105E x =´+´+´=,2226163639()0125105551025D x æöæöæö=-´+-´+-´=ç÷ç÷ç÷èøèøèø.5.(2020·西藏拉萨市)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有n 天,从这n 天中任取两天,设X 为这两天中客流量超过7万人的天数.求X 的分布列和期望.【答案】(1)①4.15,②4.125;(2)分布列见解析,()23E X =【解析】(1)①平均值为()2.50.2 3.50.25 4.50.4 5.50.05 6.50.057.50.051 4.15´+´+´+´+´+´´=②设中位数为x ,则()0.200.250.4040.5x ++-=解得中位数为 4.125x =(2)可知15n =其中超过7万人次的有5天()2010521545301057C C P X C ====()111052155010110521C C P X C ====()02105215102210521C C P X C ====X012P371021221所以()31022012721213E X =´+´+´=6.(2021·福建莆田市)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设x 为取出的4个球中红球的个数,求x 的分布列和数学期望.【答案】(1)715;(2)见解析.【解析】(1)记事件:A 取出的4个球中恰有1个红球,事件1:A 取出的4个球中唯一的红球取自于甲盒,事件2:A 取出的4个球中唯一的红球取自于乙盒,则12A A A =U ,且事件1A 与2A 互斥,由互斥事件的概率公式可得()()()1221134324122246715C C C C C P A P A P A C C +=+==,因此,取出的4个球中恰有1个红球的概率为715;(2)由题意知随机变量x 的可能取值为0、1、2、3,()22342246105C C P C C x ===,()7115P x ==,()111223243222463210C C C C C P C C x +===,()123222461330C C P C C x ===.所以,随机变量x 的分布列如下表所示:x123P15715310130因此,随机变量x 的数学期望为17317012351510306E x =´+´+´+´=.7.(2020·福建省南安市侨光中学高二月考)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题.(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是34,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平.【答案】(1)45;(2)乙选手比甲选手的答题水平高【解析】解法一:(1)记“甲选手答对i 道题”为事件i A ,1,2,3i =,“甲选手能晋级”为事件A ,则23A A A =U .()()()()2134242323336645C C C P A P A A P A P A C C =È=+=+=;(2)设乙选手答对的题目数量为X ,则3~3,4X B æöç÷èø,故()39344E X =´=,设甲选手答对的数量为Y ,则Y 的可能取值为1,2,3,()124236115C C P Y C ===,()214236325C C P Y C ===,()3436135C P Y C ===,故随机变量Y 的分布列为Y123P153515所以,()1311232555E Y =´+´+´=,则()()E X E Y >,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件A ,则()124236141155C C P A C =-=-=;(2)同解法二.8.(2020·全国高二课时练习)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A 、B 、C 三个不同的专业,其中A 专业2人,B 专业3人,C 专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X 表示取到B 专业的人数,求X 的分布列.【答案】(1)79120(2)见解析【解析】()1令事件A 表示“3个来自于两个不同专业”,1A 表示“3个人来自于同一个专业”,2A 表示“3个人来自于三个不同专业”,()3335131011120C C P A C +==,()111235231030120C C C P A C ==,3\个人来自两个不同专业的概率:()()()1211307911120120120P A P A P A =--=--=.()2随机变量X 有取值为0,1,2,3,()0337310350120C C P X C ===,()1237310631120C C P X C ===,()2137310212120C C P X C ===,()307331013120C C P X C ===,X \的分布列为:X123P3512063120211201120【题组三 二项分布与超几何分布综合运用】1.(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记x 表示抽到 2.5PM 监测数据超标的天数,求x 的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.【答案】(1)45;(2)分布列见解析,45;(3)219.【解析】(1)由茎叶图可得中位数是45.(2)依据条件,x 服从超几何分布:其中15N =,6M =,2n =,x 的可能值为0,1,2,()026921512035C C P C x ===,()116921518135C C P C x ===,()2069215512357C C P C x ====,所以x 的分布列为:x012P1235183517()121814012353575E x =´+´+´=.(3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =,一年中空气质量达到一级或二级的天数为h ,则3365,5B h æöç÷èø:,33652195E h =´=,∴一年中平均有219天的空气质量达到一级或二级.2.(2020·山东高二期末)1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率;(2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.【答案】(1)35 ;(2)49;(3)选择A .【解析】(1) A 恰好答对两个问题的概率为214236C C 3C 5=;(2) B 恰好答对两个问题的概率为223214339C æö´=ç÷èø;(3) X 所有可能的取值为1,2,3. ()124236C C 11C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,所以131()1232555E X =´+´+´=,2221312()(12)(22)(32)5555D X =-´+-´+-´=;而23,3Y B æö-ç÷èø,2()323E Y =´=,212()3333D Y =´´=,所以()()E X E Y =,()()D X D Y <,可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定.所以选择投票给学生A .3.(2021·湖南高二期末)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)拿4次所得分数x 的分布列和数学期望()E x 【答案】(1)34;(2)分布列见解析;期望为2.【解析】(1)一次拿到奇数的概率3162P ==,所以拿2次得分为0分的概率为2021124C æö=ç÷èø所以拿2次得分不小于1分的概率为2211311244C æö-=-=ç÷èø(2)x 可以取值:0,1,2,3,4所以()404121601C P x æö=ç÷èø==()13141112124C P x æöæö´=ç÷ç÷èøèø==()22241132228C P x æöæö´=ç÷ç÷èøèø==()31341112324C P x æöæö´=ç÷ç÷èøèø==()404411122164P C x æöæö´=ç÷ç÷èøèø==分布列x01234P116143814116满足二项分布概率1~42B x æöç÷èø,1()=4=22E x \´4.(2020·武汉外国语学校高二期中)为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记x 表示成绩优良的人数,求x 的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值.【答案】(Ⅰ)分布列见解析;()2E x =;(Ⅱ)7k =.【解析】(Ⅰ)由题意12人中有8人体质优良,x 可能的取值为0,1,2,3,()343121055C P C x ===,()128431212155C C P C x ×===,()218431228255C C P C x ×===,()3831214355C P C x ===,所以x 的分布列为:x0123P155125528551455数学期望()1122814 01232 55555555E x=´+´+´+´=;(Ⅱ)由题意可知,抽取的10人中,成绩是优良的人数210,3X Bæöç÷èø∼,所以()10 102133k k kP X k C-æöæö==××ç÷ç÷èøèø,0,1,210k=×××,令()()10110111010101101110102121333321213333k k k kk kk k k kk kC CC C------+-++ìæöæöæöæö×׳××ïç÷ç÷ç÷ç÷ïèøèøèøèøíïæöæöæöæö×׳××ç÷ç÷ç÷ç÷ïèøèøèøèøî,解得192233k££,又kÎN,所以7k=,所以当7k=时,抽到k人的成绩是优良的可能性最大.。

