金属中自由电子气能量的研究

合集下载

固体物理-第三章 金属自由电子论讲解

固体物理-第三章 金属自由电子论讲解
N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:

金属中自由电子气能量的研究

金属中自由电子气能量的研究

金属中自由电子气能量的研究
金属中的自由电子气能量研究
随着科学技术的发展,研究金属中自由电子气能量非常重要。

金属是一种由电子组成的复杂物质,由此产生了自由电子,以及由此产生的气能。

自由电子气能量在影响金属的性能和变化方面是重要的考虑因素,因此研究自由电子气能量的重要性无可非议。

自由电子气能量的主要结构来自电子的受热运动,它是由电子运动温度和总能谱电子密度两个分量组成的,电子温度由电子运动温度和相对温度变化而确定,而电子密度则是由金属结构决定的,电子运动密度则是由金属存在电子无序和有序结构而决定。

基于电子运动温度和总能谱,我们可以获得自由电子气能,其计算结果表明金属的关键参数是金属的化学性质。

由于这种电子气能量影响金属的物理性质,因此有关的研究可以帮助我们了解金属的本质。

有关自由电子气能的研究还很新颖,刚开始的几十年,各大研究团队都致力于深入研究,他们借助各种理论工具和试验装置,仔细观察和测量金属材料中自由电子气能量。

此外,针对此类特定机构,人们还可以运用第一性原理计算方法估算出自由电子气能量,考虑到电子之间及电子与原子之间振动-旋转-翻转(VRT)效应,以及电子-原子受相互干涉的简单结构等,以求更精准的结果。

当前,自由电子气能的研究已经取得了较为显著的成果,有助于我们了解金属材料的物理特性,也可以帮助我们准确地认识和掌握金属,以便使其更好地应用于各种领域。

总之,研究金属中自由电子气能量极为重要,是推动金属材料研究和应用发展的关键点。

按照目前的趋势,我们相信在接下来的几十年中,将可以在金属的利用上取得更大的进展。

第5章金属自由电子论

第5章金属自由电子论
Z(E)43 k3(2 2 V )33V 22 m 2 E 3/2
第5章金属自由电子论
5.2 量子自由电子论
于是自由电子的状态密度为:
3
g(E)d dE Z2V22m 2 2E1 2cE 1 2
可见自由电子的态密度g(E)乃是能量E的函数,显然g(E)~E 的关系曲线是抛物线的一支。g(E)
态数 ,电子态密度函数
kx
k与能量 E的关系:
kz
dK
ky
kx2ky 2kz22 m 2 , Ek22 m 2 E
第5章金属自由电子论
5.2 量子自由电子论
等k值面为球面,在零到k的范围内,K空间的体积为 4k 3 3
因为在K空间中每 2 3 的体积内有一个满足周期性边界的
V
k值,故从零到k的范围内,总的k的取值数目为:
室温下 1 mol 一价金属的比热为:
C vC vlC ve3R2 3R4.5R
实验表明:室温下,金属的比热接近3R,全部由晶格贡献。 金属中自由电子起着电和热的传导作用,却对比热几乎没 贡献。
第5章金属自由电子论
5.1 经典自由电子论
经典理论自由电子论无法解释这一现象。直到索末菲把量 子力学应用到自由电子系统,才得到圆满的解释。
L Y
5.2 量子自由电子论
于是电子能量可写为:
E 2 2m
k
2 x
k
2 y
k
2 z
2 2
2m L
2
nx2
n
2 y
nz2
可见,自由电子能量依赖 于一组量子数(nx,ny,nz),能量只能 是一系列分离的数值,这些分离的能量被称为能级。按照泡 利原理,每个电子能级允许容纳两个自旋相反的电子。

