N个平面可以把空间分成几部分

合集下载

平面分空间

平面分空间

n个平面把空间分割成的部分数最多, 个平面把空间分割成的部分数最多, 其位置关系如何呢? 其位置关系如何呢? 任何两个平面相交; 1)任何两个平面相交; 2)任何三个平面呢? 任何三个平面呢?
任何三个平面, 任何三个平面, 不相交于同一条直线, 不相交于同一条直线, 交线也不能相互平行; 交线也不能相互平行;
与“3条直线分割平面最多有几个部分”类比 条直线分割平面最多有几个部分” 有一部分有限。无限部分是: 有一部分有限。无限部分是: 与三角形有一公共边的有三部分, 与三角形有一公共边的有三部分, 与三角形有一公共顶点的有三部分, 与三角形有一公共顶点的有三部分, 于是,总的分割数是1 于是,总的分割数是1+3+3=7。
…… …… …… …… …… …… …… ……
结论: ♦结论:
维空间分割r维空间得到的最大 用 n个( r-1)维空间分割 维空间得到的最大 维空间数目 个 维空间分割 维空间得到的最大r维空间数目 = 用 (n-1)个( r-1)维空间分割 维空间得到的最大 维空 维空间分割r维空间得到的最大 个 维空间分割 维空间得到的最大r维空 间数目+用 维空间分割(r-1)维空间得到的最 间数目 用 (n-1)个(r-2)维空间分割 个 维空间分割 维空间得到的最 维空间数目. 大(r-1)维空间数目 维空间数目 即对任意的r维空间, 个 即对任意的 维空间,n个(r-1)维超平面最多可以把 r维 维空间 维超平面最多可以把 维 切割成W(n,r)部分,则 部分, 空间 切割成 部分
r 1 2 3 4 5 6 …… n 1 2 2 2 2 2 2 2 3 4 4 4 4 4 3 4 7 8 8 8 8 4 5 11 15 16 16 16 5 6 16 26 31 32 32 6 7 22 42 57 63 64 7 8 29 64 99 120 127 …… …… …… …… …… …… ……

六年级第7讲 归纳与推递(学生版)

六年级第7讲  归纳与推递(学生版)

第七讲归纳与递推1、早在公元前300多年前,古希腊著名科学家欧几里德就在他的旷世名著<几何原本》一书中记载了几何学中最基本、最引人人胜的一条著名定理:“三角形的内角和等于180度”,我们的问题是:①四边形的内角和等于多少度(见下图)?答:五边形的内角和等于多少度(见下图)?答:②进一步,如果把多边形的边数记作n,你能够归纳出n边形的内角和的计算公式吗?答:公式为__ __.③在家庭装修中,经常采用各种正多边形(注:正多边形就是各条边均相等且各内角也相等的多边形)的瓷砖搭配出各式各样的地面图案.小明家装修时采用了三种正多边形瓷砖铺地面,这三种型号的瓷砖可以围绕着地面上的一点既不重叠又不产生漏洞的拼接起来.其中一种型号是正方形,另一种型号是正六边形,你知道第三种型号的多边形瓷砖的边数是多少吗?请写出你的计算过程.2、一条直线分一个平面为两部分,二条直线最多分一张平面为四部分,问:五条直线最多分一个平面为多少部分?3、将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.、一个长方形把平面分成两部分,那么三个长方形最多把平面分成部分.5、 n个平面最多钝将空间分成多少个部分?6、如下图所示,第一个三角形的面积是256,取三角形的3条边的中点,连成一个三角形,将中间的三角形挖去,得到第二个图,再将第二个图中每个三角形按照前一个做法得到第三个图,如此下去……,求第五个图形的面积是。

7、在一张长方形纸片内有n个点,加上四个顶点共,n+4个点,这些点中任意三点都不在同一条直线上,(1)n=4时,将长方形纸片剪开,最多可以剪成多少个以这些点为顶点的三角形(画出一个示意图即可作答).(2)n=2010时,最多可以剪成多少个以这些点为顶点的三角形?并作简要说明.(注意:(1)、(2)中任意两个三角形不重叠)8、在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上和,如图a所示;第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和,如图b 所示,=+;第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和,如图c所示,1=+,1=+;如此继续下去,当第八次标完数以后,圆周上所有已标的数的总和是____.9、小凯家住二楼,从一楼到二楼的楼梯共有9阶,小凯上楼时每步可跨1阶、跨2阶、或跨3阶.请问他共有多少种不同的方法上楼?10、仅由数字1和2组成一些数,其中至少有两个数字1相连的数称为“学而思数”,如11,112,1211等都是“学而思数”,而12212就不是“掌而思数”.那么所有六位的学而思数共多少个?11、用1×2小长方形或1×3的小长方形覆盖2×6的方格网(如下图所示),共有不同的盖法。