高考专项训练-二项分布、超几何分布

高考专项训练-二项分布、超几何分布

专题: 超几何分布与二项分布[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N MnNC C P X k C --==(0,1,2,,k m =)进行处理就可以了. 二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -.典型例题1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率. 【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分 事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分故X 的分布列为……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分 2、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.,且听觉记忆能力为中等或中等以上的概率为25. (Ⅰ)试确定a 、b 的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列. 【解析】(Ⅰ)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10)a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==,解得6a =,从而40(32)40382b a =-+=-=.(Ⅱ)由于从40位学生中任意抽取3位的结果数为340C ,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为32416k k C C -,所以从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为32416340()k kC C P k C ξ-==(0,1,2,3)k =.ξ的可能取值为0、1、2、3. 因为03241634014(0)247C C P C ξ===,12241634072(1)247C C P C ξ===,212416340552(2)1235C C P C ξ===,302416340253(3)1235C C P C ξ===,所以ξ的分布列为32个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X ,求X 的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗? 【解析】(Ⅰ)X 的所有可能取值为0,1,2,3,4,5,6. 依条件可知X ~B (6,23).6621()33kkk P X k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0, 1, 2, 3, 4, 5, 6k =) 所以X所以(01112260316042405192664)729EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=4729=.或因为X ~B (6,23),所以2643EX =⨯=. 即X 的数学期望为4.(Ⅱ)设教师甲在一场比赛中获奖为事件A ,则224156441212232()()()()().3333381P A C C =⨯⨯+⨯⨯+=答:教师甲在一场比赛中获奖的概率为32.81(Ⅲ)设教师乙在这场比赛中获奖为事件B ,则2444662()5A A P B A ==.(此处为244625C C =会更好!因为样本空间基于:已知6个球中恰好投进了4个球)即教师乙在这场比赛中获奖的概率为25.频率组距 20 25 30 35 40 45 年龄 岁 组距 岁显然2323258081=≠,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等. 4、为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)岁的人数; (Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.析】(Ⅰ)①处填20,②处填35.0; 【解补全频率分布直方图如图所示.500名志愿者中年龄在[)35,30 的人数为 0.35500175⨯=人.…6分 (Ⅱ)用分层抽样的方法,从中选取20人, 则其中“年龄低于30岁”的有5人,“年龄不低于30岁”的有15人. …………7分 故X 的可能取值为0,1,2;21522021(0)38C P X C ===,1115522015(1)38C C P X C ===, 252202(2)38C P X C ===,……11分 所以X X 0 1 2 P2138 1538 238 ∴ 0123838382EX =⨯+⨯+⨯=. …………13分 5、为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值E (X ). 【解析】(Ⅰ)记“该产品不能销售”为事件A ,则111()1(1)(1)6104P A =--⨯-=. 分组(单位:岁)频数 频率 [)20,25 5 050.0 [)25,30 ① 200.0 [)30,35 35 ② [)35,40 30 300.0 []40,45 10 100.0 合计100 00.112所以,该产品不能销售的概率为14. ……………………………………4分 (Ⅱ)由已知,可知X 的取值为320,200,80,40,160---. ………………………5分411(320)()4256P X =-==, 134133(200)()4464P X C =-=⋅⋅=, 22241327(80)()()44128P X C =-=⋅⋅=,3341327(40)()4464P X C ==⋅⋅=, 4381(160)(4256P X ===. ……………………………………10分 所以X 的分布列为11分 E (X )1127278132020080401602566412864256=-⨯-⨯-⨯+⨯+⨯40=,故均值E (X )为40.……12分 6、张先生家住H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35. (Ⅰ)若走L 1路线,求最多..遇到1次红灯的概率; (Ⅱ)若走L 2路线,求遇到红灯次数X 的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.【解析】(Ⅰ)设走L 1路线最多遇到1次红灯为A 事件,则0312331111()=()()2222P A C C ⨯+⨯⨯=.…4分 所以走L 1路线,最多遇到1次红灯的概率为12. (Ⅱ)依题意,X 的可能取值为0,1,2. …………5分331(=0)=(1(14510P X -⨯-=,33339(=1)=(1(1454520P X ⨯-+-⨯=,339(=2)=4520P X ⨯=.…8分 01210202020EX =⨯+⨯+⨯=. ………………10分(Ⅲ)设选择L 1路线遇到红灯次数为Y ,随机变量Y 服从二项分布,1(3,)2Y B ,所以13322EY =⨯=.……12分 因为EX EY <,所以选择L 2路线上班最好.……14分。

高考数学专题33二项分布与超几何分布解析版

高考数学专题33二项分布与超几何分布解析版

专题33 二项分布与超几何分布一、单选题1.(2020·山西应县一中高二期中(理))盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么概率是310的事件为()A.恰有1个是坏的B.4个全是好的C.恰有2个是好的D.至多有2个是坏的【答案】C【解析】对于选项A,概率为133741012C CC=.对于选项B,概率为4741016CC=.对于选项C,概率为2237410310C CC=.对于选项D,包括没有坏的,有1个坏的和2个坏的三种情况.根据A选项,恰好有一个坏的概率已经是13210>,故D选项不正确.综上所述,本小题选C.2.(2020·天山新疆实验高二期末)有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715B.815C.1415D.1【答案】C【解析】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=27210715CC=,P(X=1)=1173210715C CC=⋅,P(X=2)=23210115CC=,于是P(X<2)=P(X=0)+P(X=1)=7714 151515 +=故选C3.(2020·江苏鼓楼 南京师大附中高二期末)某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于67的是( ) A .至少有1个深度贫困村 B .有1个或2个深度贫困村 C .有2个或3个深度贫困村 D .恰有2个深度贫困村【答案】B 【解析】用X 表示这3个村庄中深度贫困村数,X 服从超几何分布,故()33437k kC C P X k C -==, 所以()3043374035C C P X C ===, ()21433718135C C P X C ===,()12433712235C C P X C ===,()0343371335C C P X C ===, ()()6127P X P X =+==. 故选:B4.(2020·辉县市第二高级中学高二月考(理))在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .821【答案】A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可。

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练

二项分布与超几何分布专题训练一、知识梳理知识点一n重伯努利试验及其特征1.n重伯努利试验的概念将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.知识点二二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X〜B(n,p).知识点三二项分布的均值与方差若X〜B(n,p),则E(X)=np,D(X)=np(1-p).知识点四超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C kMC N-M,k=m,m+1,m+2,其中n,N,M E N*,M W N,n W N,m=max{0,n—N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2•均值:E(X)=N・二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X;②从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数;③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X.【例1-2】下列例子中随机变量E服从二项分布的有.①随机变量E表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数E;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,E表示n次抽取中出现次品的件数(M 〈N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,E表示n次抽取中出现次品的件数.r.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.27 81 现从中任取4个球,有如下几种变量:① X 表示取出的最大号码;② X 表示取出的最小号码;③ 取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④ X 表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④2•下列随机事件中的随机变量X 服从超几何分布的是()A. 将一枚硬币连抛3次,记正面向上的次数为XB. 从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC •某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X 3•下列例子中随机变量服从二项分布的个数为()① 某同学投篮的命中率为0.6,他10次投篮中命中的次数g ;② 某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数g ;③ 从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数g ;④ 有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,g 表示n 次抽取中出现次品的件数4•下列选项中的随机变量不服从两点分布的是()A. 抛掷一枚骰子,所得点数XB. 某射击手射击一次,击中目标的次数X D.某医生做一次手术,手术成功的次数X 考点二:二项分布的均值与方差【例2】•已知随机变量:,耳满足2C +H =9,且匚〜B (8,p ),E (匚)二2,则E (q ),D (q )分别是()【考点精练】(1、1•设随机变量X,Y 满足:Y=3X-1,X 〜B 2,-,则V(Y)=()V 3丿 A.4B.5C.6D.72•设随机变量B (2,p),q ~B (4,p),若P(g >1)=9,则P (q >2)的值为()9 A.0 B.1 C.2D.3C. 从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设X 1,取出白球 <0,取出红球A.5,3B.5,6C.8,3D.8,6A. 32 81 D. 16 813•已知随机变量X〜B(5,0.2),随机变量Y=5X+10,则()27 81A.E(Y)=5B.E(Y)=10C.D(Y)=20D.D(Y)=30考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.687288955667891000(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.学生视力测试结果666777S12(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”•①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为丄,两人各投1次称为一轮投篮.2(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量g,求g的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟)•将统计数据按[5,10),110,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求乘客A,B乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示11叶6 87 24698 1391Z(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X表示所抽取的3名同学的得分在[70,80)的人数,求X的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行•它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:~s^rTO高二8986361269765007345799611呂025788771109133589根据学生的竞赛成绩,将其分为四个等级:(1)从样本中任取2名同学的竞赛成绩,在成绩为优秀的情况下,求这2名同学来自同一个年级的概率;(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间•将成绩结果按如下方式分成五组:第一组b0,100),第二组1100,110),…,第五组1130,140]•按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一五组中共随机取出两个成绩,记X为取得第一组成绩的个数,求X的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X,求X的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y,求Y的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答3这道题目,而乙班级4人中能正确回答这道题目的概率均为二,甲、乙两班级每个人对问题的回答都是相4互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X,Y,求随机变量X,Y的期望E(X),E(Y)和方差D(X),D(Y),并由此分析由哪个班级代表学校参加大赛更好.2.PM2.5是指大气中直径小于或等于2.5pm的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35p g/m3以下空气质量为一级;在35〜75p g/m3之间空气质量为二级;在75p g/m3以上空气质量为污染•某市生态环境局从该市2021年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)•PM2.5日均值(pg/m123)28537143445638791从这15天的数据中任取1天,求这天空气质量达到一级的概率;2从这15天的数据中任取3天的数据,记g表示其中空气质量达到一级的天数,求g的分布列和数学期望;3以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频863925(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品•设每个零件是次品的概率为P(0<P<1),且相互独立.(I)若20个零件中恰有2个次品的概率为f(p),求f(p)的最大值点p;(II)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍.已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级.当P满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A,A,A中的一个,每个乙系列盲盒可以开出123玩偶B1,B2中的一个.(1)记事件E:一次性购买n个甲系列盲盒后集齐玩偶A,A,A玩偶;事件F:—次性购买n个乙系n123n列盲盒后集齐B1,B2玩偶;求概率P(三)及P(佇);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选2择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为亍,购买乙系113列的概率为-;而前一次购买甲系列的消费者下一次购买甲系列的概率为;,购买乙系列的概率为匚,前344一次购买乙系列的消费者下一次购买甲系列的概率为1,购买乙系列的概率为1;如此往复,记某人第n次22购买甲系列的概率为Q.n①求{Q}的通项公式;n②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为求g的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k人为“活动爱好者”的可能性最大,试求k的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为P(0<P<1).(1)求该组试验只需第一轮注射的概率(用含P的多项式表示);(2)记该组动物需要注射次数X的数学期望为E(X),求证:10<E(X)<10(2-p)。

