2016年全国大学生数学建模竞赛题

合集下载

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。

该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。

本文将对B 题的解题过程进行详细分析,并总结经验教训。

二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。

公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。

该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。

三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。

在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。

2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。

模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。

同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。

3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。

在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。

遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。

4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。

首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。

然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。

在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。

5. 结果分析:在得到求解结果后,我们需要对结果进行分析。

首先,我们需要对结果进行验证,确保结果的正确性和有效性。

然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。

最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结2016年全国大学生数学建模竞赛B题解题分析与总结一、题目分析2016年全国大学生数学建模竞赛B题是一个与经济学、金融学相关的问题,要求参赛者通过对问题的深入分析和建模,以及对模型的求解和结果的解释,提出合理的结论。

二、问题描述本题的题目为《贷款利率调控模型》。

题目给出了一组数据,包括贷款利率、消费者价格指数、人均可支配收入、外汇储备等指标,要求参赛者针对这些指标进行分析,并建立合适的模型来解释这些指标之间的关系。

三、解题思路1. 数据分析:首先,我们需要对给定的数据进行分析。

通过绘制图表和计算一些统计量,我们可以对这些数据的变化和趋势进行初步了解。

2. 建立模型:在了解了数据的基本特征之后,我们需要以此为基础,建立起合适的数学模型。

这个模型应该能够描述贷款利率与消费者价格指数、人均可支配收入、外汇储备之间的关系,并能够进行预测。

3. 参数估计:建立好模型之后,我们需要对模型中的参数进行估计。

这需要依赖于数学推导和数据拟合的方法,通过最小二乘法等方法,确定模型的参数。

4. 模型求解:有了模型和参数之后,我们可以使用计算机软件进行模型的求解。

通过数值计算的方法,我们可以得到模型的解析解或数值解,并进行结果的分析和解释。

5. 结论与反思:最后,我们需要根据模型的结果,对问题进行结论和反思。

我们可以分析模型的合理性、可靠性,以及对解决实际问题的指导意义。

同时,我们也可以对模型的不足之处进行总结,并提出改进的建议。

四、模型建立与结果解释在解题的过程中,我们可以考虑建立如下的模型:贷款利率=消费者价格指数+人均可支配收入+外汇储备。

通过对这三个指标的分析,我们可以发现它们之间存在着一定的关系。

消费者价格指数和人均可支配收入可以反映经济的收入水平和购买力,而外汇储备可以反映国家的经济实力。

在建立了模型之后,我们可以对模型进行求解,并得到相应的结果。

根据模型的求解结果可以得出以下结论:贷款利率与消费者价格指数、人均可支配收入和外汇储备之间存在着一定的关系。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者针对实际问题进行数学建模、求解及分析。

本文将详细介绍该题目的背景、意义、解题思路及总结,以期为其他参赛者提供参考。

二、题目背景与意义本题以城市交通拥堵问题为背景,要求参赛者建立数学模型,对城市交通流量进行预测及优化。

该问题具有较高的现实意义,因为随着城市化进程的加速,交通拥堵已成为各大城市面临的重要问题。

通过数学建模,我们可以更好地理解交通拥堵的成因,为解决交通拥堵问题提供理论依据。

三、解题思路1. 问题分析首先,我们需要对题目进行深入分析,明确问题的背景、目标及约束条件。

本题主要涉及城市交通流量的预测及优化,需要考虑到交通网络的复杂性、交通流量的时变性、道路资源的有限性等因素。

2. 数学建模根据问题分析,我们可以建立相应的数学模型。

本题中,我们采用交通流理论及运筹学原理,建立了一个多因素影响的城市交通流量预测模型。

模型中考虑了道路类型、交通状况、天气等因素对交通流量的影响。

同时,为了优化交通流量,我们还建立了一个基于遗传算法的交通信号灯配时优化模型。

3. 模型求解在建立数学模型后,我们需要进行模型求解。

本题中,我们采用MATLAB软件进行模型求解。

首先,我们利用历史数据对预测模型进行训练,得到各因素对交通流量的影响程度。

然后,我们根据实时交通数据及天气数据,利用预测模型对未来一段时间内的交通流量进行预测。

最后,我们利用遗传算法对交通信号灯配时进行优化,以达到缓解交通拥堵的目的。

四、解题方法与技巧在解题过程中,我们需要掌握一些方法和技巧。

首先,我们要对题目进行深入分析,明确问题的本质及需求。

其次,我们要建立合理的数学模型,考虑到各种因素的影响。

在求解过程中,我们需要选择合适的算法及软件工具,以提高求解效率及准确性。

此外,我们还需要注重模型的验证与优化,确保模型的可靠性和实用性。

2016数学建模国赛赛题

2016数学建模国赛赛题

2016数学建模国赛赛题
2016年数学建模国赛赛题一般是指《数学建模入门教程》中的赛题,主要
有以下三类:
1. 问题一:水深测量与海洋动力现象模拟。

要求:使用集中质量法将系统中的各个物体视为一个质点,对各个物体建立静力平衡方程,在水深18m时给定浮标在海水中所受浮力,从而根据建
立的平衡方程求出各物体的倾斜角度,再根据几何关系求出海域的模拟深度。