田增伦函数方程的代换解法

田增伦函数方程的代换解法

田增伦 函数方程的代换解法虽然函数方程早在200多年前就已经被人们提出并加以研究了. 但至今还没有关于函数方程的统一理论和解函数方程的一般方法,也没有关于函数方程的解的存在性和唯一性的判别准则. 不仅如此,甚至还有一些函数方程至今未能解出. 而且函数方程现有的一些解法,往往要借助于高等数学的工具(例如把函数方程化为微分方程,或者化为有限差分方程等等). 这当然远远超出这本小册子的范围. 但是,对于某些特殊的、简单的函数方程,应用初等方法也是能够解出的. 其中有一种方法叫代换法. 我们就来介绍这种方法.[例5] 解函数方程)1(.1)(2≠=⎪⎭⎫⎝⎛+a •ax •x f x af (17)解 因原式中0≠x ,把自变量x 换为x 1,于是x1就换为x. 函数方程(17)化为 .)(1•x a x f x af =+⎪⎭⎫⎝⎛ (18)(17)乘以a ,得⋅=+⎪⎭⎫ ⎝⎛x •a x f a x af 22)(1 (19) (18)-(19),得⋅-=-x •a xax f a 22)()1( ∴)1()1()(22a x ax a x f --=.从上例可以看出,代换法的基本思想是这样的:将函数中的自变量x 适当地代换以别的自变量(在代换时应注意力求使函数的定义域不发生变化),得到一个新的函数方程. 把新得到的这个函数方程与原有的函数方程联立,组成一个关于未知函数的代数方程组. 再应用通常的消元法,解这个方程组,就求得了原函数方程的解. 至于原来函数中的自变量x 用什么东西代换才算是适当的,这就要看所给的函数方程的具体特点了——这属于解题技巧问题.[例6] 求函数f (x ),如果bx x f x af n n =-+)()(, (20)其中12≠a,n 是奇数.解 把x 换以-x ,由于n 是奇数,就有bx x f x af n n -=+-)()(. (21)从(20),(21)中消去)(n x f -,求得1)(-=a bxx f n . 因为n 是奇数,可以把nx 换成x ,所以最后有1)(-=a xb x f n . [例7] 解函数方程cx x bf x af =-+-)1()1(. (22)解 把(x-1)代之以x ,那末(1-x )就代之以-x ,而x 就应代之以(1+x ); 又如果把(x-1)代之以-x ,那末(1-x )就代之以x ,而x 就应代之以(1-x ). 分别代入原函数方程,就得⎩⎨⎧-=-++=-+.)1()()(,)1()()(•x c x af x bf •x c x bf x af 解这个方程组,得知: (1)当22b a≠时,ba cx b a c x f ++-=)(; (2)当22b a=,而0≠c 时,f (x )不存在;(3)当a =b ,且c =0时,f (x )是任何奇函数;(4)当a =-b 是,且c =0时,f (x )是任何偶函数. [例8] 解函数方程y x f y x f y x f cos )(2)()(=-++. (23)解 依次作下列代换:,2,2;2,2;,0t ••y ••x ••y•t •x t ••y••x +π=π=π=+π=== 就得到方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛π-=-++π=++π=-+)26(.sin 22)()()25(,0)()()24(,cos )0(2)()(••t •f t f t f ••••t f t f •••t •f t f t f (24)+(25)-(26),得t f t f t f sin 22cos )0(2)(2⎪⎭⎫⎝⎛π+=.就是t f t f t f sin 2cos )0()(⎪⎭⎫⎝⎛π+=.记,2,)0(•f •b •f a ⎪⎭⎫⎝⎛π==即得x b x a x f sin cos )(+=.有时候要把自变量代换成具体的数值才行. 而当f (x )是定义在自然数上的函数时,往往要进行多次代换,才能求出这个函数. 记住等差数列和等比数列前n 项和的公式,往往是很有用的.我们知道,当首项为a ,公差为d 时,等差数列前n 项的和.2])1(2[])1([)2()(•d n a n •d n a d a d a a S n -+=-+++++++= (27)特别是当a=1,d=1时,.2)1(321•n n n S n +=++++= (28) 对于首项为a ,公差为)1(≠q 的等比数列,前n 项的和1)1(12--=++++=-q q a aqaq aq a S n n n . (29) 特别是当)1(≠=q a时,1)1(32--=++++=a a a a a a a S n nn . (30)[例9] 设函数f (n )的定义域是自然数,求f (n ),使它满足条件)32(.1)1()31(,)()()(•••••f ••mn •n f m f n m f =++=+解 设m=1,便有.1)()1(•n n f n f ++=+把n 顺次用1,2,3,…,(k+1)代换,就得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=+=+=.)1()()1(,,4)3()4(,3)2()3(,2)1()2(•k k f k f ••f f •f f •f f 把方程组的所有方程相加,得,2)2)(1()1(321)1(432)1()1(•k k •k •k f k f ++=+++++=++++++=+∴.2)1()(•n n n f +=[例10] 函数f (n )定义在自然数上,且满足)34(.1)1()33(,)1()(••••f •••a n f n f n =+-= 求f (n ).解 把n 分别代换以2,3,4,…,n ,便得⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+=+=+=.)1()(,)3()4(,)2()3(,)1()2(432•a n f n f •a f f •a f f •a f f n 加在一起就化为.)1()(32•a a a f n f n +++==所以⎪⎩⎪⎨⎧≠--+==-.1,1)1(1,1,)(12•a ••a a a •a •••n •n f n 时当时当[例11] (1)n 个同学任意排成一队,共有多少种排法? (2)从n 个同学中任意选出)(n k ≤个同学排队,共有多少种排法?解 (1)设n 个同学排队,共有f (n )种排法. 如果再增加1个同学,让这位同学插入队伍. 对于原来n 个同学的每一种排法,这位同学可以排在第1名(队首),第2名,第3名,…,第n+1名(队尾),即有n+1种“插”法. 因此)()1()1(n f n n f +=+ (35)而.1)1(•f =依次令n=1,2,3,…,得.)()1()1(,)3(4)4(,)2(3)3(,)1(2)2(•n f n n f •f f •f f •f f +=+===把这些等式左右两边分别相乘,便有.)()3()2()1()1(432)1()4()3()2(•n f f f f n n f f f f +∙∙∙∙=+依题意可知f (2)、f (3)、…、f (n )都不为0,故两边同除以f (2)f (3)f (4)…f (n )后,得到.)1(321)1()1(432)1(•n •f n n f +∙∙∙∙=+∙∙∙∙=+∴.!)(•n •n f =这里,记号n n •∙∙∙∙= 321!,读做n 的阶乘. 就是说,n 个同学排成一队,共有!n •种排法. (2)设从n 个同学选出k 个同学排队,共有f k (n )种排法. 现在新增加一位同学,共有了(n+1)个同学,仍选出k 个同学排队. k 个同学排成的队伍可以分为两类:一类是这个新同学没有选进的队伍. 这种排法按照假设应共有f k (n )种. 另一类是新同学被选入队伍. 设想这种队伍的排法是这样实现的:由新同学替换原来队伍中的旧同学. 我们来看,如果新同学替换的是原队伍中的第1名,共有多少种排法;乍看起来,因为原队伍共有f k (n )种排法,因而以新同学为队首的排法也有f k (n )种. 其实不然. 因为在原队伍中,如果队首以后的(k-1)个同学及其排列顺序确定时,这时尚余1)1(+-=--k n k n 个同学可充当队首. 因而有1+-k n 种排法. 但当队首被新同学替换后,就变成1种排法了. 可见以新同学为队首的排法为)(11n f k n k +-种. 同样的,以新同学为第2名,第3名,…,第k 名的队伍,排法也各有)(11n f k n k +-种. 总之,有新同学出现的队伍,排法一共有)(1n f k n kk +-种. 于是,得函数方程)(1)()1(n f k n kn f n f k k k +-+=+.或者)(11)1(n f k n n n f k k +-+=+. (36)分别令n=k ,k+1,…,得.)(11)1(,)2(33)3(,)1(22)2(,)(11)1(•n f k n n n f •k f k k f •k f k k f •k f k k f k k k k k k k k +-+=+++=+++=++=+相乘,约去等式两边相同的因式(它们显然是不为0的),得.)(11332211)1(•k f k n n k k k n f k k +-+∙∙+∙+∙+=+ 但由第(1)题知,.!)(•k •k f k =所以.)!1(!)1)(2()1()1(•k n k k k n n n f k +-∙+++=+或者.)1()2)(1()!(!)(•k n n n n k n n n f k +---=-=这就是从n 个同学中任意选出)(n k ≤个同学排队的共有的排法.在这里,我们实际上得到了排列公式:从n 个不同的元素里,每次取出)1(n kk ≤≤个元素,选排列(即k<n 时)数为••k n n n k n n n f A k k n ;)1()1()!(!)(+--=-== (37) 全排列(即k=n 时)数为.!•n A P nn n == (38)(注意,我们规定0!=1)[例12] 求从n 个不同的元素里,每次取出)1(n kk ≤≤个元素的组合数F k (n )公式,以及F k (n )所应满足的函数方程.解 有了排列数公式,可以方便地推导出组合数公式. 设从n 个不同的元素里,每次取出)1(n kk ≤≤个元素的排列数为f k (n ). 因为k 个元素的全排列数为k!,而这k !个排列在组合中只算作1组. 因此,排列数与组合数间有如下关系:.)(!)(•n F k n f k k = (39)代入(37),得.)!(!!)!(!!1)(!1)(•k n k n k n n k n f k n F k k -=-∙==(40) 这就是我们所要求的公式.