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布一、单选题1.盒中有10只螺丝钉,其中有2只是坏的,现从盒中随机地抽取4只,那么恰好有2只是坏的的概率为( ) A .1210B .145C .215D .1152.已知某运动员每次射击击中目标的概率是p ,假设每次射击击中目标与否互不影响,设ξ为该运动员n 次射击练习中击中目标的次数,且()8E ξ=,() 1.6ξ=D ,则p 值为( ) A .0.6 B .0.8 C .0.9D .0.923.已知随机变量X 服从二项分布1(3)3B ,,当{}0123k ∈,,,时,()P X k =的最大值是( ).A .827 B .49C .19D .1274.12人的兴趣小组中有5人是“三好学生”,现从中任选6人参加竞赛.若随机变量X 表示参加竞赛的“三好学生”的人数,则3357612C C C 为( )A .P (X =6)B .P (X =5)C .P (X =3)D .P (X =7)5.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球.从袋中任取3个球,所取的3个球中至少有1个红球的概率为( ) A .12125 B .16C .98125D .566.某批零件的尺寸X 服从正态分布()210,N σ,且满足()196P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为( ) A .7B .6C .5D .47.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .458.已知随机变量~(4,)X B p ,若8()3E X =,则(2)P X ==( )A .29B .49C .89D .827二、填空题9.学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求(1)P X ≤=__________.10.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得2分,取到1只黑球得3分,设得分为随机变量ξ,则(9)P ξ≤=__________.11.若随机变量X 服从二项分布1(5,)2B ,那么(1)P X ≤=__________.12.从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取得次品数为1的概率为__________(结果用最简分数表示).13.10名同学中有a 名女生,若从中抽取2个人作为学生代表,恰好抽取1名女生的概率为1645,则a =__________. 14.已知随机变量~(2,),~01X B p Y -,若()()10.64,1P X P Y p ≥===,则(0)P Y =的值等于__________. 三、解答题15.一个盒子中有10个小球,其中3个红球,7个白球.从这10个球中任取3个. (1)若采用无放回抽取,求取出的3个球中红球的个数X 的分布列; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 的分布列.16.小明和小林做游戏,每人连续投掷一枚均匀的硬币5次,谁投掷出的结果的概率小,谁就获胜,概率相等则为平局.(1)小明连续5次都是正面朝上,小林前3次是反面朝上,后2次是正面朝上,两人都认为自己赢了,你认为小明和小林谁赢了(通过计算两人的概率说明); (2)如果用X 表示小明5次投掷中正面朝上的次数,求X 的分布列及期望; (3)已知在某局中小林先投,5次中出现2次正面朝上,问小明赢的概率有多大?17.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若X 表示抽到的精品果的数量,求X 的分布列和期望.18.甲盒中装有3个红球和2个黄球,乙盒中装1红球和4个黄球.(Ⅰ)从甲盒有放回地摸球,每次摸出一个球,摸到红球记1分,摸到黄球记2分.某人摸球4次,求该人得分ξ的分布列以及数学期望()E ξ;(Ⅱ)若同时从甲、乙两盒中各取出2个球进行交换,记交换后甲、乙两盒中红球的个数分别为1ξ、2ξ,求数学期望()1E ξ,()2E ξ.19.一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分). (1)设每盘游戏中出现“6点”的次数为X ,求X 的分布列和数学期望()E X ; (2)玩两盘游戏,求两盘中至少有一盘获得15分的概率;(3)玩过这款游戏的许多人发现,若干次游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象.20.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.参考答案1.C 【分析】利用超几何分布概率公式计算概率. 【详解】解: 设X k =表示取出的螺丝钉恰有k 只是坏的,则()()428410C C 0,1,2C k k P X k k -===. ∴()2228410C C 22C 15P X ===.故选:C . 2.B 【分析】由ξ服从(,)B n p ,根据二项分布的均值和方差公式列式求解. 【详解】 由题意(,)B n p ξ,所以()8()(1) 1.6E np D np p ξξ==⎧⎨=-=⎩,解得0.810p n =⎧⎨=⎩.故选:B . 3.B 【分析】由二项分布的概率公式依次求解可得答案 【详解】解:因为随机变量X 服从二项分布1(3)3B ,,所以3312()()()33kk k P X k C -==⋅⋅,{}0123k ∈,,, 所以0033128(0)()()3327P X C ==⋅⋅=,1123124(1)()()339P X C ==⋅⋅=,2213122(2)()()339P X C ==⋅⋅=,3303121(3)()()3327P X C ==⋅⋅=,∴max 4()(1)9P X k P X ====, 故选:B . 4.C 【分析】根据题意得到变量X 服从参数为12,5,6N M n ===的超几何分布,结合概率的计算的公式,即可求解. 【详解】由题意知,随机变量X 服从参数为12,5,6N M n ===的超几何分布,由概率的计算公式()k n k M N M nN C C P X k C ---=,可得3357612C C C 表示的是3X =的取值概率. 故选:C. 5.D 【分析】根据题意,该问题符合超几何分布,利用超几何分布概率公式计算所取的3个球中没有1个红球的概率,进而可得答案. 【详解】根据题意,该问题符合超几何分布,其基本事件总数为310C , 其中所取的3个球中没有1个红球的基本事件为36C ,所求概率为36310C 1511C 66-=-=.故选:D. 6.C 【分析】由正态分布解得每个零件合格的概率为23,由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13nn +⋅<,令1()(21)()(*)3n f n n n N =+⋅∈,由()f n 的单调性可解得结果.【详解】X 服从正态分布2(10,)N σ,且1(9)6P X <=, 2(911)3P X ∴≤≤=,即每个零件合格的概率为2.3合格零件不少于2件的对立事件是合格零件个数为零个或一个. 合格零件个数为零个或一个的概率为01111()()3323n n n n C C -⋅+⋅⋅, 由011121()()0.1333nn n n C C -⋅+⋅⋅<,得1(21)()0.13n n +⋅<, 令1()(21)()(*)3nf n n n N =+⋅∈,(1)231()63f n n f n n ++=<+,()f n ∴单调递减,又(5)0.1f <,(4)0.1f >, ∴不等式1(21)()0.13n n +⋅<的解集为{|5,*}.n nn N ∈n ∴的最小值为5.故选:C. 【点睛】关键点点睛:本题的关键点是:由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13n n +⋅<.7.A 【分析】利用二项分布的期望公式和方差公式列方程组求解即可 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A 8.D 【分析】根据数学期望值求出p ,再利用公式计算概率(2)P X =的值. 【详解】解:由随机变量~(4,)X B p , 且8()3E X =,即843np p ==,解得23p =; 2224228(2)()(1)3327P X C ∴==-=.故选:D . 9.67【分析】本题主要考查了超几何分步的概率计算,属于基础题.根据题意,X 的取值为0或1,代入超几何分布公式求出对应概率,再相加即可. 【详解】 解:由题意可得()305237C C 1020C 357P X ====,()215237C C 2041C 357P X ====,所以()()()246101777P X P X P X ≤==+==+=. 故答案为:67.10.1335【分析】由题知取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,进而根据超几何分布求概率即可. 【详解】解:由题知,取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,所以3144344713(9)35C C C P C ξ+≤== 故答案为:133511.316【分析】首先根据二项分布的概率公式求出(1)P X =,(0)P X =,再根据()()(1)01P X P X P X ≤==+=计算可得;【详解】解:因为随机变量X 服从二项分布1(5,)2B所以415115(1)12232P X C ⎛⎫==⋅-= ⎪⎝⎭,50511(0)1232P X C ⎛⎫==-= ⎪⎝⎭,所以()()153(1)01323216P X P X P X ≤==+==+= 故答案为:31612.1235【分析】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,根据超几何分布的概率计算公式直接求解即可. 