金属材料的热传导与热导率计算

金属材料的热传导与热导率计算

金属材料的热传导与热导率计算热传导是金属材料中能量的传递过程,它是热力学中一个重要的研究领域。

了解金属材料的热传导特性和热导率计算方法对于材料科学和工程应用具有重要意义。

热传导是指由高温区域向低温区域传递热量的过程。

在金属材料中,传导过程主要由金属中的自由电子和晶格振动引起。

自由电子在金属中形成电子气,负责快速的热传导,而晶格振动则通过声子的传递来实现热量的传递。

自由电子和声子同时参与热传导的机制使得金属具有良好的热导率。

热导率是衡量物质传热能力的物理量,它定义为单位时间内传导热量通过单位面积的能力。

通过计算热导率,我们可以评估材料的导热性能。

对于金属材料,热导率通常用热电偶法、横向热传导法或激光闪烁热解法进行实验测量。

计算金属材料的热导率可以借助于热传导方程。

热传导方程描述了热量在材料内部传导的过程,可以用来计算温度分布和热流密度。

一维情况下的热传导方程为:q = -k(dT/dx)其中,q为热流密度,k为热导率,dT/dx为温度梯度。

该方程描述了沿着坐标轴x方向的热量传递过程。

对于复杂的金属材料,热传导方程一般需要使用二维或三维形式。

要计算金属材料的热导率,需要了解材料的物理性质。

金属的热导率与其晶体结构、晶粒尺寸、杂质含量、温度和外界条件等有关。

例如,单晶金属通常具有更高的热导率,因为它们具有更好的结晶态和较少的结构缺陷。

晶粒尺寸的减小和杂质的添加会降低金属的热导率。

此外,温度对热导率也有重要影响,一般来说,温度升高会增加金属的热导率。

为了计算金属材料的热导率,可以使用量子力学计算方法。

量子力学方法可以考虑金属的电子和声子运动,从而预测金属的热传导性能。

基于第一性原理的计算方法,如密度泛函理论,可以详细地描述金属的电子结构和振动特性,从而确定金属的热导率。

此外,还可以使用经验计算方法来估计金属的热导率。

这些经验计算方法基于实验数据和统计学关系,通过建立数学模型来预测金属的热导率。

例如,Debye模型和Wiedemann-Franz定律等经验定律可以用来估计金属的热导率。

第十六讲金属中自由电子气模型

第十六讲金属中自由电子气模型

- - -( 7)
3(z L) = 3(z)
用 通 解 的 前 一 种 表 示 , 分 别 假 定 波 沿 x,y,z 负 方 向 传 播 , 可 得
波矢:
kx =
2n x L
ky
=
2n y L
kz
=
2n z L
( 8)






(n :ψ
x, (x
ny, ,y,z
n )
z
为正 = 1(
负整
x ) 2 (
此时费密-狄喇克统计分布为 (见图 p112 图 6.3)
1
lim T 0
f ( E ,T ) 0
E (0) E (0)
其 中 μ (0)为 绝 对 零 度 时 的 化 学 势 。
- - (17)
电 子 气 基 态 :能 量 在 μ (0)以 下 的 状 态 全 被 电 子 占 满 ,能 量超 过 μ (0)
第十六讲 金属中自由电子气模型
第六章 金属电子论 问题:对金属中相互作用、运动着的大量电子,怎样进行理论处理?
如何从理论上说明电子对金属优良的电导、热导和比热的贡献? 如何从电子的运动状态解释电子热发射、光电效应和场电子发 射等重要现象? 本章用 量子的电子气体模型: 金属中的价电子组成电子气体(就象气体分
见 p112 图 6.3 f(E,T) ~ E 曲线
T > 0,

kBT
f
(,T
)
1 2
范围内,f (E,T )从 1下降到 0
由能态密度公式(13)
g(E) CE1/ 2
和公式(14)
C 4 ( 2m)3/ 2
h2

(完整版)第四章金属自由电子理论

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k 空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222η=所以 mkdk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmL E 22)(ηπρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L ηπ=240FmE L ηπ由此可得: 222208mL N E Fηπ= (7)(3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅ηπ=230)(232F E m N L ηπ=022223124F E mL N =ηπ 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E +=η。