通过不断修正浮标的浮力,使得海域的模拟深度等于18m,最终求得风速
分别为12m/s和24m/s时浮标的吃水深度和各节钢管的倾斜角度。

2. 问题二:交通流模型与小区开放对周边道路通行的影响。

要求:利用元胞自动机的方法,分别分析不同道路车量位置与车流量变化、负荷系数以及基于交通流的车速。

先对不同小区进行划分,再利用问题一的方法和结论,分别模拟不同小区、不同路段开放小区对车辆通行情况的分析。

最后根据第一问选取出的六个指标,依据其计算公式,分别得出所有样本的所有指标值。

再根据这些指标值,利用投影寻踪法,得到不同小区、不同路段下,开放小区对周围道路通行的影响。

3. 问题三: Braess 悖论。

要求:对于这个问题没有给出具体的要求,因为这是一个理论问题,主要探讨的是网络流理论中的一个著名悖论。

请注意,由于题目较为复杂,建议在数学建模课程或相关论坛中寻找更详细的解答。

【2016年高教社杯全国大学生数学建模竞赛赛题】CUMCM2016-Problem-C-Chinese-version

【2016年高教社杯全国大学生数学建模竞赛赛题】CUMCM2016-Problem-C-Chinese-version

全国大学生数学建模竞赛真题试卷复习材料2016年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题电池剩余放电时间预测
铅酸电池作为电源被广泛用于工业、军事、日常生活中。

在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本题中为9V)。

从充满电开始放电,电压随时间变化的关系称为放电曲线。

电池在当前负荷下还能供电多长时间(即以当前电流强度放电到Um的剩余放电时间)是使用中必须回答的问题。

电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。

问题1 附件1是同一生产批次电池出厂时以不同电流强度放电测试的完整放电曲线的采样数据。

请根据附件1用初等函数表示各放电曲线,并分别给出各放电曲线的平均相对误差(MRE,定义见附件1)。

如果在新电池使用中,分别以30A、40A、50A、60A和70A电流强度放电,测得电压都为9.8伏时,根据你获得的模型,电池的剩余放电时间分别是多少?
问题2 试建立以20A到100A之间任一恒定电流强度放电时的放电曲线的数学模型,并用MRE评估模型的精度。

用表格和图形给出电流强度为55A时的放电曲线。

问题3 附件2是同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录数据。

试预测附件2中电池衰减状态3的剩余放电时间。

2016数学建模d题

2016数学建模d题

2016数学建模d题摘要:一、数学建模简介1.数学建模的定义2.数学建模的重要性3.数学建模的应用领域二、2016 数学建模D 题背景及内容1.题目背景2.题目内容3.题目难度及挑战三、解题思路及方法1.问题分析2.解题思路3.常用数学建模方法四、2016 数学建模D 题案例分析1.案例一2.案例二3.案例三五、总结与反思1.2016 数学建模D 题的启示2.数学建模能力的培养3.对未来数学建模比赛的展望正文:数学建模是一种运用数学方法解决实际问题的过程,它涉及到多个学科领域,如统计学、计算机科学、经济学等。