【详解】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,它的可能的取值为0,1,2,相应的概率为1221331512(1)35C C P X C ⋅===. 故答案为:1235. 13.2或8 【分析】利用超几何分布概率公式计算即可. 【详解】根据题意,得1645=1110-210a aC C C ,解得a =2或a =8. 故答案为:2或8. 14.0.6 【分析】根据二项分布的概率性质计算求解. 【详解】12222(1)(1)(2)(1)0.64P X P X P X C p p C p ≥==+==-+=,解得0.4p =( 1.6p =舍去),(0)1(1)110.40.6P Y P Y p ==-==-=-=.故答案为:0.6.15.(1)答案见解析;(2)答案见解析. 【分析】(1)若采用无放回抽取,求取出的3个球中红球的个数X 服从超几何分布337310()k kC C P X k C -==,计算即可; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 服从二项分布33()0.3(10.3)kk k P Y k C -==⨯⨯-,计算即可.【详解】解:(1)由题意知,随机变量X 的所有可能取值为0,1,2,3, 且X 服从参数为10N =,3M =,3n =的超几何分布,因此337310()k kC C P X k C -==,0,1,2,3k =, 所以03373107(0)24C C P X C ===,123731021(1)40C C P X C ===,21373107(2)40C C P X C ===,30373101(3)120C C P X C ===;所以X 的分布列为:(2)随机变量Y 的所有可能取值为0,1,2,3,且()~3,0.3Y B ,所以0033(0)0.3(10.3)0.343P Y C ==⨯⨯-=,1123(1)0.3(10.3)0.441P Y C ==⨯⨯-=,223(2)0.3(10.3)0.189P Y C ==⨯⨯-=,3303(3)0.3(10.3)0.027P Y C ==⨯⨯-=,所以Y 的分布列为:16.(1)两人为平局;(2)分布列见解析;期望为52;(3)38.【分析】(1)分别计算两者出现的概率,通过比较大小,即可求解;(2)由题意可得,X 的所有可能取值为0,1,2,3,4,5,分别求出对应的概率,即可得X 的分布列,并结合期望公式,即可求解;(3)由(2)知,小林投掷5次出现2次正面朝上的概率为516,故小明要赢,必须在投掷5次中出现0,1,4,5次正面朝上,将对应的概率求和,即可求解. 【详解】解:(1)结论:两人为平局 小明11111112222232P =⨯⨯⨯⨯= 小林211111112222232P P =⨯⨯⨯⨯==(2)由题知:0,1,2,3,4,5X =()0505111=02232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1415115=12232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()232511105=2223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()323511105=3223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()4145115=42232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()5055111=52232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1555515012+3453232161632322E X =⨯+⨯+⨯⨯+⨯+⨯=(3)由(2)知,小林投掷5次出现2次正面朝上的概率516, 故小明要赢,必须在投掷5次中出现0、1、4、5次正面朝上, 即小明赢的概率15513+++=323232328P = 17.(1)12125;(2)分布列见解析,45.【分析】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,求出()P A ,抽到礼品果的个数1~3,5X B ⎛⎫⎪⎝⎭,由概率公式()2P X =可得答案;(2)用分层抽样得到精品果和非精品果个数,精品果的数量()~10,2,4X H ,所有可能的取值为0,1,2,计算出相应的概率可得答案. 【详解】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,则()2011005P A ==, 现有放回地随机抽取3个,设抽到礼品果的个数为X ,则1~3,5X B ⎛⎫⎪⎝⎭,∴恰好有2个水果是礼品果的概率为()2231412255125P X C ⎛⎫===⎪⎝⎭. (2)用分层抽样的方法从这100个水果中抽取10个,其中精品果有4个, 非精品果有6个,再从中随机抽取2个,则精品果的数量()~10,2,4X H , 所有可能的取值为0,1,2,则()26210103C P X C ===,()11642108115C C P X C ===,()242102215C P X C ===.∴X 的分布列为所以,()424105E X ⨯==. 18.(Ⅰ)分布列见解析,5.6;(Ⅱ)()1 2.2E ξ=,()2 1.8E ξ=. 【分析】(Ⅰ)利用二项分布的概率公式,求出概率,列出分布列,由数学期望的计算公式求解即可; (Ⅱ) 先求出随机变量1ξ的可能取值,然后求出其对应的概率,由数学期望的计算公式求解()1E ξ,再利用()1E ξ与()2E ξ之间的关系求解()2E ξ即可. 【详解】解:(Ⅰ)()()443280,1,2,3,455k kk P k C k ξ-⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:()8121621696162845678 5.66256256256256255E ξ=⨯+⨯+⨯+⨯+⨯== (或()3288455E ξ=-⨯=)(Ⅱ)()223412255189110050C C P C C ξ⋅====⋅; ()211112314324122554812210025C C C C C C P C C ξ⋅+⋅====⋅;()221111343214122556243310010C C C C C C P C C ξ⋅+⋅+====⋅;()2112141225541410025C C C P C C ξ⋅====⋅;()191231111234 2.2502510255E ξ=⋅+⋅+⋅+⋅==, ()()214 1.8E E ξξ=-=.19.(1)答案见解析;(2)95144;(3)答案见解析. 【分析】(1)X 的取值范围为{}0,1,2,3,再依次求出对应的概率,从而可得X 的分布列和数学期望;(2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则由(1)可得()()12(1)(2)P A P A P X P X ===+=,所以可求出所求概率()()121P A P A -;(3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-,结合(1)可得Y 的分布列,从而可求出Y 的期望,当期望为负时,说明分数在减少 【详解】解:(1)X 的取值范围为{}0,1,2,3,每次抛掷骰子,出现“6点”的概率为16p =,1(3,)6X B ~,3031125(0)16216P X C ⎛⎫==-= ⎪⎝⎭,2131175(1)166216P X C ⎛⎫==⋅-=⎪⎝⎭, 2231115(2)166216P X C ⎛⎫⎛⎫==⋅-= ⎪⎪⎝⎭⎝⎭,33311(3)6216P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:所以12525511()012321672722162E X =⨯+⨯+⨯+⨯=. (2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则 ()()12905(1)(2)21612P A P A P X P X ===+===. 所以“两盘游戏中至少有一次获得15分”的概率为 ()()12951144P A P A -=, 因此,玩两盘游戏至少有一次获得15分的概率为95144. (3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-, 由(1)知,Y 的分布列为:Y 的数学期望为12551512151202161221636EY =-⨯+⨯+⨯=-. 这表明,获得分数Y 的期望为负.因此,多次游戏之后分数减少的可能性更大. 20.(1)见解析(2)见解析 【分析】(1)由1~5,3B ξ⎛⎫⎪⎝⎭,求出这名学生在途中遇到红灯的次数ξ的分布列;(2)求出η的可能取值,再求出对应的概率,进而得出分布列. 【详解】(1)1~5,3B ξ⎛⎫ ⎪⎝⎭,ξ的分布列为5512()C ,0,1,2,3,4,533k kk P k k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为(2)η的分布列为()P k P η==(前k 个是绿灯,第1k +个是红灯)21,0,1,2,3,433kk ⎛⎫=⋅= ⎪⎝⎭ (5)P P η==(5个均为绿灯)523⎛⎫= ⎪⎝⎭故η的分布列为。