电子行业金属自由电子气模型

电子行业金属自由电子气模型

电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。

在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。

本文将详细介绍电子行业金属中自由电子气模型的基本原理。

自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。

这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。

而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。

在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。

由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。

能带结构能带结构描述了金属中电子的能量分布情况。

根据自由电子气模型,电子能量随动量的变化形成能带。

在一维情况下,能带是连续的,电子在能带中可以具有任意动量。

而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。

根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。

因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。

能带结构可以分为导带和价带。

导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。

价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。

费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。

根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。

费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。

在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。

自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。

金属自由电子气理论

金属自由电子气理论

金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。

)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

自由电子气的能量状态

自由电子气的能量状态

2π 3
L
(2)波矢空间状态密度(单位体积中的状态代表点数):
L
3

(3)
k ~ k dk 体积元 dk中的(波矢)状态数为:
dZ0
L 2π
3
dk
(4) k ~ k dk 体积元dk 中的电子状态数为:
dZ
2
L
3
dk

首都师范大学物理系
2.能态密度
lim (1)定义: N (E)
Z dZ
E0 E dE
(2)计算:
波矢密 度
两个等能面间 的波矢状态数
两等能面间的 电子状态数
能态 密度
E ~ E dE 两等能面间的波矢状态数:
VC
2π3
(k空间E
~
E
dE两等能面间的体积)
首都师范大学物理系
考虑到每个波矢状态代表点可容纳自旋相反的两个电子,
dZ
2
VC
2π3
(k空间E
~
E
k x
k y
kБайду номын сангаас
z
2πnx
L 2πn y
L 2πnz
L
; ; ;
首都师范大学物理系
二、波矢空间和能态密度
1.波矢空间
以波矢
k
的三个分量
k

x
k
y、k
为坐标轴的空间称为波矢
z
空间或 k 空间。
金属中自由电子波矢:
kx
2πnx L
,ky
2πny L
,kz
2πnz L
(1)在波矢空间每个(波矢)状态代表点占有的体积为:
T0K时,费米面以内能量 离EF约kBT范围的能级上的电子 被激发到EF之上约kBT范围的能 级。

金属电子气的Drude模型

金属电子气的Drude模型

Drude模型在半导体物理中的应用
半导体载流子运动
Drude模型在半导体物理中用于描述半导体中载流子的运动行为。通过该模型, 可以研究半导体中电子和空穴的迁移率、扩散系数等性质,从而深入了解半导 体的光电、热电等效应。
半导体器件性能
Drude模型在半导体器件性能分析中也有重要应用,如晶体管、太阳能电池等。 通过该模型,可以研究器件中载流子的传输、注入、收集等过程,为优化器件 性能提供理论支持。ຫໍສະໝຸດ HANKS FOR WATCHING
感谢您的观看
04
Drude模型的局限性
Drude模型的近似性
Drude模型假设电子在金属中以无相 互作用的粒子形式运动,忽略了电子 间的相互作用。
在实际金属中,电子间存在相互作用, 这会导致电子的运动受到散射,使得 电子的运动不满足Drude模型的假设。
Drude模型在高场下的不适用性
Drude模型在高电场下不适用,因为 高电场下电子的运动速度接近光速, 需要考虑相对论效应。
02
当电子气受到外部扰动时,阻尼系数决定了电子气 的响应速度和振幅衰减。
03
阻尼系数的大小与金属的微观结构和温度有关,是 金属导电性能的重要参数。
电子气的弛豫时间
01 弛豫时间表示电子气达到热平衡状态所需的时间。 02 在Drude模型中,弛豫时间反映了电子气内部相
互作用的过程。
03 弛豫时间的长短决定了金属的电导和热导等物理 性质随时间的变化规律。
述这些效应。
发展Drude模型的量子版本
引入量子力学效应
在量子版本的Drude模型中,考 虑量子力学效应对金属电子气行 为的影响,如能级量子化、波函 数等。
考虑量子相干性
在低温下,金属电子气可能表现 出量子相干性,需要发展量子版 本的Drude模型来描述这种行为。