把(39)代入函数方程(36),得)(!11)1(!n F k k n n n F k k k ∙+-+=+,即)(11)1(n F k n n n F k k +-+=+ (41)这就是组合数F k (n )所应满足的函数方程.从n 个不同的元素里,每次取出k 个元素的组合数,通常记做kn C . 这样,公式(40)可写成)!(!!k n k n C k n -=, (42)而公式(41)则可写成kn k n C k n n C 111+-+=+. (43)[例13] (1)直线上有n 个点(任何两点不相重合). 这n 个点把直线分成了多少部分(区间)?(2)平面上有n 条直线(任何两条直线彼此相交,但任何三条直线不交于同一点). 这n 条直线把平面分成了多少部分?(3)空间中有n 个平面(任何三个平面彼此相交,而任何四个平面却无公共点). 这n 个平面把空间分成了多少部分?解 (1)设直线上n 个点A 1,A 2,…,A n 把直线分成了f 1(n )个部分(图6). 现在再加上一个点A n +1. 这个点把原来的某一区间分成两个区间. 所以)1(1+n f 比)(1n f 多1. 就是)1(1+n f =)(1n f +1, (44)而)1(1f =2. (45)解函数方程(44),得1)(1+=n n f .就是说,直线上n 个点把直线分成(n+1)个部分.(2)设平面上n 条直线l 1,l 2,…,l n 把平面分为f 2 (n )个部分(图7). 增加一条直线l n+1. 这条直线与原来的n 条直线相交于n 点. 由第(1)题的结论,这n 个点把直线分成(n+1)个部分. 这(n+1)个部分的每一段都穿过原来的某一个区域,且把这个区域分成两部分. 所以)()1(22n f n f 比+多n+1. 就是1)()1(22++=+n n f n f , (46)而2)1(2=f . (47)进行一系列代换,得.)1()()1(,4)3()4(,3)2()3(,2)1()2(22222222•n n f n f •f f •f f •f f ++=++=+=+=相加后,得.)1(432)1()1(22•n f n f ++++++=+或者243)1(22++=+n n n f , 也就是22)(22++=n n n f . 这就是说,n 条直线把平面分成222++n n 个部分.(3)设n 个平面把空间分成)(3n f 个部分. 类似于上面的分析,可得函数方程.22)()1(233•n n n f n f +++=+ (48)而.2)1(3•f = (49)依次进行代换,得.122)()1(,12323)3()4(,12222)2()3(,12121)1()2(233233233233•nn n f n f •f f •f f •f f +++=++++=+++=+++=相加即得.)21(21)21(21)1()1(22233n •n ••n f n f +++++++++=+ 但是,6)12)(1(21222•n n n n ++=+++ (50).2)1(21•n n n +=+++ 所以.4)1(12)12)(1(2)1(3n •n n n n n n f ++++++=+于是.665)(33•n n n f ++=即n 个平面把空间分成)65(613++n n 部分. [例14] 把圆分成n 个不相等的扇形,并且用红、蓝、绿三种颜色给扇形染色,但不许相邻的扇形有相同的颜色. 共有多少种染法?解 设把圆分成扇形S 1,S 2,…,S n (图8). 开始时,可以给S 1涂以任何一种颜色. 所以S 1有3种染法. S 1染色后,S 2的染法 有2种:即涂上和S 1不同的两色中的 任何一种. S 1,S 2染色后,染S 3的方法 也有2种,这是因为S 3可以与S 1同色. 在保持与前一个扇形不同色的条件下, 这样顺次染下去,染色方法的总数为123-⨯n种. 但是应当注意,在这些染法中,显然还 包含S n 与S 1同色的情形. 我们来看这种情形 有多少种. 设有某一种染法使S n 与S 1同包,折 去S n 与S 1的分界半径OP (图8). 那末,这种 染法其实就是分圆为n-1个扇形时同色不相邻的染法. 因此,一般说来,设扇形数为n 时,染法的总数为f (n ). 于是得到函数方程.23)1()(1•n f n f n -⨯=-+我们来解这个方程. 以n)1(-乘它的两边,得.)2(3)1()1()()1(11•n f n f n n n ---⨯-=----同理有.)2(3)2()1()3()1(,)2(3)2()1()1()1(223221•f f •••n f n f n n n -⨯-=----⨯-=--------显然)2(3)2()1(2-⨯-=-f .加在一起,并把右边的等比数列用和表示,得.])2(1[2)2(1)2(1)2(3)()1(11•n f n n n----=----∙-∙-=-∴.2)1(2)(•n f n n ∙-+= 就是说,一共有2)1(2∙-+n n种染法.练习与解答练习1 解函数方程:)0(.1)(222>=⎪⎭⎫⎝⎛+x •x •x f x f解 ∵)1(.1)(222••x •x f xf =⎪⎭⎫ ⎝⎛+以x1代换x ,得 )2(.1)(1222•••x x f x f =+⎪⎭⎫⎝⎛(1)×2-(2),得.12)(32•xx x f -=∴ .312)(22•xx x f -=以x 代换x 2,得.312)(•x x x f -=练习2 解函数方程:)(.)()(2233b a •cx •x bf x af ≠=-+解 ∵)1(.)()(33••cx •x bf x af =-+以-x 代换x ,得)2(.)()(33••cx •x bf x af -=+-(1)×a-(2)×b ,得.)()(3232bcx •acx x f b x f a +=-即.)()(223•ba cxb a x f -+=∴.)()(223•ba c cb a x f -+=练习3 解函数方程:)1,0(.11)(≠≠+=⎪⎭⎫⎝⎛-+x •x •x •x x f x f解 ∵)1(.11)(••x •x x f x f +=⎪⎭⎫⎝⎛-+以xx 1-代换x ,则 .111111•x xx x x x x --=----化为原方程化为)2(.12111•••x x x f x x f -=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-再以11--x 代换(1)中的x ,又得)3(.12)(11•••x x x f x f --=+⎪⎭⎫⎝⎛--(1)÷(3)-(2),得.12121)(2•xx x x x x f ----++= 即.)1(21)(23•x x x x x f ---=练习4 已知10)1(=f ,且,910)()1(•n n f n f +=-+求)(n f .解 依次令n=1,2,3,…,得.910)()1(,9310)3()4(,9210)2()3(,9110)1()2(•n n f n f •f f •f f •f f +=-++⨯=-+⨯=-+⨯=- 相加在一起,得.910310210110)1()1(n •n f n f +++⨯+⨯+⨯=-+但.10)1(•f =∴109)321(10)1(++++++∙=+n n n f.1)1(4)1(51014522•n n n n ++++=++=∴ .145)(2•n n n f ++=练习5 已知1)2(,0)1(==f •f . 解函数方程:)0,0(.)()2(22>>=+•b •a ••n f b n f a解 若n 为偶数:n=2k ,则原方程化为.)2()22(22•k f b k f a =+依次令k=1,2,3,…,得.)2()22(,)6()8(,)4()6(,)2()4(22222222•k f b k f a •f b f a •f b f a •f b f a =+===左右两边分别相乘,约去公因式后得:.)2()22(22•f b k f a k k =+∴ .)2()22(222•a b f a b k f kk k ⎪⎭⎫⎝⎛==+ ∴)1(.)(2•••a b n f n -⎪⎭⎫⎝⎛=若n 为奇数:n=2k+1,则原方程化为.)12()32(22•k f b k f a +++依次令k=0,1,2,3,…,得.)12()32(,)5()7(,)3()5(,)1()3(22222222•k f b k f a •f b f a •f b f a •f b f a +=+===将后k 个等式两端分别相乘,并约去公因式后得.)3()32(22•f b k f a k k =+但.0)1()3(22•f a b f == ∴.0)32(•k f =+或)2(.0)(••••n f =综合(1),(2),得.2])1(1[)(2•a b n f n n -⎪⎭⎫ ⎝⎛∙-+=练习6 (1)凸n 边形有多少条对角线?解 设n 边形A 1A 2…A n 有f (n )条对角线. 增加一条边成为n+1边形A 1A 2…A n A n +1. 原多边形的一条边A 1A n 变成对角线,且由顶点A n +1可引出(n-2)条对角线. 所以有.)1()()1(•n n f n f -+=+依次令n=3,4,5,…,得.1)()1(,14)4()5(,13)3()4(•n n f n f •f f •f f -+=+-+=-+=相加,得.)2()43()3()1(•n n f n f --++++=+考虑到0)3(=f ,即得.2)2)(1()1(•n n n f -+=+即.2)3()(•n n n f -=就是说,凸n 边形共有2)3(-n n 条对角线. (2)凸n 边形的内角和是多少度?解 设凸n 边形的内角和为f (n )度. 仿(1)可以求得.180)2()(•n n f ︒⨯-=练习7 (1)两两相交但不共点的n 个圆把平面分成了几部分?解 设n 个两两相交的圆n •c ••••c •c ,,,21 把平面分成)(1n f 部分. 作第n+1个圆1+n c 与所有的圆两两相交,共有n 对点. 这n 对点把1+n c 分成2n 部分,所以圆1+n c 又从被原来的n 个圆所分的平面数)(1n f 中截分了2n 部分,即.2)()1(11n •n f n f ++解这个函数方程,得.2)(21•n n n f +-=(2)两两相交但不共点的n 个球把空间分成了几部分?解 设n 个两两相交的球分空间为)(2n f 部分. 则第n+1个球的球面被原来的n个球分成22+-n n部分[见(1)]. 所以有.2)()1(222•n n n f n f +-+=+解这个函数方程,得.3)83()(22•n n n n f +-=。