二项分布与超几何分布 (人教A版2019)(解析版)

二项分布与超几何分布  (人教A版2019)(解析版)

二项分布与超几何分布一、单选题1.假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为 A .925B .25C .35D .34【试题来源】备战2021年高考数学二轮复习题型专练(新高考专用) 【答案】C【分析】设该射手射击命中的概率为p ,两次射击命中的次数为X ,由()()201220161125C p p C p p -+-=可得答案. 【解析】设该射手射击命中的概率为p ,两次射击命中的次数为X ,则()2,X B p ,由题可知()()160125P X P X =+==,即()()201220161125C p p C p p -+-=, 解得35p =.故选C . 2.唐代诗人张若虚在《春江花月夜》中曾写道:“春江潮水连海平,海上明月共潮生.”潮水的涨落和月亮的公转运行有直接的关系,这是一种自然现象.根据历史数据,已知沿海某地在某个季节中每天出现大潮的概率均为23,则该地在该季节内连续三天内,至少有两天出现大潮的概率为A .2027 B .89C .827D .1318【试题来源】辽宁省名校联盟2020-2021学年高三3月份联合考试 【答案】A【分析】利用二项分布的概率公式以及概率的加法公式即可求解.【解析】该地在该季节内连续三天内,至少有两天出现大潮包括两天或三天出现大潮,有两天出现大潮概率为223214339C ⎛⎫⨯= ⎪⎝⎭,有三天出现大潮概率为33328327C ⎛⎫= ⎪⎝⎭, 所以至少有两天出现大潮的概率为482092727+=,故选A . 3.某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为A .18 B .38C .78D .89【试题来源】河南省新乡市2021届高三第二次模拟考试 【答案】D【分析】由题意,遇绿灯服从二项分布2(4,)3B ,结合互斥事件概率的求法,即可求同学在上学的路上至少遇到2次绿灯的概率.【解析】4次均不是绿灯的概率为040422113)381(C ⎛⎫⋅-= ⎪⎝⎭⋅,3次不是绿灯的概率为31422813381C ⎛⎫⨯-⨯= ⎪⎝⎭,所以至少遇到2次绿灯的概率为188181819--=.故选D . 4.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是 A .第5次击中目标B .第5次未击中目标C .前4次均未击中目标D .第4次击中目标【试题来源】【新教材精创】导学案(人教B 版高二选择性必修第二册) 【答案】C【分析】根据击中目标或子弹打完就停止射击,射击次数为5ξ=,即可得到答案. 【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C . 5.掷一枚均匀的硬币4次,出现正面的次数等于反面次数的概率为A .38B .316 C .516D .58【试题来源】湖北省武汉外国语学校2020-2021学年高二上学期期末 【答案】A【分析】利用二项分布的知识求出答案即可.【解析】出现正面的次数等于反面次数的概率为2224113228C ⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭,故选A. 6.国庆节期间,小明在4MP 中下载了两首歌曲:《今天是你的生日》和《我和我的祖国》,他选择的是随机播放的形式,每4分钟变化一次,其中出现《今天是你的生日》的概率为13,出现《我和我的祖国》的概率为23.若在前8次播放中出现《今天是你的生日》有5次、出现《我和我的祖国》有3次,则前2次出现《今天是你的生日》,其余6次可任意出现《今天是你的生日》3次的概率为 A .8803 B .7803 C .81603D .71603【试题来源】2021届新高考同一套题信息原创卷(一) 【答案】C【分析】利用相互独立事件的概率公式和独立重复试验的概率公式求解即可 【解析】由题意得,出现《今天是你的生日》的概率为13,出现《我和我的祖国》的概率为23,所以前两次出现《今天是你的生日》的概率为213⎛⎫ ⎪⎝⎭,其余6次出现《今天是你的生日》3次的概率33361233C ⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,所以所求概率为233368811220816033333P C ⨯⎛⎫⎛⎫⎛⎫=⋅⋅⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .7.十二生肖作为中国民俗文化的代表,是中国传统文化的精髓,很多人把生肖作为春节的吉祥物,以此来表达对新年的祝福.某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面分别雕刻了十二生肖的图案,作为春节的吉祥物.2021年春节前,其中2个兴趣小组成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为A.112B.143144C.1172D.23144【试题来源】湖南省长郡十五校2021届高三下学期第二次联考【答案】C【分析】由已知得1人抛一次抛出牛的图案朝上的概率是112,由此可求得选项.【解析】因为1人抛一次抛出牛的图案朝上的概率是1 12,所以2人各抛一次,则恰好出现一次牛的图案朝上的概率为1211111C121272P=⨯⨯=,故选C.8.纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为.A.34B.3742C.2137D.542【试题来源】湖南省长沙市长郡十五校2019-2020学年高三下学期第二次联考【答案】B【分析】本题首先可以确定所有可能事件的数量为39C,然后确定满足“一枚凤纹徽章也没有”的所有可能事件的数目为35C,最后根据“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”即可得出结果.【解析】从9枚纹样微章中选择3枚,所有可能事件的数量为39C , 满足“一枚凤纹徽章也没有”的所有可能事件的数目为35C , 因为“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”,所以3539543371198742C P C ⨯⨯=-=-=⨯⨯,故选B .【名师点睛】本题考查超几何分布的相关概率计算,考查对立事件的灵活应用,考查推理能力,体现了基础性和综合性,是简单题.9.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则()2P X <等于A .715 B .815 C .1315D .1415【试题来源】【新教材精创】基础练 【答案】D【分析】()()()2==1+=0P X P X P X <,然后算出即可.【解析】()()()112377221010142==1+=0=15C C C P X P X P X C C <+=故选D【名师点睛】本题考查的是利用组合数解决超几何分布的问题,较简单.10.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为A .512625 B .256625 C .113625D .1625【试题来源】2021年高考数学考前信息必刷卷(新高考地区专用) 【答案】A【分析】最多1人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率和互斥事件的概率求解.【解析】由题得最多1人被感染的概率为041344414256256512()()()555625625C C ++==.故选A【名师点睛】求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.11.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为1p 和2p ,则A .12p p =B .12p p <C .12p p >D .以上三种情况都有可能【试题来源】2021年全国新课改地区高三第三次质量监测 【答案】B 【分析】分别计算1p 和2p ,再比较大小.【解析】方法一:每箱中的黑球被选中的概率为110,所以至少摸出一个黑球的概率2019110p ⎛⎫=- ⎪⎝⎭.方法二:每箱中的黑球被选中的概率为15,所以至少摸出一个黑球的概率102415p ⎛⎫=- ⎪⎝⎭.10201010124948105105100p p ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则12p p <.故选B .【名师点睛】概率计算的不同类型: (1)古典概型、几何概型直接求概率;(2)根据事件间的关系利用概率加法、乘法公式求概率; (3)利用对立事件求概率;(4)判断出特殊的分布列类型,直接套公式求概率.12.某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于67的是A .至少有1个深度贫困村B .有1个或2个深度贫困村C .有2个或3个深度贫困村D .恰有2个深度贫困村【试题来源】【新教材精创】提高练 【答案】B【分析】用X 表示这3个村庄中深度贫困村数,则X 服从超几何分布,故()33437k kC C P X k C -==,分别求得概率,再验证选项. 【解析】用X 表示这3个村庄中深度贫困村数,X 服从超几何分布,故()33437k k C C P X k C -==,所以()3043374035C C P X C ===, ()21433718135C C P X C ===,()12433712235C C P X C ===,()0343371335C C P X C ===,()()6127P X P X =+==.故选B 【名师点睛】本题主要考查超几何分布及其应用,属于基础题. 二、多选题1.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.则下列四个选项中,正确的是 A .他第3次击中目标的概率是0.9 B .他恰好击中目标3次的概率是0.93⨯0.1 C .他至少击中目标1次的概率是1-0.14D .他恰好有连续2次击中目标的概率为3⨯0.93⨯0.1 【试题来源】【新教材精创】基础练 【答案】AC【分析】根据相互独立事件的概念和独立重复试验的概率公式判断.【解析】因为射击一次击中目标的概率是0.9,所以第3次击中目标的概率是0.9,所以A 正确;因为连续射击4次,且各次射击是否击中目标相互之间没有影响,所以本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是34C ⨯0.93⨯0.1,所以B 不正确;因为至少击中目标1次的概率是1-0.14,所以C 正确;因为恰好有连续2次击中目标的概率为3⨯0.92⨯0.12,所以D 不正确.故选AC . 2.若随机变量1(5,)3B ξ,则P (ξ=k )最大时,k 的值可以为A .1B .2C .4D .5【试题来源】2020-2021学年高二数学单元测试定心卷(人教B 版2019选择性必修第二册) 【答案】AB【分析】根据二项分布的概率公式求出各概率后可得最大值.【解析】依题意5512()33kkk P k C ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选AB .. 3.为了增加系统的可靠性,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才驱动的设备).已知某计算机网络的服务器采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机的网络就不会断掉,如果三台设备各自能正常工作的概率都为0.9,他们之间相互不影响,则 A .三台设备中至多一台设备能正常工作的概率为0.027 B .计算机网络不会断掉的概率为0.999 C .能正常工作的设备数的数学期望为0.27 D .能正常工作的设备数的方差为0.27【试题来源】江苏省苏州市工业园区苏附2019-2020学年高二下学期期中 【答案】BD【分析】根据相互独立事件的概率计算公式,可得判定A 不正确,B 正确;根据设备正常工作的个数X 服从二项分布(3,0.9)X B ,结合期望和方差的公式,可判定C 不正确,D正确.【解析】由题意,三台设备各自能正常工作的概率都为0.9,且相互独立,则至多一台设备能正常工作的概率为()()23130.90.110.90.028C ⨯⨯+-=,所以A 不正确;计算机网络不会断掉的概率为31(10.9)0.999--=,所以B 正确; 根据题意,三台设备正常工作的个数X 服从二项分布(3,0.9)XB ,所以能正常工作的设备数的数学期望为()30.9 2.7E X =⨯=,所以C 不正确; 能正常工作的设备数的方差为()30.9(10.9)0.27D X =⨯⨯-=,所以D 正确;故选BD 4.一袋中有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,则下列结论中正确的是 A .取出的最大号码X 服从超几何分布 B .取出的黑球个数Y 服从超几何分布 C .取出2个白球的概率为114D .若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为114【试题来源】【新教材精创】提高练 【答案】BD【分析】超几何分布取出某个对象的结果数不定,也就是说超几何分布的随机变量为实验次数,即指某事件发生n 次的试验次数,由此可知取出的最大号码X 不服从超几何分布,取出的黑球个数Y 服从超几何分布;取出2个白球的概率为226441037C C p C ==;对于D ,取出四个黑球的总得分最大,由此求出总得分最大的概率为46410114C P C ==.【解析】一袋中有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球, 对于A,超几何分布取出某个对象的结果数不定,也就是说超几何分布的随机变量为实验次数,即指某事件发生n 次的试验次数, 由此可知取出的最大号码X 不服从超几何分布,故A 错误;对于B ,超几何分布的随机变量为实验次数,即指某事件发生n 次的试验次数, 由此可知取出的黑球个数Y 服从超几何分布,故B 正确;对于C ,取出2个白球的概率为226441037C C p C ==,故C 错误;对于D ,若取出一个黑球记2分,取出一个白球记1分, 则取出四个黑球的总得分最大,∴总得分最大的概率为46410114C P C ==,故D 正确.