固体物理学 自由电子论

固体物理学 自由电子论
自由电子费米气体 (金属自由电子论)
§1. 金属自由电子论的物理模型 1.Drude的金属自由电子论
Drude的经典理论将自由电子看 作是经典离子气体,服从波尔兹曼分 布(速度分布),与中性稀薄气体一样 去处理,认为电子之间无相互作用, 同时也不考虑原子实势场的作用,这 样一个简单的物理模型处理金属的许 多动力学问题是很成功的。
f ( T )D( )d N
0
当T《 TF时:
u
F
[1
2
12
(
kBT
F
)2
]
0(kB
T
F
)4
与处理点阵振动的热能相仿,由
电子气的轨道密度D(ε)可求出电子气
的内能,轨道密度定义为:
在能量ε附近,单位能量间隔中
的轨道数定义为轨道密度度,在dε能
量间隔中的轨道数为D(ε)dε,色散
关系为:
2 k 2
k2
2 2m
(k2x
k
2 y
kz2 )
这就是色散关系,能量随波矢的变化是抛物
线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数
ms
1 2
给定了 k 就确定了能级,k 代表同能级上
自旋相反的一对电子轨道。
在波矢空间自由电子的等能面是一个球面
εk
2 2m
此时 k(r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将 (r) eikr ei(k xxk y yk zz) k 代回薛定锷方程可求出能级:

固体物理金属中自由电子论

固体物理金属中自由电子论
严格理论计算结果支持了后一种说法。这主要是 由于Pauli不相容原理的结果。能量比EF低得多的电 子,其附近的状态仍被其他电子所占据,没有空状态 来接纳它。因此,这些电子不能吸收电场的能量而跃 迁到较高的能态,对电导作出贡献,能被电场激发而 对电导有贡献的只是在费米面附近的一小部分电子。
§5.2 Sommerfeld展开式及其应用
电子由于碰撞而失去其定向运动。
费米球心移动的距离为
Δk
=
dk dt
⋅τ
=


h
ετ:平均自由时间源自电子的定向漂移速度为Vd
=
1 m

hΔk
=
− eτ
m
ε
电流密度:
j
=
−neVd
=
ne2τ
m
⋅ε
=
σ
⋅ε
∴σ = ne2τ
m
第二种解释:只有在费米面
ky
附近未被抵消部分的电子才
对传导电流有贡献。
这部分电子所占的分数为
0.5
0
E F
E
0
E F
E
对于金属而言,由于T << TF总是成立的,因此, 只有费米面附近的一小部分电子可以被激发到高能 态,而离费米面较远的电子则仍保持原来(T=0)的 状态,我们称这部分电子被“冷冻”下来。因此,虽然 金属中有大量的自由电子,但是,决定金属许多性质 的并不是其全部的自由电子,而只是在费米面附近的 那一小部分。
Z
(E)
=
2⋅
ρ
(k)⋅
4πk3
3
=
2⋅
V