组合数学北大教材习题_answer

组合数学北大教材习题_answer

第一章习题1.证任一正整数n可唯一地表成如下形式:,0≤a i≤i,i=1,2,…。

2.证nC(n-1,r)=(r+1)C(n,r+1).并给出组合意义。

3.证。

4.有n个不同的整数,从中取出两组来,要求第一组数里的最小数大于第二组的最大数。

问有多少种方案?.5.六个引擎分列两排,要求引擎的点火的次序两排交错开来,试求从一特定引擎开始点火有多少种方案。

6.试求从1到1000000的整数中,0出现了多少次?7.n个男n个女排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案?8.n个完全一样的球,放到r个有标志的盒子,n≥r,要求无一空盒,试证其方案数为.9.设,p1、p2、…、p l是L个不同的素数,试求能整除尽数n的正整数数目.10.试求n个完全一样的骰子掷出多少种不同的方案?11.凸10边形的任意三个对角线不共点,试求这凸10边形的对角线交于多少个点?又把所有对角线分割成多少段?12.试证一整数是另一个整数的平方的必要条件是除尽它的数目为奇数。

13.统计力学需要计算r个质点放到n个盒子里去,并服从下列假定之一,问有多少种不同的图象。

假设盒子始终是不同的。

(a)Maxwell-Boltzmann假定:r个质点是不同的,任何盒子可以放任意数个.(b)Bose-Einstein假定:r个质点完全相同,每一个盒子可以放任意数个.(c)Fermi-Dirac假定:r个质点都完全相同,每盒不超过一个.14.从26个英文字母中取出6个字母组成一字,若其中有2或3个母音,问分别可构成多少个字(不允许重复)?15.给出的组合意义.16.给出的组合意义。

17.证明:18.从n 个人中选r 个围成一圆圈,问有多少种不同的方案?19.分别写出按照字典序由给定排列计算其对应序号的算法及由给定序号计算其对应排列的算法。

20.(a)按照第19题的要求,写出邻位对换法(排列的生成算法之二)的相应算法。

数学竞赛经典讲座-组合不等式

数学竞赛经典讲座-组合不等式

组合不等式 讲 座组合不等式问题是数学竞赛中的热点问题,通常也是教学竞赛中难度很大的问题,同时也是针对学生思维考测的典型问题.组合不等式问题的内容非常广泛,涉及到代数、几何、数论等多个分支。