故选BD .【名师点睛】本题考查命题真假的判断,考查超几何分布、排列组合等基础知识,考查运算求解能力,属于中档题. 5.下列说法不正确的是A .随机变量()~3,0.2XB ,则()20.032P X == B .随机变量2(,)XN μσ,其中σ越小,曲线越“矮胖”;C .从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件D .从10个红球和20个白球颜色外完全相同中,一次摸出5个球,则摸到红球的个数服从超几何分布;【试题来源】江苏省镇江市丹阳市吕叔湘中学2020-2021学年高三上学期10月教学调研 【答案】ABC【分析】根据题意,结合二项分布,超几何分布,正态分布等依次分析各选项即可得答案.【解析】对于A 选项,由二项分布的概率公式得 ()()22320.20.80.096P X C ==⨯=,故A 选项错误;对于B 选项, 正态分布的均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度.σ越小,曲线越陡峭;σ越大,曲线越扁平.故B 选项错误;对于C 选项,至少有一个黑球包含的基本事件为“一黑一红,两黑”,至少有一个红球包含的基本事件为“一黑一红,两红”,故至少有一个黑球与至少有一个红球不互斥,故C 选项错误;对于D 选项,根据题意,设摸出红球的个数为x ,则()()510205300,1,2,3,4,5k kC C P x k k C -===,故满足超几何分布,故D 选项正确;故选ABC【名师点睛】本题考查正态分布,二项分布,超几何分布,互斥事件等,考查基本概念的掌握与运算,是中档题.本题解题的关键在于熟练掌握正态分布,二项分布,超几何分布的特征及其相关的计算公式,依次讨论即可. 三、填空题1.某次投篮测试中,投中2次才能通过测试,通过即停止投篮,且每人最多投3次,已知某同学每次投篮投中的概率为0.7,且各次投篮是否投中相互独立,则该同学通过测试的概率为__________.【试题来源】2020-2021学年高一数学单元测试定心卷(人教版必修3) 【答案】0.784【分析】根据该同学通过测试是指该同学连续投中两次或前两次投中一次且第三次投中,利用相互独立事件的概率乘法公式,即可求解.【解析】由题意,该同学通过测试是指该同学连续投中两次或前两次投中一次且第三次投中,所以该同学通过测试的概率为2120.70.7(10.7)0.70.784p C =+⋅⨯-⨯=.故答案为0.7842.甲、乙两名同学进行篮球投篮练习,甲同学一次投篮命中的概率为34,乙同学一次投篮命中的概率为23,假设两人投篮命中与否互不影响,则甲、乙两人各投篮一次,至少有一人命中的概率是__________.【试题来源】天津市和平区2021届高三下学期一模 【答案】1112【分析】考虑两个人都不命中的概率,从而可求至少有一个人命中的概率. 【解析】两个都不命中的概率为321114312⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 故至少有一人命中的概率是1112,故答案为1112. 3.某学生投篮三次,且每次投篮是否命中是相互独立的,每次投篮命中的概率都是23,则该学生只有第三次投篮没投中的概率为__________.【试题来源】普通高等学校招生全国统一考试数学预测卷(一) 【答案】427【分析】利用相互独立事件的概率乘法公式即可求解. 【解析】由题知,该学生投篮三次,第一次和第二次都投中,第三次没投中的概率222413327P ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭.故答案为4274.遗爱湖国家湿地公园是黄冈市城市亮丽的名片.2021年元月份以来,来黄冈参观游览的游客络绎不绝,现通过对参观遗爱湖的游客问卷调查,发现每位游客选择继续游玩遗爱湖的概率都是13,不游玩遗爱湖的概率都是23,若不游玩遗爱湖记1分,继续游玩遗爱湖记2分,记已调查过的所有游客累计得分恰为n 分的概率为n a ,则4a =__________. 【试题来源】【新教材精创】第四章 复习与小结 B 提高练 【答案】6181【分析】先分析4a 表示累计得4分和它包含的三种情况,再根据独立性进行概率计算即可. 【解析】4a 表示累计得4分,包含以下三种情况:调查2人都继续游玩遗爱湖,或者调查4人都不游玩遗爱湖,或者调查3人,其中1人继续游玩遗爱湖,2人都不游玩遗爱湖.故241243122161()()()333381a C =++⨯⨯=.故答案为6181. 5.已知X~B (5,13),则P (32≤X ≤72)=__________. 【试题来源】【新教材精创】导学案(人教B 版高二选择性必修第二册) 【答案】4081【分析】利用二项分布的概率计算公式即可求解. 【解析】P (32≤X ≤72)=P (X=2)+P (X=3)=251(3C )2(23)3+351(3C )3(23)2=4081.故答案为4081 6.假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为__________. 【试题来源】【新教材精创】提高练 【答案】35【分析】由题意知,射击命中的次数服从二项分布,直接利用独立重复试验的概率公式求解. 【解析】设该射手射击命中的概率为p ,两次射击命中的次数为X ,则()2,X B p ,由题可知()()160125P X P X =+==,即()()201220161125C p p C p p -+-=,解得35p =.故答案为357.随机变量2~19,3B ξ⎛⎫⎪⎝⎭,则()P k ξ=取最大值时k 的值为__________. 【试题来源】湖北省武汉市武钢三中2019-2020学年高二下学期期中 【答案】13【分析】利用二项分布的概率表达式,假设()P k ξ=最大建立不等式组,解出k .【解析】因为随机变量2~19,3B ξ⎛⎫ ⎪⎝⎭,所以()19192133k kk P k C ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.由题意得191201191919118119192121333321213333k k k kk k k k k kk k C C C C -----+-+⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪≥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即340317k k ≤⎧⎨≥⎩,又k 取整数,所以k =13. 故答案为138.李明参加中央电视台《同一首歌》大会的青年志愿者选拔,在已知备选的10道题中,李明能答对其中的6道,规定考试从备选题中随机地抽出3题进行测试,至少答对2题才能入选.则李明入选的概率为__________.【试题来源】2021学年高中数学新教材人教A 版选择性必修配套提升训练 【答案】23【分析】根据超几何分布公式可得答案.【解析】设所选3题中李明能答对的题数为X ,则X 服从参数为10,6,3N M n ===的超几何分布,且364310C C ()(0,1,2,3)C k k P X k k -===, 故所求概率为21306464331010C C C C 60202(2)(2)(3)C C 1201203P X P X P X ≥==+==+=+=, 故答案为23. 【名师点睛】本题考查超几何分布,属于基础题.9.在含有3件次品的20件产品中,任取2件,则取到的次品数恰有1件的概率是______. 【试题来源】山东省临沂市2019-2020学年高二(下)期末【答案】51190【分析】先求得正品件数,利用超几何分布公式求解即可.【解析】由题意得20件产品中,有3件次品,17件正品,故任取2件,恰有1件是次品的概率113172203175120191902C C P C ⨯===⨯,故答案为51190【名师点睛】本题考查超几何分布的识别与计算,考查学生对基础知识的掌握程度,属基础题.10.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.【试题来源】2020-2021学年高中数学新教材人教A 版选择性必修配套提升训练 【答案】43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【解析】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭,()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭, ()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=.故答案为43120【名师点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.四、解答题1.为调研高中生的作文水平,在某市普通高中的某次联考中,参考的生与生人数之比为1∶4,且成绩分布在[0,60]的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中,a ,b ,c 构成以2为公比的等比数列.(1)求a ,b ,c 的值;(2)填写上面2×2列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文”有关?(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为X ,求X 的分布列及数学期望. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++【试题来源】【高频考点解密】2021年新高考数学二轮复习讲义 分层训练 【答案】(1)0.005;0.010;0.020;(2)列联表见解析;不能;(3)答案见解析. 【分析】(1)由题知(0.0180.0220.025)101a b c +++++⨯=,再结合,,a b c 成等比数列得即可得答案;(2)根据题意完善列联表,求得2K 的观测值 1.316 6.635k ≈<,故不能在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文”有关;(3)由题知获得“优秀作文”学生的概率为0.005100.05⨯=,故2,0().05X B ~,再根据二项分布的公式求解即可.【解析】(1)由题意,得(0.0180.0220.025)101a b c +++++⨯=, 而,,a b c 构成以2为公比的等比数列,所以(240.0180.0220.025)101a a a +++++⨯=,解得0.005a =. 则0.010,0.020b c ==.(2)获得“优秀作文”的人数为4000.0051020⨯⨯=. 因为生与生人数之比为1∶4,所以生与生人数分别为80,320. 故完成2×2列联表如下:由表中数据可得2K的观测值2400(63061474) 1.316 6.6352038080320k ⨯⨯-⨯=≈<⨯⨯⨯,所以不能在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文”有关. (3)由表中数据可知,抽到获得“优秀作文”学生的概率为0.005100.05⨯= , 将频率视为概率,所以X 可取0,1,2,且2,0().05X B ~.则220,1,211()1()2020kkk P X k C k -⎛⎫⎛⎫=- ⎪ =⎪⎝⎭⎝⎭=故X 的分布列为故X 的期望为()01240040040010E X ⨯+⨯==⨯+(或()20.050.1E X =⨯=) 【名师点睛】本题考查了频率分布直方图、独立性检验、分层抽样、二项分布的概率公式和数学期望公式,考查运算求解能力,属于中档题.本题第三问解题的关键在于由题知获得“优秀作文”学生的概率为0.005100.05⨯=,进而根据二项分布的概率公式求解.2.天文学上用星等表示星体亮度,星等的数值越小,星体越亮.视星等是指观测者用肉眼所看到的星体亮度;绝对星等是假定把恒星放在距地球32.6光年的地方测得的恒星的亮度,反映恒星的真实发光本领.下表列出了(除太阳外)视星等数值最小的10颗最亮恒星的相关数据,其中[]0,1.3a ∈.(1)从表中随机选择一颗恒星,求它的绝对星等的数值小于视星等的数值的概率; (2)已知北京的纬度是北纬40︒,当且仅当一颗恒星的“赤纬”数值大于50-︒时,能在北京的夜空中看到它.现从这10颗恒星中随机选择4颗,记其中能在北京的夜空中看到的数量为X 颗,求X 的分布列和数学期望;(3)记0a =时10颗恒星的视星等的方差为21s ,记 1.3a =时10颗恒星的视星等的方差为22s ,判断21s 与22s 之间的大小关系.(结论不需要证明)【试题来源】北京市西城区2021届高三一模 【答案】(1)12;(2)分布列见解析;数学期望为145;(3)2212s s <. 【分析】(1)由图表数据可知有5颗恒星绝对星等的数值小于视星等的数值,由古典概型概率公式可计算得到结果;(2)首先确定X 所有可能取值,利用超几何分布概率公式计算可得每个取值对应的概率,由此可得分布列;根据数学期望计算公式可得期望; (3)根据数据的波动程度可得方差大小关系.【解析】(1)设一颗星的绝对星等的数值小于视星等的数值为事件A , 由图表可知10颗恒星有5颗恒星绝对星等的数值小于视星等的数值.()51102P A ∴==. (2)由图表知,有7颗恒星的“赤纬”数值大于50-︒,有3颗恒星的“赤纬”数值小于50-︒,则随机变量X 的所有可能取值为1,2,3,4.()137341*********C C P X C ====,()22734103210C C P X C ===,()3173410132C C P X C ===,()3407041146C C P X C ===.∴随机变量X 的分布列为()13111412343010265E X ∴=⨯+⨯+⨯+⨯=. (3)结论:2212s s <.理由:当0a =时,视星等的平均数为0.143-;当 1.3a =时,视星等的平均数为0.013-;可知当0a =时,视星等的数值更集中在平均数附近,由此可知其方差更小.【名师点睛】本题第二问考查了服从于超几何分布的随机变量的分布列与数学期望的求解,关键是能够确定随机变量服从于超几何分布,进而利用超几何分布概率公式计算得到每个取值对应的概率.3.每年的4月23日是联合国教科文组织确定的“世界读书日”,又称“世界图书和版权日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的。