3


3
(
2m

金属中的自由电子模型

金属中的自由电子模型

金属中的自由电子模型在金属中,原子固定在晶格中,共享其外层电子形成金属键。

与共价键不同,金属键不是由两个原子共享电子形成的,而是由整个金属晶体共享所有电子形成的。

因此,金属中的电子是高度移动的,可以在整个晶体中自由移动。

这种高度移动的电子被称为自由电子。

自由电子模型为了更好地理解金属中的自由电子,我们可以使用自由电子模型来进行说明。

自由电子模型假设金属中的所有原子共享它们的外层电子,形成一个巨大的电子气体。

这个电子气体中的电子可以看作是独立的,它们可以在整个晶体中自由移动,没有受到单个原子的束缚。

这种自由运动的电子是金属的导电电子,可以在金属中形成电流。

自由电子模型的一个重要假设是,电子在金属中形成一个连续的能带。

这个能带可以看作是一系列接近的能级,电子可以在其中自由移动。

不同的金属有不同的能带结构,这决定了它们的导电性和其他电学和热学性质。

在自由电子模型中,金属晶体的离子核可以看作是一个均匀的正电荷背景,与电子相互作用形成电子-正离子相互作用。

这种相互作用决定了自由电子的运动和能带结构。

能带结构能带结构是自由电子模型的一个重要概念。

在一个金属晶体中,由于相邻的原子之间形成了化学键,形成了共享电子的状态。

在这种情况下,电子的能量不再被离子核所束缚,而是自由移动。

它们可以在一系列接近的能级上自由移动,形成了能带结构。

概念上,我们可以将能带结构看作单位晶体内的所有电子的哈密顿量,哈密顿量代表所有电子的能量。

根据能带结构理论,所有电子都会填充到有限数量的能带中。

当一个能带被填充满时,下一个更高的能带就变成了空的,这个空的能带就可以被其他电子占据,从而继续导电。

导电性金属的导电性可以通过自由电子模型来解释。

在自由电子模型中,金属中的电子可以以任何方向自由移动,导致电流。

金属中的导电性与其能带结构有关。

金属中的电子被分为价带和导带,价带电子被紧密束缚在原子周围的状态中,电子的运动受到离子核的束缚。

而导带电子则在能带结构中自由移动,不受到束缚。

金属自由电子气模型

金属自由电子气模型
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
p(t
dt)
p(t)
F (t)dt
P(t)
dt
(1.2.3)
更简练的形式为
dp(t)
F (t )
P(t)
dt
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)d
m
d d
(t)
F (t)
• 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
1. Drude模型
1)传导电子和芯电子
Na: K L M 1s 2s2p 3s 281
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
传导电子密度 n:单位体积的传导电子数
原子数/mole: N0 = 6.022 ∙ 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 m是金属的质量密度(g/cm3),A 是元素的原子量
n
N0
Zm
A
6.022 1023
Zm
A
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍3源自0.22rs a0
1014 sec .
(1.2.10)
其a0为中玻,尔为半金径属。电阻率,rs为一个所占据体积的等效球半径,
金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2

11金属自由自由电子气体模型及基态性质

11金属自由自由电子气体模型及基态性质
二者的一致性,表明周期性边条件的合理性 由周期性边界条件:(讲解以下推导过程)
Where the quantity nx, ny, nz are any integer(整数)
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
nx, ny, nz取值为整数,意味着波矢k取值是量子化的。
三、基态和基态能量 1.N个电子的基态、费米球、费米面 电子的分布满足:能量最小原理 和 泡利不相容原理 我们已知在波矢空间状态密度:
考虑到每个波矢状态代表点可容纳自旋相反的两个电子, 则单位相体积可容纳的电子数为:
路漫漫其修远兮, 吾将上下而求索
N个电子的基态(T=0K),可从能量最低的 k=0 态开始,从 低到高,依次填充而得到,每个k态两个电子。
路漫漫其修远兮, 吾将上下而求索
驻波边界条件 常用边界条件
周期性边界条件
人们广泛使用的是周期性边界条件(periodic boundary condition),又称为波恩-卡门(Born-von Karman)边条件
亦即:
对于一维
相当于首尾相接成环,从而既有有限尺寸,又消除了边界 的存在。
路漫漫其修远兮, 吾将上下而求索
每个点表示一个允许的单电子态。
路漫漫其修远兮, 吾将上下而求索
金属中自由电子波矢: nx, ny, nz取值为整数 所以,每个代表点(单电子态)在k空间是均匀分布的。 由此: (1)在波矢空间每个(波矢)状态代表点占有的体积为:
(2)波矢空间状态密度(单位体积中的状态代表点数): 注意量纲
路漫漫其修远兮, 吾将上下而求索
满足薛定谔方程:
路漫漫其修远兮, 吾将上下而求索
其中:V(r)为电子在金属中的势能,为电子的本征能量

05 金属自由电子气体模型

05 金属自由电子气体模型

ε mol
=
N
A
⎜⎛ ⎝
3 2
k
BT
⎞⎟ ⎠
=
3 RT 2
一价金属:CVe ,mol
=
∂ε mol ∂T
=
3R 2
高温时金属的总比热容:
CV
=
C Ph V ,mol
+ CVe ,mol
= 3R + 3 R ≈ 37.40J / mol ⋅ K 2
实际
Ce V,mol
小于经典值
量子:
CVe
~
T TF
常温下:电子的贡献比例很小
kx
=
2π L
nx
ky
=
2π L
ny
kz
=
2π L
nz
nx , ny , nz--一组整数
自由电子的能量是不连续的,相邻能级相距很近. 5 kv空间与态密度 (k-space) 电 的子 端的 点状 代态 表由 一波 个矢可确 能定 的。kv 在 值。kv空相间邻中 代, 表每 点一 在波 三矢 维坐kv
vy
=

eτ m
Ey
+
ωcτv x
ωc
=
eB m
--回旋频率
vz
=

eτ m
Ez
30
5
Jv = −nevv σ = ne2τ m
σ 0 E x = J x + ωcτJ y σ 0 E y = −ωcτJ x + J y
4.4 霍尔效应和磁阻
长方体样品, 沿x轴施加外电场Ex, 存在电流Jx, 在z轴 加磁场B后, 产生洛仑兹力在负y方向作用到电子上.
+1