组合不等式问题有:组合数不等式、组合计数不等式、组合最值、组合几何不等式、组合数论不等式等.下面就从几个典型的组合不等式问题的研究,提高我们的思维能力.例1:对n ≥2,证明(1)n n n n C 422<<;(2)1124--<n n n C证明:(1)当n =2时,22222462<=<⨯C 不等式成立设kk k k C 422<<成立,则1+=k n 时由n k k k k k k k k k n C C C C 22222212121222==⋅>>==++++ n k k k k k k k k kk n n C C C k k C C 4444422112221222122==⋅<=⋅<++⋅<=++ 知不等式成立由归纳原理,对n ≥2不等式nn n n C 422<<恒成立(2)∑-=----=⋅==12012122212122124n k k n n n n C nn n k n n k n C C C 121112122--=---=>=∑ 例2:在一个车厢中,任何()3≥m m 个旅客都有惟一的公共朋友(当甲是乙的朋友时,乙也是甲的朋友;任何人都不作为自己的朋友),问在这个车厢中,朋友最多的人有多少位朋友?解:设朋友最多的人有k 个朋友,显然,m k ≥,若m k >,设A 有k 个朋友B 1,B 2,…,k B ,并记{}k B B B S ,,21=.设{}121,,,-m i i i B B B 是S 的任一个1-m 元子集,则A ,121,,,-m i i i B B B 这m 个人有惟一的公共朋友,记为i C .因i C 是A 的朋友,故S C i ∈.宝义映射{}S C B B B f i i i i m ∈→-121,,,: ,则f 是从S 的所有1-m 元子集的集合到S 的一个单射.事实上,若有S 的两个不同的1-m 元子集{}121,,,-m i i i B B B和{}121,,,-m j j j B B B,二者有相同的象i C ,则因{}{}1111,,,,--m m j j i i B B B B中至少有m 个元素,这m 个人有两个公共朋友A 和i C ,此与已知矛盾.由于f 是单射,故有k C m k≤-1.另一方面,因为3≥m ,21≥-m ,所以k C C C k k m k =>≥-121,矛盾.可见,所求的最大值为m .例3:设{}10,,2,1 =S ,k A A A ,,,21 都是S 的子集且满足(1)k i A i ,,2,1,5 ==;(2)k j i A A j i ≤<≤≤1,2 .求k 的最大值.解:设k 有个子集满足题中条件(1)和(2),并设i 属于这k 子集中的i x 个集合,i =1,2,…,10.若j A i ∈ ,k A i ∈,k j ≠,则称i 为一个重复数对.于是由数i 导致的重复数对有2i x C 个.由S 中的10个元素所导致的重复数对的总数为2221021x x x C C C +++ ,k x x x 51021=+++ . 另一方面,每两个子集间至多有两个重复数对,所以k 个子集之间至多有22k C 个得复数对.因而有222221021k x x x C C C C ≤+++ ①由柯西不等式有2221021x x x C C C +++ ()()(){}1112110102211-++-+-=x x x x x x ()()102121022212121x x x x x x +++-+++= ()k x x x 25212102212-++= ()()2452552012-=-≥k k k k ②由①和②得到()1245-≤-k k ③由③解得6≤k .这表明至多有6个子集.例4:设3221,,,+n P P P 为平面上的32+n 个点,其中任何3点都不共线,任何4点都不共圆.过其中3点作圆,使其余n 2个点在圆内和圆外各有n 个点,这种圆的个数词类K ,求证2321+>n C K π.证明:首先证明对任意两点i P ,j P ,一定存在第3点k P ,使得过i P ,j P ,k P 3点的圆满足题中的要求.为此,不妨设直线i P j P 的上方的点数1+≥n m .因为任何3点不共线,任何4点不共圆,故可将直线上方的m 点按对线段i P j P 的张角从小到大排列为1k P ,2k P ,…m k P ,即有︒<∠<<∠<∠<︒180021j k i j k i j k i P P P P P P P P P m由此可知,过i P ,j P ,k P 3点的圆内的点数不多于n .若两圆中有一圆内恰有n 个点,则它就满足要求.否则,前者内部点数大于n ,后者内部点数小于n .而当顺次考察过i P ,j P ,k P (h=1,2,…,m )3点的圆时,圆内给定点的个数每次恰减少1个.故知其中必有1个圆满足题中要求.这样一来,对于{}3221,,,+n P P P 中的任意两点都可以作出1个圆满足题中要求.于是共可得到232+n C 个圆.但在这个计数过程中,每个圆可被计数3次,故得232232131++>≥n n C C K π. 例5:10人到书店去买书,已知(1)每人都买了3种书;(2)任何两人所买的书中,都至少有一种相同.问购买人数最多的一种书最少有几个人购买?说明理由.解:右图中,由正五边形的中心和两个相领顶点构成的三角形共有5个,由正五边形的3个不全相连的顶点构成的三角形也共有5个.不难看出,这10个三角形中的任何两个都至少有一个公共顶点.将这些三角形的顶点号码组写出来并让10人所买的书号依次为这10个三角形的顶点号码组:(123),(134),(145),(156),(162),(245),(356),(426),(523),(634). 显然,每种书都有人购买.故知所求的最小值示超过5.设所求的最小值为4,10人共买了n 种书且第i 种书有i m 人购买,于是4≤i m 且3021=+++n m m m .当两人买同一种书时,称之为一个“书对”.由已知,每两人之间至少有1个书对,于是至少共有45210=C 个书对.另一方面,由第i 种书形成的书对有2i m C 个,共有22221nmm m C C C +++ 个书对.从而有 4522221≥+++nm m m C C C ①因为624=C ,323=C ,122=C ,故又有437222422221=+≤+++C C C C C nm m m ②由于①与②矛盾,故知所求的最小值为5.例6:在1980×1981的方格表的每个方格中都写有+1,-1和0之一,且表中所有数之和等于0.试证存在两行和两列,使得位于它们交点处的4个数之和为0.证明:若不然,则任何一个边在网格线上的矩形的4个角格中的4数之和均不为零. (1)考察数表中0的个数.设表中1981列中0的个数依次为198121,,,k k k .因为不能有两行两列之交的4个方格中同时为0,故有197999019811219802⨯=≤∑=i ki C C.①因为990245=C ,946244=C ,故表中0的个数不超过1980×45个.1980×1936,故-1的个数与+1的个数都不少于1980×968.若有某行中有1015个-1,则因有+1最多的一行至少有968个+1,故必有两个-1与两个+1同列,此与反证假设矛盾,故知每行中-1的个数和+1的个数均不超过1014.设第i 行有ni 个-1,mi 个+1,1980,,2,1 =i .因为不能有两行两列之我的4格中的数之和为0,故必有∑=⨯=≤19801219819901981i Cnimi ,②其中∑=⨯≥198019681980i ni ,∑=⨯≥198019681980i mi ,ni ,1014≤mi ,1980,,2,1 =i .由排序不等式知在②式中可设{}ni 递增而{}mi 递减且在容许条件下前面的mi 尽可能大,前面的ni 尽可能地小.从而有∑=⨯≥19801210141800i nimi ③③与②矛盾,这就完成了反证的证明.例7:在某项竞赛中,共有a 名参赛选手与b 位裁判员,其中3≥b 为奇数,每位裁判对每名选手的评分都只有“合格”与“不合格”两种,设N k ∈,任何两位裁判至多可对k 名选手有完全相同的评分,求证bb a k 21-≥. 证明:当两位裁判对一名选手的评分相同时,称之为一个“相同评分对”下面对相同评分对的个数进行换序求和.一方面,每名运动员都获得b 位裁判的各一个评分.设第i 名选手获得xi 个合格与xi b -个不合格,于是由第i 名选手产生的相同评分对的个数为22i ix b x C C -+,a i ,,2,1 =.从而所有相同评分对的个数为()()221122m m ai x b x C C a C Ci i +≥++=-∑()()()2112am m m m m a=-++=, 其中12+=m b ,N m ∈. 