高考数学专题 二项分布、超几何分布与正态分布问题(学生版)

高考数学专题 二项分布、超几何分布与正态分布问题(学生版)

高考数学专题 二项分布、超几何分布与正态分布问题【高考真题】1.(2022·新高考Ⅱ) 在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【知识总结】 1.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . E (X )=np ,D (X )=np (1-p ). 2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC n N,k =m ,m+1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.E (X )=n ·MN.3.正态分布解决正态分布问题的三个关键点 (1)对称轴x =μ. (2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.【题型突破】1.2021年3月6日,习近平总书记强调,教育是国之大计、党之大计.要从党和国家事业发展全局的高度,坚守为党育人、为国育才,把立德树人融入思想道德教育、文化知识教育、社会实践教育各环节,贯穿基础教育、职业教育、高等教育各领域,体现到学科体系、教学体系、教材体系、管理体系建设各方面,培根铸魂、启智润心.某中学将立德树人融入到教育的各个环节,开展“职业体验,导航人生”的社会实践教育活动,让学生站在课程“中央”.为了更好了解学生的喜好情况,根据学校实际将职业体验分为:救死扶伤的医务类、除暴安良的警察类、百花齐放的文化类、公平正义的法律类四种职业体验类型,并在全校学生中随机抽取100名学生调查意向选择喜好类型,统计如下:在这100名学生中,随机抽取了3名学生,并以统计的频率代替职业意向类型的概率(假设每名学生在选择职业类型时仅能选择其中一类,且不受其他学生选择结果的影响).(1)求救死扶伤的医务类、除暴安良的警察类这两种职业类型在这3名学生中都有选择的概率;(2)设这3名学生中选择除暴安良的警察类的随机变量为X,求X的分布列与均值.2.“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”学校数为随机变量X,求X的分布列与数学期望.3.某市某中学为了了解同学们现阶段的视力情况,现对高三年级2 000名学生的视力情况。

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)

2023 届高考数学复习:历年经典好题专项(二项分布与超几何分布、正态分布)练习(附答案)
广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国
粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的
(-100)
1
e- 200
10√2π
株高,得出株高 X(单位:cm)服从正态分布,其密度曲线函数为 f(x)=
法正确的是(
4
5
率为 ,则连续测试 4 次,至少有 3 256
625
64
625
B.
C.
)
D.
64
125
3.从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量 ξ 表示所选 3 人中女生的人数,则
P(ξ≤1)等于
A.
(
1
5
2
5
3
5
B.
C.
D.
)
4
5
4.(历年福建福州高三检测)某市一次高三年级数学统测,经抽样分析,成绩 X 近似服从正态分布
)
A.该地水稻的平均株高为 100 cm
B.该地水稻株高的方差为 10
2
,x∈(-∞,+∞),则下列说
C.随机测量一株水稻,其株高在 120 cm 以上的概率比株高在 70 cm 以下的概率大
D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大
8.设事件 A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件 A 至少发生一次的概率
到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求质量超过 500 克的产品数量;
(2)在上述抽取的 40 件产品中任取 2 件,设 Y 为质量超过 505 克的产品数量,求 Y 的分布列.

二项分布、超几何分布与正态分布 2025年高考数学基础专项复习

二项分布、超几何分布与正态分布 2025年高考数学基础专项复习
二项分布
则X的分布列为P(X=k)=C pk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p).
一般地,如果X~B(n,p),那么E(X)=np,D(X)=np(1-p).
教材素材变式
1
1.2
1.[人B选必二P83练习B第4题变式]设随机变量 ∼ , 0.4 , = 2 + 2,若 = 6,则 =___.
+ ) − 60 = 0,得
1
= 3,解得 = 3,故 = 2.所以 − = 1.
1

6
=1 =
C14 C15
C29
=
5

9
=0 =
C25
C29
5
= 18,所以
[多选]袋中有除颜色外完全相同的2个黑球和8个红球,现从中随机取出3个,记其中黑球的数量为,红球的数
量为,则以下结论正确的是(

超几何分布
教材知识萃取
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取

定义 的n件产品中的次品数,则X的分布列为P(X=k)=C C−,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,
C

超几何
分布
n≤N,m=max{0,n-N+M},r=min{n,M},此时称随机变量X服从超几何分布.
3.[多选][人A选必三P81习题7.4第3题变式]某计算机程序每运行一次都会随机出现一个五位二进制数
1
2
= 1 2 3 4 5 (例如10100),其中1 = 1, = 2,3,4,5 出现0的概率为3,出现1的概率为3,记

专题05二项分布、超几何分布与正态分布(原卷版) 专项复习(人教A版选择性必修第三册)

专题05二项分布、超几何分布与正态分布(原卷版) 专项复习(人教A版选择性必修第三册)