数学建模在现代社会具有很高的实用价值,可以帮助我们更好地理解世界、预测未来和优化决策。

在我国,数学建模竞赛是一项重要的赛事,吸引了大量的高校学生参与。

2016 年的数学建模D 题以“飞行器航迹优化问题”为背景,要求参赛者针对给定的飞行器、目标和航路约束条件,设计出一种飞行器航迹优化算法。

该题目具有一定的难度和挑战性,需要参赛者具备较强的数学功底和实际问题解决能力。

在解题过程中,首先要对题目进行深入分析,明确问题的关键信息和隐含条件。

然后根据问题特点,选择合适的解题思路和方法。

常用的数学建模方法有:线性规划、动态规划、遗传算法、模拟退火算法等。

为了更好地理解2016 数学建模D 题,我们可以通过以下三个案例进行分析:案例一:采用线性规划方法求解飞行器航迹优化问题。

通过建立线性目标函数和约束条件,求解最优航迹。

该方法简单易行,但对于复杂问题可能无法得到全局最优解。

案例二:利用动态规划方法解决飞行器航迹优化问题。

通过将问题拆分为子问题,并采用动态规划的思想,逐步求解子问题,最终得到全局最优解。

该方法在时间复杂度上具有优势,但在空间复杂度上可能较高。

案例三:采用遗传算法求解飞行器航迹优化问题。

通过模拟自然界的生物进化过程,对飞行器航迹进行迭代优化。

遗传算法具有全局搜索能力,能够较快地找到最优解,但可能受初始种群和参数设置的影响。

2016数学建模国赛B题

2016数学建模国赛B题

用方格因子影响模型探究小区开放对道路通行的影响摘要目前我国人口增长,各种大型小区增多,各小区家庭拥有小汽车量也在增多,根据我国的道路交通设计和城市规划设计,我国的道路交通存在着严重问题,所以对交通的通行能力有着较大需求,本题将要分析的是,如果常规的封闭性小区开放,那周边道路通行会出现怎样的变化。

关于第一问,本文选取五个交通参数,道路通行能力、道路网的饱和度、车道交通流量比、车辆的延误时间、饱和流量;可以由各个指标来衡量小区开放以后对周围道路的交通状况的影响。

关于第二问,先将城市交通道路网格化,再建立方形小区内点对之间的最优路径寻模型,通过分析交通网格化下的封闭性小区开放之后,小区内的各个点对之间的各个路径中,最优路径是否存在,同时可以计算得出小区的面积及位置对点对间交通便捷度影响因子的影响,通过因子分析法来计算并寻找最优路径,从而判断周边道路的交通状态,是否会因为小区的开放而得到缓解。

关于第三问,分析其开放前后小区对周边道路的交通通行带来的影响;从参考资料中选取一个城市小区,通过对小区结构以及道路结构对其道路通行能力的分析。

同时构建一个方形小区,通过假设其开放前和开放后的各类数据,进行一个辅助比较,通过这两种类型的小区,并应用第一问与第二问中的模型,发现打破一个封闭小区,可以使得周边道路上车辆的通行能力增加,即使得交通状况有所改善。

第四问要求从交通通行的角度提出建议,通过以上三问对开放性小区评价指标、周边道路交通体系、长沙市某具体小区与构建的虚拟小区等的研究结果,向相关部门提出了对小区开放的合理建议。

关键字:小区开放;道路通行能力;最优路径;饱和流量;交通便捷度影响因子一、问题重述近几年,我国经济飞速发展,在GDP上升的同时,封闭型的小区也越来越多,政府、开发商、居民等也越来越多的居住于封闭型小区,同时私家车在我国城市居民家庭中的数量越来越多,逐步普及。

这给各个道路的交通,以及小区周边的道路交通造成了巨大压力,可以说城市道路交通拥堵的问题变得不容忽视。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。

本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。

二、题目概述B题主要涉及城市空气质量预测问题。

题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。

此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。

三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。

对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。

2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。

具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。

这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。

在建模过程中,我们需要通过交叉验证等方法确定模型的参数。

3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。

根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。

同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。

四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。

我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。

同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。

五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。

在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,以其独特的实际应用背景和复杂的数学建模需求,吸引了众多参赛者的关注。

本文旨在分析该题目的解题思路、方法及过程,并总结经验教训,以期为后续参赛者提供参考。

二、题目概述B题主要围绕“空气质量预测与治理”展开,要求参赛者建立数学模型,对某城市的空气质量进行预测,并探讨治理措施的效果。

题目既涉及数学建模的理论知识,又具有实际应用价值。

三、解题分析1. 数据收集与预处理在解题过程中,首先需要收集该城市的历史空气质量数据,包括PM2.5、PM10、SO2、NO2等主要污染物的浓度数据,以及气象数据、交通流量等影响因素数据。

对收集到的数据进行清洗、整理和标准化处理,以便进行后续的建模分析。

2. 模型选择与建立根据题目要求和数据特点,可以选择时间序列分析模型、多元线性回归模型、神经网络模型等。

在建立模型时,需要考虑各种影响因素的相互作用,以及模型的预测精度和泛化能力。

同时,还需要对模型进行参数估计和假设检验,以确保模型的可靠性。

3. 模型应用与验证将建立的模型应用于实际数据,进行空气质量预测。

通过对比预测值与实际值的差异,评估模型的预测精度和效果。

此外,还需要探讨治理措施对空气质量的影响,评估治理措施的效果。

四、解题方法与技巧1. 多角度综合分析在建模过程中,需要从多个角度综合分析问题。

既要考虑空气质量的主要影响因素,又要考虑各因素之间的相互作用;既要关注模型的预测精度,又要考虑模型的泛化能力。

只有综合考虑各种因素,才能建立更加准确、可靠的数学模型。

2. 合理选择模型与方法根据问题的特点和数据的特点,选择合适的模型与方法。

不同的模型与方法有不同的适用范围和优缺点,需要根据实际情况进行选择和调整。

同时,还需要对所选模型与方法进行充分的了解和掌握,以确保建模过程的顺利进行。

3. 注意数据的处理与分析数据是建模的基础,数据的处理与分析对建模的结果具有重要影响。

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国高校生数学建模竞赛B 题解题分析与总结专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。