另一方面,任何两位裁判所产生的相同评分对至多k 对,故所有相同评分对的个数不超过2b kC . 结合起来,得到()21222am C C kC ai x b x bii ≥+≥∑=-, ()2121am b b k ≥-⋅, 21-⋅=≥b a am kb , bb a k 21-≥. 例8:n 个平面最多可以将空间分成多少个部分区域?解:为求这个最大值,我们先证如下的引理,平面上的n 条直线,最多可以把平面分成121++n C 个部分.显然,当这n 条直线两两相交且任何三条都不共点时,把平面分成的部分最多.设平面被k 条直线分成的部分数的最大值为k m ,然后加入第1+k 条直线,它与前k 条直线中的每一条都相交,共得到k 个交点,这k 个点将第1+k 条直线分成1+k 段,其中每一段都把它所穿过的区域一分为二.故知由于第1+k 条直线的加入而新增加的小区域数与第1+k .这样,我们得到递推公式11++=+k m m k k由此递推即得211--+-+=+=n n n m n n n m m1112121111+=++++-+=+++-+=+n C n n m n n这就完成了引理的证明,下面利用引理来解原题.设空间中的k 个平面最多能把空间分成k υ个区域,然后考察当第1+k 个平面加入时,新增加的小区域的个数.这时,第1+k 个平面与前k 个平面中的每个平面都交于1条直线,在第1+k 号平面上共得到k 条直线.由引理知,这k 条直线最多能把平面分成121++k C 个部分,其中每部分都把它所穿过的区域一分为二,故得递推关系式mk k k +=+υυ1由此递推即得1121υυ++++=--m m m n n n()2122212+-++++=-n C C C n n 131++=+n C n ,即空间中的n 个平面最多可以把空间分成131+++n C n 个部分,这个最大值当任何3个平面都共点,任何四个平面都不共点时取得.例9:设{}n S ,4,3,2,1=项的数列n a a a ,,,21 具有下列性质:对于S 的任何一个非空子集B (集B 的元数记为B ),在该数列中都有相邻的B 项恰好组成集合B .求项数n 的最小值.解:对于每个S i ∈,它都可以与S 中的另外3个元素各组成一个二元子集,即共有3个含i 的二元子集,若i 在数列中仅出现1次,则含i 的相邻两项组至多两个,所认i 在数列中至少出现两次,由于1,2,3,4都至少出现两次,故数列至少有8项,即8≥n .另一方面,容易验证,8项数列3,1,2,3,4,1,2,4满足题中条件. 综上可知,数列项数n 的最小值为8.例10:给定平面的n 的相异点,证明其中距离为单位长的点对少于32n 对. 证:对于平面上的点集{}n P P ,,1 .令i e 表示与i P 相距为单位长的点j P 的个数,不妨设1≥i e ,则相距为单位长的点对的对数是221ne e e E +++=设i C 是以点i P 为圆心,以1为半径的圆.因为每对圆至多有2个交点,故所有的i C 至多有()122-=n n C n 个交点.点i P 作为j C 的交点出现2j e C 次,因此()∑=≥-nj e j C n n 121()()∑∑==-≥-=n j j nj j j e e e 12112121 ①由柯西不等式及①式得()()∑∑==-⋅≤⎥⎦⎤⎢⎣⎡-n j j n j j e n e 122111()3212n n n n <-⋅≤于是有()∑=⋅<-nj jn e132121∑==nj jeE 33222n n n <+<.于是问题得证.例11:设A 是一个n 元集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证(1)∑=≤mi in A C 111;(2)∑=≥mi i nm A C12,其中i A 表示i A 所含元素的个数 证:按定义有()!!!1n A n A A C i i i n -=, 由此可见,为证(1),只须证明等价不等式()∑=≤-mi iin A n A 1!!!.①对于每个i A ,利用i A 构造集A 中的n 个元素的排列如下:前i A 个位置是i A 中的所有元素的一个排列,后()i A n -个位置是i A 的补集ci A 中的所有元素的一个排列,这样的排列称之为从属于iA的排列,按乘法定理知,这样的排列数是()!!i i A n A -.当i j ≠时,不妨设i j A A ≥,如果有一个A 的元素的排列既从属于i A ,又从属于j A ,则其中的前i A 个元素都属于i A ,前j A 个元素都属于i A ,从而有j i A A ⊂,此与已知矛盾,这表明从属于不同子集的任何两个排列互不相同,因为A 中n 个元素的所有排列总数为!n ,故得不等式①.对于任何m 个正数m a a a ,21,,由柯西不等式有⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⋅=∑∑∑===m i i m i i m i i i a a a a m 1121211. ②在②中令iA ni C a =,m i ,,2,1 =,由已证的不等式(1)即得∑∑∑===≤⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤m i An mi A n m i An i i iC C C m 11121 例12:已知一个由0和1组成的数列n x x x ,,,21 ,A 为等于(0,1,0)或(1,0,1)的三元数组()k j i x x x ,,的个数,其中i j x x k j i ≠≤<<≤1的j 的个数.(1)求证:222321nd d d n C C C C A ----= ; 给定奇数n ,求A 的最大值.解:对于n i ,,2,1 =,令{}n j i x x i j x x x D i j i j j i ≤<≠<≤==,;1,,于是有i i d D =,在i D 中任取二元与i x 共3项,按下标从小到大的顺序排成三元数组,所有这样数组的集合记为i S ,显示然,2i d i C S =,将所有不满足题中要求的三元数组的集合记为T ,则T S i ⊂,n i ,,2,1 =且诸i S 两两不交,实际上,若()i k j i S x x x ∈,,,则k j i x x x =≠;若()j k j i S x x x ∈,,,则k j i x x x ≠=;若()k k j i S x x x ∈,,,则k j i x x x ==,由此可知诸i S 两两不交.另一方面,对于T 中任一个三元数组()k j i x x x ,,,必为下列6种情形之一:(0,0,1),(0,1,0),(0,1,1),(1,0,0),(0,0,0),(1,1,1),按定义,前两种情形属于j S ,中间两种情形属于i S ,后两种情形属于k S ,故有 ni iST 1=⊂,从而得到ni i S T 1==⊂由此即得2223321nd d d n n C C C C T C A ----=-= 再解(2)按i D 和i d 的定义,对任一个二元数组()j i x x ,,n j i ≤<≤1,若j i x x =,则j i D x ∈并在j d 中计数一次;若j i x x ≠,则j x 恰在i d 中计数一次,由此可见,所有i d 之和恰为所有二元数组的个数,即有∑==ni n iC d12.为求A 的最大值,只须求∑=ni d jC12的最小值,这时,由柯西不等式有∑∑==≤⎪⎭⎫⎝⎛ni i n i i d n d 1221①所以有()∑∑∑∑====⎪⎭⎫ ⎝⎛-=-=ni ni n i n i i i i i d d d d d C i11112221121 ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛≥∑∑==n i i n i i d d n 121121 ⎪⎭⎫ ⎝⎛-=∑∑==112111n i i n i i d n d ()()3181--=n n n ②因为12+=k n ,所以k n 21=-,223-=-k n ,()181-n n()()21213k nC k nk n =-=-,代入②式即得212k ni d nC C i ≥∑= ③由①知,③式中等号成立当且仅当()12121-====n d d d n ,容易验证,当数列中奇数项均为0而偶数项均为1时,所有i d 都相等,这表明③式右端所表示的最小值是可以取得的,从而知A 的最大值为()()()()()1241318121612230-=-----=-=n n n n n n n n nC C A k n . 例13:圆周上有800个点,依顺时针表为800,,3,2,1 。