自由电子气

自由电子气

钠的3s轨道重叠
(2)电子同正离子的作用较强,但量子效应导
致的排斥作用能抵消部分库仑能,使有效势变弱;
另外,当电子经过离子实附近时,由于电子速度
变大,停留在离子实附近的时间较少,因此电子
大部分时间处于势场弱的区域,平均而言,电子
同正离子相互作用较弱。
(3)由于泡利原理,平行自旋的电子相 距较远,反平行自旋的电子为减少为库仑 排斥能,也必须相于电子速度变大停留在离子实附近的时间较少因此电子大部分时间处于势场弱的区域平均而言电子同正离子相互作用较弱
自由电子气
所谓自由电子气,意味着电子同正离子的 相互作用很弱,电子同电子间的相互作用很弱, 并且自由运动于整个晶体。 (1)金属原子形成晶体后,原子间距变小。 如钠晶体最近邻原子间距为3.7Ǻ,而3s价电子 轨道半径是1.9 Ǻ,也就是说价电子要发生轨 道重叠,则电子不再束缚于原来的原子,而可 在整个晶体中运动。

金属能量释放 物理

金属能量释放 物理

金属能量释放物理
金属释放能量的物理机制主要涉及其中的自由电子在受到外部激发时吸收能量,并在返回低能级时释放出多余的能量。

具体来说:
1. 能量吸收:当金属受到热、电流或其他形式的外部激发时,金属中的自由电子会吸收这些能量。

2. 电子跃迁:吸收了能量的自由电子会发生能级跃迁,即从低能级状态跳跃到高能级状态。

3. 能量释放:当这些处于高能级的电子回到低能级时,它们会释放出之前吸收的多余能量。

这部分能量可能会以光或热的形式辐射出来,表现为发光现象或其他形式的能量释放。

此外,在金属物理性质的研究中,自由电子论提供了一个直观的模型来解释金属的导电性和导热性等性质。

尽管后来的能带论以更严格的数学处理提供了更加精确的描述,但自由电子论仍然是理解金属电子行为的重要基础。

总的来说,金属中的能量释放是一个复杂的物理过程,涉及到电子的能级跃迁和能量转换。

这些过程不仅关系到材料的基本物理性质,如导电性和导热性,还涉及到材料的实际应用,例如在光电器件中的应用。

用电子气理论解释金属导电性

用电子气理论解释金属导电性

用电子气理论解释金属导电性时,可以从电子密度和能带结构两个方面来考虑。

电子密度指的是原子核周围电子的数量,金属元素的电子密度通常很大。

由于电子密度大,金属元素的电子之间的相互作用也很小,因此电子在金属元素内部的运动很容易。

这就是为什么金属元素的电子可以很方便地在金属晶体内移动,使得金属元素具有导电性的原因。

能带结构指的是电子的能量分布情况。

在金属元素的能带结构中,电子能量的分布是连续的。

由于电子能量的分布是连续的,因此电子在金属元素内部可以自由地转移到低能量状态,使得金属元素的电子可以很方便地在金属晶体内移动。

这就是为什么金属元素的电子可以很方便地在金属晶体内移动,使得金属元素具有导电性的原因。

总之,用电子气理论解释金属导电性时,可以从电子密度和能带结构两个方面来考虑。

电子密度大,电子之间的相互作用也很小,因此电子在金属元素内部的运动很容易。

能带结构中电子能量的分布是连续的,因此电子在金属元素内部可以自由地转移到低能量状态,使得金属元素的电子可以很方便地在金属晶体内移动。

这就是为什么金属元素具有导电性的原因。

需要注意的是,金属元素的导电性并不是绝对的,也不是所有金属元
素都具有较高的导电性。

例如,金、银、铜等元素的导电性较高,而铁、铝、镁等元素的导电性则较低。

这是由于不同元素的电子密度和能带结构的差异造成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档