文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!2016年全国高校生数学建模竞赛B题解题分析与总结2016年全国高校生数学建模竞赛B题解题分析与总结引言:2016年全国高校生数学建模竞赛是我国高等教育中的一项重要赛事,也是高校生运用数学知识探究实际问题的一个重要平台。

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题2016年高教社杯全国大学生数学建模竞赛题目 ,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外00kg。

钢桶上接第4节钢径30cm的密封圆柱形钢桶内,设备和钢桶总质量为1 管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2 在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016数学建模国赛B题

2016数学建模国赛B题

用方格因子影响模型探究小区开放对道路通行的影响摘要目前我国人口增长,各种大型小区增多,各小区家庭拥有小汽车量也在增多,根据我国的道路交通设计和城市规划设计,我国的道路交通存在着严重问题,所以对交通的通行能力有着较大需求,本题将要分析的是,如果常规的封闭性小区开放,那周边道路通行会出现怎样的变化。

关于第一问,本文选取五个交通参数,道路通行能力、道路网的饱和度、车道交通流量比、车辆的延误时间、饱和流量;可以由各个指标来衡量小区开放以后对周围道路的交通状况的影响。

关于第二问,先将城市交通道路网格化,再建立方形小区内点对之间的最优路径寻模型,通过分析交通网格化下的封闭性小区开放之后,小区内的各个点对之间的各个路径中,最优路径是否存在,同时可以计算得出小区的面积及位置对点对间交通便捷度影响因子的影响,通过因子分析法来计算并寻找最优路径,从而判断周边道路的交通状态,是否会因为小区的开放而得到缓解。

关于第三问,分析其开放前后小区对周边道路的交通通行带来的影响;从参考资料中选取一个城市小区,通过对小区结构以及道路结构对其道路通行能力的分析。

同时构建一个方形小区,通过假设其开放前和开放后的各类数据,进行一个辅助比较,通过这两种类型的小区,并应用第一问与第二问中的模型,发现打破一个封闭小区,可以使得周边道路上车辆的通行能力增加,即使得交通状况有所改善。

第四问要求从交通通行的角度提出建议,通过以上三问对开放性小区评价指标、周边道路交通体系、长沙市某具体小区与构建的虚拟小区等的研究结果,向相关部门提出了对小区开放的合理建议。

关键字:小区开放;道路通行能力;最优路径;饱和流量;交通便捷度影响因子一、问题重述近几年,我国经济飞速发展,在GDP上升的同时,封闭型的小区也越来越多,政府、开发商、居民等也越来越多的居住于封闭型小区,同时私家车在我国城市居民家庭中的数量越来越多,逐步普及。

这给各个道路的交通,以及小区周边的道路交通造成了巨大压力,可以说城市道路交通拥堵的问题变得不容忽视。

2016数学建模d题

2016数学建模d题

2016数学建模d题摘要:1.题目背景介绍2.数学建模D题分析3.解题思路与方法4.具体步骤详解5.模型检验与优化6.结论与启示正文:一、题目背景介绍数学建模D题是2016年数学建模竞赛的一个题目,题目背景涉及我国城市交通规划与管理。