平面分空间的规律

平面分空间的规律

平面分空间的规律《平面分空间的规律》在空间中,平面分空间存在着这样的规律:n个平面最多可将空间分成(n³ + 5n + 6) / 6个部分。

咱们来幽默风趣地解释一下这个规律。

想象空间是一个巨大的蛋糕,平面呢,就像是切蛋糕的刀。

如果只有1个平面去切这个蛋糕(也就是空间),就像用一把刀直直地切下去,那么这个空间就被分成了2块,就像蛋糕被切成了两半。

这时候n = 1,代入我们的公式(n³ + 5n + 6) / 6,得到(1³+ 5×1 + 6) / 6 = 2,是完全符合的。

当有2个平面的时候呢,这就好比是两把刀交叉着切蛋糕。

这两个平面相交,就把空间分成了4块,就像蛋糕被切成了四小块。

此时n = 2,代入公式得到(2³+ 5×2 + 6) / 6 = 4,也是正确的。

这就像是两个调皮的小伙伴在空间里划分地盘,它们相交之后,就把原本单一的空间分成了更多的小空间。

那3个平面呢?这就像三个大厨拿着三把刀同时切蛋糕,而且每把刀的角度都不一样。

这三个平面把空间分成了8个部分。

把n = 3代入公式计算,(3³+ 5×3 + 6) / 6 = 8,又一次符合。

这就好比空间这个大房子被隔成了8个小房间。

我们再来看一个生活中的实例。

比如在建筑设计中,楼层之间的楼板就可以看作是平面,这些楼板将整个建筑的内部空间进行了划分。

假设这是一个大型的商业建筑,有很多层,每一层又被不同的隔断墙(也可以看作平面)分割成不同的功能区域,如店铺、走廊、楼梯间等。

如果设计师想要合理地规划空间,使得各个区域既独立又相互联系,就需要了解平面分空间的规律。

在化学晶体结构的研究中,也涉及到平面分空间的规律。

晶体中的晶面就类似于平面,它们将整个晶体内部的空间划分成不同的单元。

科学家们通过研究这些晶面如何划分空间,来了解晶体的结构、性质等重要信息。

总结一下,平面分空间的规律是一个非常有趣且在很多领域都有着重要意义的规律。

六年级数学思维训练专题7 归纳与推递(原卷+解析)