专题05二项分布、超几何分布与正态分布一、单选题1.(2020·全国高二课时练习)抛掷一枚质地均匀的正方体骰子4次,设X 表示向上一面出现6点的次数,则X 的数学期望()EX 的值为( ) A .13 B .49 C .59 D .232.(2020·全国高二课时练习)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数X 的数学期望是( ) A .43 B .119 C .1 D .893.(2021·河南驻马店市·高三期末(理))已知~(20,)X B p ,且()6E X =,则()D X =( ) A .1.8 B .6 C .2.1 D .4.24.(2021·山东德州市·高二期末)已知随机变量X 服从二项分布(),XB n p ,若()54E X =,()1516=D X ,则p =( )A .14B .13C .34D .45 5.(2020·全国高二课时练习)已知圆2228130+--+=x y x y 的圆心到直线()10kx y k +-=∈Z 的距离为若14,4XB ⎛⎫ ⎪⎝⎭,则使()P X k =的值为( ) A .23 B .35C .13D .27646.(2021·辽宁大连市·高三期末)2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .351287.(2020·江苏省苏州中学园区校高二月考)设随机变量ξ服从正态分布(2,9)N ,若(21)(1)P m P m ξξ<+=>-,则实数m 的值是( )A .23B .43C .53D .28.(多选)(2021·全国高二课时练习)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128 9.(多选)(2020·全国高三专题练习)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X =D .X 的方差()83V X =10.(2020·江苏南京市·南京田家炳高级中学高三期中)下列命题中,正确的命题是( )A .已知随机变量服从二项分布(),B n p ,若()30E x =,()20D x =,则23p =B .已知34n n AC =,则27n =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为X ,()~10,0.8X B ,则当8X =时概率最大.二、填空题11.(2021·江西高三其他模拟(理))已知随机变量ξ服从正态分布()23,N σ,()60.84P ξ≤=,则()0P ξ≤=______.12.(2020·福建三明市·高二期末)已知某批零件的长度误差X 服从正态分布()2,N μσ,其密度函数()()222,12x x e μσμσϕπσ--=的曲线如图所示,则σ=______;从中随机取一件,其长度误差落在()3,6内的概率为______. (附:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+=,()220.9544P μσξμσ-<≤+=,()330.9974P μσξμσ-<≤+=.)三、解答题13.(2021·全国高二课时练习)某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记(3)若规定分数在[80,90)为“良好”,[]该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.14.(2020·全国高三专题练习(理))袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X的分布列;(3)每次取1个球,有放回,共取5次,求取到白球次数X的分布列.15.(2021·全国高三其他模拟)某商场举行有奖促销活动,凡10月13日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率.(2)若小勇消费恰好满600元,试比较说明小勇选择哪种方案更划算.16.(2021·全国高二课时练习)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA-V200W ,已知这种球的质量指标ξ (单位:g )服从正态分布N (270,25).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p(0<p<1).(1)如果比赛准备了1000个排球,估计质量指标在(260,265]内的排球个数(计算结果取整数).f p.(2)第10轮比赛中,记中国队3:1取胜的概率为()(i)求出f(p)的最大值点0p;(ii)若以0p作为p的值记第10轮比赛中,中国队所得积分为X,求X的分布列.σ),则p(μ-σ<X<μ+σ)≈0.6826,p(μ-2σ<X <μ+2σ)≈0.9644.参考数据:ζ ~N(u,2。

高中试卷-专题7.4 二项分布与超几何分布(含答案)

高中试卷-专题7.4 二项分布与超几何分布(含答案)

专题7.4 二项分布与超几何分布姓名: 班级:重点二项分布与超几何分布的特征难点二项分布与超几何分布的计算一、超几何分布例1-1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( )。

A 、41004901C C -B 、4100390110490010C C C C C ⋅+⋅C 、4100110C CD 、4100390110C C C ⋅【答案】D【解析】由超几何分布概率公式可知,所求概率为4100110390C C C ⋅,故选D 。

例1-2.有8名学生,其中有5名男生。

从中选出4名代表,选出的代表中男生人数为X ,则其数学期望为=)(X E ( )。

A 、2B 、5.2C 、3D 、5.3【答案】B【解析】随机变量X 的所有可能取值为1、2、3、4,141)1(483315=⋅==C C C X P 、73)2(482325=⋅==C C C X P 、73)3(481335=⋅==C C C X P 、141)4(48345=⋅==C C C X P ,X 的分布列为:X1234P1417373141∴2514137337321411)(=⨯+⨯+⨯+⨯=X E ,故选B 。

例1-3.在含有3件次品的10件产品中,任取4件,X 表示取到的次品数,则==)2(X P 。

【答案】103【解析】X 满足超几何分布,∴103)2(4102723=⋅==C C C X P 。

例1-4.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望 。

【答案】109【解析】由题设知含有红色乒乓球个数ξ的可能取值是0、1、2、3,247)0(3103703=⋅==ξC C C P ,4021)1(3102713=⋅==ξC C C P ,407)2(3101723=⋅==ξC C C P ,1201)3(310733=⋅==ξC C C P ,109120134072402112470)(=⨯+⨯+⨯+⨯=ξE 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题: 超几何分布与二项分布[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N MnNC C P X k C --==(0,1,2,,k m =)进行处理就可以了. 二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -.典型例题1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率. 【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分 事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分故X 的分布列为……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分 2、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.,且听觉记忆能力为中等或中等以上的概率为25. (Ⅰ)试确定a 、b 的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列. 【解析】(Ⅰ)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10)a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==,解得6a =,从而40(32)40382b a =-+=-=.(Ⅱ)由于从40位学生中任意抽取3位的结果数为340C ,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为32416k k C C -,所以从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为32416340()k kC C P k C ξ-==(0,1,2,3)k =.ξ的可能取值为0、1、2、3. 因为03241634014(0)247C C P C ξ===,12241634072(1)247C C P C ξ===,212416340552(2)1235C C P C ξ===,302416340253(3)1235C C P C ξ===,所以ξ的分布列为32个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X ,求X 的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗? 【解析】(Ⅰ)X 的所有可能取值为0,1,2,3,4,5,6. 依条件可知X ~B (6,23).6621()33kkk P X k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0, 1, 2, 3, 4, 5, 6k =) 所以X所以(01112260316042405192664)729EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=4729=.或因为X ~B (6,23),所以2643EX =⨯=. 即X 的数学期望为4.(Ⅱ)设教师甲在一场比赛中获奖为事件A ,则224156441212232()()()()().3333381P A C C =⨯⨯+⨯⨯+=答:教师甲在一场比赛中获奖的概率为32.81(Ⅲ)设教师乙在这场比赛中获奖为事件B ,则2444662()5A A P B A ==.(此处为244625C C =会更好!因为样本空间基于:已知6个球中恰好投进了4个球)即教师乙在这场比赛中获奖的概率为25.频率组距 20 25 30 35 40 45 年龄 岁 组距 岁显然2323258081=≠,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等. 4、为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)岁的人数; (Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.析】(Ⅰ)①处填20,②处填35.0; 【解补全频率分布直方图如图所示.500名志愿者中年龄在[)35,30 的人数为 0.35500175⨯=人.…6分 (Ⅱ)用分层抽样的方法,从中选取20人, 则其中“年龄低于30岁”的有5人,“年龄不低于30岁”的有15人. …………7分 故X 的可能取值为0,1,2;21522021(0)38C P X C ===,1115522015(1)38C C P X C ===, 252202(2)38C P X C ===,……11分 所以X X 0 1 2 P2138 1538 238 ∴ 0123838382EX =⨯+⨯+⨯=. …………13分 5、为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值E (X ). 【解析】(Ⅰ)记“该产品不能销售”为事件A ,则111()1(1)(1)6104P A =--⨯-=. 分组(单位:岁)频数 频率 [)20,25 5 050.0 [)25,30 ① 200.0 [)30,35 35 ② [)35,40 30 300.0 []40,45 10 100.0 合计100 00.112所以,该产品不能销售的概率为14. ……………………………………4分 (Ⅱ)由已知,可知X 的取值为320,200,80,40,160---. ………………………5分411(320)()4256P X =-==, 134133(200)()4464P X C =-=⋅⋅=, 22241327(80)()()44128P X C =-=⋅⋅=,3341327(40)()4464P X C ==⋅⋅=, 4381(160)(4256P X ===. ……………………………………10分 所以X 的分布列为11分 E (X )1127278132020080401602566412864256=-⨯-⨯-⨯+⨯+⨯40=,故均值E (X )为40.……12分 6、张先生家住H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35. (Ⅰ)若走L 1路线,求最多..遇到1次红灯的概率; (Ⅱ)若走L 2路线,求遇到红灯次数X 的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.【解析】(Ⅰ)设走L 1路线最多遇到1次红灯为A 事件,则0312331111()=()()2222P A C C ⨯+⨯⨯=.…4分 所以走L 1路线,最多遇到1次红灯的概率为12. (Ⅱ)依题意,X 的可能取值为0,1,2. …………5分331(=0)=(1(14510P X -⨯-=,33339(=1)=(1(1454520P X ⨯-+-⨯=,339(=2)=4520P X ⨯=.…8分 01210202020EX =⨯+⨯+⨯=. ………………10分(Ⅲ)设选择L 1路线遇到红灯次数为Y ,随机变量Y 服从二项分布,1(3,)2Y B ,所以13322EY =⨯=.……12分 因为EX EY <,所以选择L 2路线上班最好.……14分。

相关文档
最新文档