参赛者需要根据题目要求,构建一个数学模型,对城市交通进行优化,以提高道路通行能力和减少拥堵现象。

二、数学建模D题分析数学建模D题主要涉及以下几个方面:城市交通网络、车辆路径规划、交通拥堵、道路拓宽、公交线路优化等。

为了更好地解决这些问题,我们需要对城市交通网络进行深入分析,找出拥堵的原因,并提出合理的解决方案。

三、解题思路与方法1.数据收集:收集城市交通相关数据,如道路网络、交通流量、出行时间、公交线路等。

2.数据预处理:对收集的数据进行清洗、整理和转换,以便于后续建模分析。

3.建立模型:根据题目背景和分析结果,选择合适的数学模型,如图论模型、网络优化模型、动态规划模型等。

4.模型求解:利用编程工具或数学软件,求解所建立的模型,得到优化结果。

5.模型检验与优化:检验模型的有效性,根据实际情况对模型进行调整和优化。

四、具体步骤详解1.数据收集:通过网络、文献、政府部门等渠道获取城市交通相关数据。

2.数据预处理:将原始数据转化为可用于建模的格式,如道路网络表示为有向图、交通流量表示为邻接矩阵等。

3.建立模型:根据题目要求,选择合适的数学模型。

例如,利用图论模型求解最短路径问题,利用网络优化模型求解最大流问题,利用动态规划模型求解公交线路优化问题等。

4.模型求解:利用编程工具或数学软件,如MATLAB、Python等,求解所建立的模型。

5.模型检验与优化:检验模型的有效性,如道路拓宽、公交线路优化等。

根据实际情况,对模型进行调整和优化。

五、结论与启示通过对2016年数学建模D题的分析和求解,我们可以得出以下结论:1.城市交通优化是一个复杂的问题,需要综合考虑多种因素。

2.数学建模是一种有效的解决交通优化问题的方法,可以帮助我们更好地理解城市交通现象。

2016年数模国赛题目

2016年数模国赛题目

2016年数模国赛题目
2016年数学建模国赛共有多道题目,以下是其中一道题目的详
细描述:
题目,城市交通网络规划。

背景,某城市的交通网络规划需要进行优化,以提高交通效率
和减少交通拥堵。

要求,设计一个合理的交通网络规划方案,使得城市内的交通
流畅,同时最小化交通拥堵和行驶时间。

问题一,基于已有的道路和交通流量数据,确定各个路段的通
行能力和拥堵情况,并构建一个合适的交通网络模型。

问题二,根据问题一中的交通网络模型,通过合理的交通信号
灯控制策略,优化交通信号灯的配时方案,以最大程度地提高交通
流畅性。

问题三,考虑到城市交通网络的日常变化和特殊事件(如事故、
施工等),设计一套自适应的交通管理系统,能够及时调整交通信号灯配时方案,并提供实时的交通信息给驾驶员和交通管理部门。

问题四,对于未来城市交通发展,结合人口增长和城市规划,提出相应的交通网络扩建和改造方案,以适应未来的交通需求。

以上仅是2016年数学建模国赛的其中一道题目,其他题目的具体描述可能会有所不同。

在比赛中,参赛者需要结合数学建模方法和工程实践,综合运用数学、计算机科学、交通规划等知识,提出创新性的解决方案,并进行模型验证和结果分析。

2016年“高教社杯”全国大学生数学建模竞赛题目

2016年“高教社杯”全国大学生数学建模竞赛题目
说明近海风荷载可通过近似公式 F=0.625×Sv2(N)计算,其中,S 为物体 在 风 向 法 平 面 的 投 影 面 积(m2),v 为风速(m/s)。近海水流力可通过近似公式 F=374×Sv2(N)计 算,其 中,S 为 物 体 在 水 流 速 度法平面的投影面积(m2),v 为水流速度(m/s)。
注 :长 度 是 指 每 节 链 环 的 长 度 。
· 23 ·
·竞赛论坛·
2016 年 “高 教 社 杯 ”全 国 大 学 生 数 学 建 模 竞 赛 题 目
2016 ,国务院发布《关 于 进 一 步 加 强 城 市 规 划 建 设 管 理 工 作 的 若 干 意 见 》,其 中 第 16 条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区 和 单 位 大 院 要 逐 步 开 放 等 意 见, 引起了广泛的关注和讨论。
系 泊 系 统 的 设 计 问 题 就 是 确 定 锚 链 的 型 号 、长 度 和 重 物 球 的 质 量 ,使 得 浮 标 的 吃 水 深 度 和 游 动 区 域 及钢桶的倾斜角度尽可能小。
问 题 1 某 型 传 输 节 点 选 用II型 电 焊 锚 链22.05m,选 用 的 重 物 球 的 质 量 为1 200kg。 现 将 该 型 传 输节点布放在水深18m、海床 平 坦、海 水 密 度 为 1.025×103 kg/m3 的 海 域。 若 海 水 静 止,分 别 计 算 海 面 风 速 为 12 m/s和 24 m/s时 钢 桶 和 各 节 钢 管 的 倾 斜 角 度 、锚 链 形 状 、浮 标 的 吃 水 深 度 和 游 动 区 域 。
城 市 规 划 和 交 通 管 理 部 门 希 望 你 们 建 立 数 学 模 型 ,就 小 区 开 放 对 周 边 道 路 通 行 的 影 响 进 行 研 究 ,为 科 学 决 策 提 供 定 量 依 据 ,为 此 ,请 你 们 尝 试 解 决 以 下 问 题 :

2016数学建模d题

2016数学建模d题

2016数学建模d题(原创版)目录A.2016 年数学建模竞赛 D 题概述1.竞赛背景2.题目内容B.题目解析1.题目要求2.题目难点C.解决方法与策略1.建立模型2.数学分析3.计算机实现D.总结与展望1.竞赛价值2.对未来数学建模的启示正文【提纲】2016 年数学建模竞赛 D 题概述1.竞赛背景全国大学生数学建模竞赛是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

2.题目内容2016 年数学建模竞赛 D 题的题目为:“无人机航拍影像处理与分析”,要求参赛选手在规定时间内,根据题目要求,完成对无人机航拍影像的处理与分析,建立数学模型,并撰写论文。

题目解析1.题目要求题目要求参赛选手对无人机航拍影像进行处理与分析,需要完成的任务包括影像去噪、影像增强、目标检测和目标跟踪等。

要求建立数学模型,并利用计算机技术实现。

2.题目难点此题难度较大,主要体现在以下几个方面:首先,由于航拍影像的复杂性,需要选取合适的处理方法;其次,影像处理涉及多个领域,需要参赛选手具备较全面的知识体系;最后,计算机实现过程需要编程技术,对参赛选手的编程能力有一定要求。

解决方法与策略1.建立模型根据题目要求,首先需要建立数学模型。

可以选择基于小波变换的图像去噪方法、基于偏微分方程的图像增强方法、基于深度学习的目标检测与跟踪方法等。

2.数学分析在模型建立之后,需要进行数学分析,包括模型的合理性、稳定性、有效性等。

可以通过理论推导、数值模拟等方式进行分析。

3.计算机实现最后,需要利用计算机技术实现模型。

可以采用 Python、MATLAB 等编程语言进行实现。

总结与展望1.竞赛价值2016 年数学建模竞赛 D 题的解决过程对于参赛选手具有很高的学习价值,可以锻炼参赛选手的综合能力,提高建立数学模型和运用计算机技术解决实际问题的能力。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者分析某地区农产品流通系统的问题,建立相应的数学模型并解决实际管理决策问题。

本文旨在深入探讨此题目的解题思路、方法和总结,以供参考。

二、题目背景及问题分析本题主要涉及农产品流通系统的管理与优化问题。

背景中提供了详细的农产品销售和物流数据,要求我们通过建立数学模型,分析现有问题并提出解决方案。

问题主要涉及以下几个方面:1. 农产品流通系统的现状分析;2. 农产品销售和物流过程中的瓶颈与问题;3. 优化农产品流通系统的策略与方法。

三、解题思路与方法针对上述问题,我们首先进行了系统的分析,然后提出了以下解题思路与方法:1. 现状分析:通过收集和分析农产品销售和物流数据,了解现有系统的运作情况,找出瓶颈和问题。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们选择了网络流模型、线性规划模型等。

3. 问题诊断:运用建立的数学模型对问题进行诊断,找出关键因素和影响程度。

4. 优化策略:根据诊断结果,提出优化策略和方法,包括改进物流网络、优化价格策略等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估,根据评估结果进行调整和优化。

四、具体实施步骤1. 数据收集与整理:收集农产品销售和物流数据,进行整理和清洗。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们建立了网络流模型和线性规划模型。

3. 问题诊断与瓶颈分析:运用建立的数学模型对问题进行诊断,找出关键因素和瓶颈。

通过分析数据,我们发现物流网络中的某些环节存在瓶颈,导致农产品流通效率低下。

4. 提出优化策略:针对诊断结果,我们提出了一系列优化策略和方法。

包括改进物流网络结构、优化价格策略、引入先进的仓储和运输技术等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小区开放对道路通行的影响摘要本文主要针对推广街区制所引起的问题,选取了合适的评价指标体系,进而建立出研究小区开放对周边道路通行的影响的模型,然后运用该模型对各类型小区开放前后对道路通行的影响进行比较,最后根据研究结果提出了建议。

首先,为使指标体系科学化、规化,满足评价指标体系的构建原则,本文根据道路通行能力的影响因素选取评价指标体系。

而影响城市道路通行能力的因素主要取决于道路条件、交通状况及服务水平等因素[1],道路条件包括道路等级和路网密度,交通条件包括车流量及交叉口平均延误时间,服务水平包括路段饱和度和路段车速。

由于小区开放对周边道路通行的影响因素较多且相互关联、相互制约,缺少定量数据,因此本文采用层次分析法[2]先建立递阶层次结构模型,进而得出各影响因素的权重向量并排序。

但该法有其局限性,主观因素影响较大,所以建立了一种基于层次分析法的模糊综合评价模型,从多个因素对评价事物隶属等级状况进行综合性评判[3]。

针对问题三,本文选取万科城市花园小区,该小区属于半封闭式小区,由于城市道路网络脆弱性分析评价指标为小区开放程度、小区位置及小区规模[4],在需要定量比较各类型小区的基础上,小区规模和小区位置为定量,通过改变小区开放程度来满足类型不同的要求。

开放程度可分为全封闭、半封闭、全开放三种形式[5],将全封闭式与半封闭式和全开放式进行对比,半开放式小区的车流量为0.4102,封闭式小区的车流量为0.7465,全开放式小区的车流量为0.6352,对小区开放程度对道路交通影响的打分,全封闭式小区的评分为0.7125,半封闭小区的得分为0.3924,全开放小区的得分为0.5726,与得分区间进行对比,得出全封闭式下的交通能力最差,全开放下的小区的车流量最大,半封闭下达到开放度的均衡的结论。

根据得到的研究成果,本文从小区部路网结构和交通安全等方面对城市规划和交通管理部门提出了具体建议。

关键词:小区开放层次分析法模糊综合评价道路通行能力开放度均衡一、问题重述城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:1.请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。

2.请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。

3.小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。

请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。

4.根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

二、问题分析本文旨在解决小区开放对道路通行的影响的问题,主要包括三个相关问题,通过对小区开放对周边道路通行的影响进行评价,建立关于车辆通行的数学模型,进而运用所建模型定量比较各类型小区开放前后对道路通行的影响,最后根据研究结果提出建议。

2.1 问题一:选取评价指标体系评价小区开放对周边道路通行的影响首先,为使指标体系规化,满足所需评价指标体系的构建原则,本文根据道路通行能力的影响因素选取评价指标体系。

而影响城市道路通行能力的因素主要取决于道路条件、交通状况及服务水平等因素,道路条件即小区周边道路条件,包括道路等级和路网密度等,交通状况包括车流量及交叉口平均延误时间,服务水平包括路段饱和度和路段车速。

通过对评价指标进行分析,评价小区开放对周边道路通行的影响。

2.2 问题二:建立研究小区开放对周边道路通行的影响的数学模型由于小区开放对周边道路通行的影响因素较多且相互关联、相互制约,缺少定量数据,因此本文采用层次分析法先建立递阶层次结构模型,进而得出各影响因素的权重向量并排序。

但该法有其局限性,主观因素影响较大,所以建立了一种基于层次分析法的模糊综合评价模型,从多个因素对评价事物隶属等级状况进行综合性评判,能够较为客观的体现出小区开放对周边道路的影响。

2.3 问题三:应用所建模型定量比较各类型小区开放前后对道路通行的影响问题三要求选取或构建不同类型的小区并应用问题立的模型,定量比较各类型小区开放前后对道路通行的影响,本文选取万科城市花园小区,由于城市道路网络脆弱性分析评价指标为小区开放程度、小区位置及小区规模,在需要定量比较各类型小区的基础上,小区规模和小区位置为定量,通过改变小区开放程度来满足类型不同的要求。

开放程度可分为全封闭、半封闭、半开放三种形式,将全封闭式与半封闭式和全开放式进行对比,可得出小区开放前后对道路通行的影响。

2.4 问题四:从交通通行的角度提出关于小区开放的合理化建议根据前三个问题得出的具体结果,可知小区的开放程度将影响路网密度及交叉口平均延误程度等。

因此要分析小区开放对道路通行的影响因素与城市规划和交通管理部门之间的关系,进一步探讨小区交通开放可行性,并针对交通开放小区部道路系统提出相关改善措施[6]。

三、条件假设与符号说明3.1 条件假设1.假设选取的评价指标能够代表小区开放影响道路通行的因素;2.假设在此期间不发生重大事件影响道路通行(如限行等);3.假设选取的小区能够达到小区开放的效果;4.小区开放道路交叉口均设有红绿灯;5. 改变小区类型时相应道路等级也发生改变; 3.2 符号说明 符号解释说明 符号解释说明 ρ路网密度 L道路总长度S区域面积d 交叉口平均延误时间 g t一个周期绿灯的时间 T红绿灯一个周期时间 V最大交通流 C最大通行能力 i w优先权 ,i j x x两个因子CI 一致性指标 RI平均随机一致性指标 CR一致性比例 'max λ最大特征根的平均值 max λ 最大特征根 s 评语量化集 X 评价因子集 v评语等级论域 A 模糊因素权向量 B 合成向量 i N 综合评定值四、模型的建立与求解4.1 问题一:关于小区开放对周边道路通行的影响的评价为使指标体系科学化、规化,满足评价指标体系的构建原则,本文围绕道路通行能力的影响因素展开讨论,影响城市道路通行能力的因素主要取决于道路条件、交通条件及服务水平等因素,道路条件即小区周边道路条件,包括道路等级和路网密度等,交通条件包括车流量及交叉口平均延误时间,服务水平包括路段饱和度和路段车速。

由此,本文利用层次分析法,对各因素进行了归类划分,使各因素间层次分明,衔接紧扣。

具体划分情况如图1: 4.1.1各指标的说明1. 道路等级:道路的等级越高其道路的通行能力越好,目前,我国将城市道路共分为四类:快车路、主干道、次干道、支路。

小区周边道路的道路等级对周边道路的影响较大,当小区的周边道路是支路形的,道路的宽度则较窄小,对于缓解主干道或次干道的交通能力就相对较弱,相反,当小区的周边道路等级较高时,在车流量较大的情况下 ,就能够缓解该道路的的交通压力。

2. 路网密度:路网密度等于某一计算区域所有的道路的总长度与区域总面积之比,单位为千米每平方千米。

L Sρ=其中ρ 为路网密度,L 为道路的总长度,S 为区域总面积。

在道路面积率不变的情况下,路网密度越高,道路的车道数就越小,致使交叉口的数量增加,交通的需求量减少,对于车道数较多的道路而言,有更高的通行效益;同时,高密度的路网使得整个交通系统具有更强的联系性。

出行也有更多的选择权。

减少车道数有利于减少交叉口的冲突点,保证了车辆行驶的安全性 3. 交叉口平均延误时间:0.5(1)1[min(1,)]g g t T Td t x T -=-⨯其中d 为交叉口平均延误时间,g t 为一个周期的绿灯时间,T 为红绿灯一个周期时间。

交叉路口的延误时间是衡量交通运营效率的重要指标之一,小区的开放影响交叉路口的延误时间,通过对比小区开放与封闭两种形式下交叉路口的的延误时间,能够得到对道路通行能力的影响。

4. 车流量:车流量是衡量道路交通状况的标准之一,当车流量大时,道路通行能力 强,相应的,当车流量小时,道路通行能力差。

5. 道路饱和度:道路饱和度是反映道路服务水平的重要指标之一,计算公式为/V C ,其中,V 为最大交通量,C 为最大通行能力。

饱和度数值越高,代表服务道路水平越低,由于道路服务水平、拥挤程度受多方面因素的制约,实际中因难以考虑多方面因素,常以饱和度数值作为评价服务水平的主要指标。

6. 路段车速:车辆通过末路段时的时速。

图1:评价指标体系结构图4.2 问题二:小区开放对周边道路通行的影响交通开放小区目的诣在打破小区对城市道路的围堵,增强城市支路网密度,疏通城市道路之间的联络,提高支路的分流能力。

支路作为城市交通网络中的“毛细血管”,要对小区开放的有效性进行分析,首先要求出影响周边道路通行的各因素所占权重。

通常情况下,指标的相对影响程度由一组经过规化的优先权所确定,即有M 个目标,优先权分别为123,,m w w w w ,该组优先权满足:11,01miii w w ==<<∑由于小区开放对周边道路通行的影响因素较多且相互关联、相互制约,缺少定量数据,因此层次分析法的运用于该问题较为简洁、实用。

4.2.1 层次分析法本文在问题一中已选取合适的评价指标体系来评价小区开放对周边道路通行的影响,在问题二中,利用层次分析法求出各影响因素所占权重。

层次分析法是将与决策有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法具有系统、灵活、简洁的优点[11]。

首先建立递阶层次结构模型;然后构造出各层次中的所有判断矩阵;判断矩阵构成后,层次单排序及一致性检验;层次总排序及一致性检验;递阶层次结构模型在问题一中已构建,在构造各层次中的所有判断矩阵前,要将因子进行两两比较建立成对比矩阵,即每次取两个因子i x 和j x ,以ij a 表示i x 和j x 对Z 的影响大小之比,全部比较结果用矩阵()ij n n A a ⨯=表示,称A 为Z X -之间的成对比较判断矩阵,即判断矩阵,满足正互反矩阵的要求,本文引用数字1~9及其倒数作为标度确定ij a 的值,查找一致性指标RI 如表1:表1 判断矩阵定义标度 含义1 表示两个因素相比,具有相同重要性 3 表示两个因素相比,前者比后者稍重要 5 表示两个因素相比,前者比后者明显重要 7 表示两个因素相比,前者比后者强烈重要 9 表示两个因素相比,前者比后者极端重要2,4,6,8 分别表示上述相邻判断的中间值倒数若因素i 与因素j 的重要性之比为ij a ,那么因素j 与因素i 重要性之比为1/ji ij a a =构造出各层次的所有判断矩阵后,需对判断矩阵进行一致性检验,计算一致性指标CI 、平均随机一致性指标RI 、一致性比例CR 的公式分别如下:max 1nCI n λ-=-max '1nRI n λ-=- CI CR RI=其中max 'λ为最大特征根的平均值,CI 为一致性指标,CR 为一致性比例。

相关文档
最新文档