六年级数学思维训练专题7  归纳与推递(原卷+解析)

小学六年级思维训练专题之7 归纳与推递1、早在公元前300多年前,古希腊著名科学家欧几里德就在他的旷世名著<几何原本》一书中记载了几何学中最基本、最引人人胜的一条著名定理:“三角形的内角和等于180度”,我们的问题是:①四边形的内角和等于多少度(见下图)?答:五边形的内角和等于多少度(见下图)?答:②进一步,如果把多边形的边数记作n,你能够归纳出n边形的内角和的计算公式吗?答:公式为__ __.③在家庭装修中,经常采用各种正多边形(注:正多边形就是各条边均相等且各内角也相等的多边形)的瓷砖搭配出各式各样的地面图案.小明家装修时采用了三种正多边形瓷砖铺地面,这三种型号的瓷砖可以围绕着地面上的一点既不重叠又不产生漏洞的拼接起来.其中一种型号是正方形,另一种型号是正六边形,你知道第三种型号的多边形瓷砖的边数是多少吗?请写出你的计算过程.2、一条直线分一个平面为两部分,二条直线最多分一张平面为四部分,问:五条直线最多分一个平面为多少部分?3、将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.4、一个长方形把平面分成两部分,那么三个长方形最多把平面分成部分.5、 n个平面最多钝将空间分成多少个部分?6、如下图所示,第一个三角形的面积是256,取三角形的3条边的中点,连成一个三角形,将中间的三角形挖去,得到第二个图,再将第二个图中每个三角形按照前一个做法得到第三个图,如此下去……,求第五个图形的面积是。

7、在一张长方形纸片内有n个点,加上四个顶点共,n+4个点,这些点中任意三点都不在同一条直线上,(1)n=4时,将长方形纸片剪开,最多可以剪成多少个以这些点为顶点的三角形(画出一个示意图即可作答).(2)n=2010时,最多可以剪成多少个以这些点为顶点的三角形?并作简要说明.(注意:(1)、(2)中任意两个三角形不重叠)8、在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上和,如图a所示;第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和,如图b 所示,=+;第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和,如图c所示,1=+,1=+;如此继续下去,当第八次标完数以后,圆周上所有已标的数的总和是____.9、小凯家住二楼,从一楼到二楼的楼梯共有9阶,小凯上楼时每步可跨1阶、跨2阶、或跨3阶.请问他共有多少种不同的方法上楼?10、仅由数字1和2组成一些数,其中至少有两个数字1相连的数称为“学而思数”,如11,112,1211等都是“学而思数”,而12212就不是“掌而思数”.那么所有六位的学而思数共多少个?11、用1×2小长方形或1×3的小长方形覆盖2×6的方格网(如下图所示),共有不同的盖法。

数学文化(12)

数学文化(12)
这里的 n =3 到 n =4 的过渡,并没有任何特殊的地方,我们可以完 全类似地分析由 n -1 向 n 过渡时发生的情况,得到一般的表达式。
与段落“8”类似地可以得到公式: f (n) = L(n −1) + f (n −1) 与段落“9”类似地可以得到公式: F (n) = f (n −1) + F (n −1) 。 这两个公式都是递推公式。这种递推公式与斐波那契数列的递推 公式有区别,但思想精神是相通的。
144
也许还能从中找到理解一般情形的线索。
3 条直线分平面为 7 个部分;4 条直线就分平面为 11 个部分了, 即增加了 4 部分;从 3 条直线添一条直线,为什么分割平面正好多出 4 部分?分析一下:新添的直线与原来 3 条直线每条都相交,而且交 在与原交点不同的点,这就交出了 3 个新交点,这 3 点把新添的直线 分为 4 段,每一段把它穿过的(由前 3 条直线分成的)那个区域一分 为二,因此“平面分割”增加了 4 个部分,这就是“4”的来历,而 且这个分析表明,这个“4”也正是 3 点把直线分为 4 部分的“4”, 也就是“11”左肩上的“4”。11=4+7 原来是这样产生的。这种分析 令人信服,极大地增强了我们对所发现的规律的信心。
+
cHale Waihona Puke (x (γ−α )(x −α )(γ
− −
β) β)

经验证,它符合要求,称为插值公式。即该函数在α, β ,γ 三点, 插进去的都是预先指定的值 a,b, c 它简单,明快,可顺利地推广到任意 有限多个点插值的情况。这样,就可以用一个连续的函数去拟合离散 的测量结果。
华罗康由此联想到如何解决具有类似结构的各种问题。正是他把 上述解决问题的基本思想称为“单因子构件凑成法”,并概括成如下 的“合成原则”:要做出具有平行的,类似的几个性质 A,B,C 的一 个数学结构,而 A,B,C 分别以某种量α , β ,γ 刻划,这时,可用“单 因子构件凑成法”:先作 B,C 不发生作用,而 A 取单位量的构件, 再作 C,A 不发生作用,B 取单位量的构件;再作 A、B 不发生作用, C 取单位量的构件。然后用这些构件凑出所求的结构。这个原则在有 的书里称为“孙子—华原则”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N个平面可以把空间分成几部分
上海华师大家教部转载
在立体几何的中有一个问题:“3个相互平行的平面可将空间分成几部分?”正确的解答:“4个部分.”接着提出:“3个平面可将空间分成几部分?”的问题,由于去掉了“相互平行”的条件,这个问题必须分类讨论回答.
当3个平面相互平行时,分空间为4个部分;
当有且仅有两个平面平行时,分空间为6个部分;
当3个平面两两相交于一条直线时,分空间为6个部分;
当3个平面两两相交,3条交线不交于同一点时,分空间为7个部分;
当3个平面两两相交,3条交线交于一点时,分空间为8个部分.
于是我们得出“3个平面最多可将空间分为8个部分”的结论.在这一背景下,
提出了值得深入研究的新课题:“4个平面最多可将空间分为多少部分?n个平面又将空间最多分成多少部分?”
对“4个平面最多可以把空间分成多少部分”的研究取得成功的方法是多样的,可以采取作图直观计数,可以采用以三棱锥为载体计数,可以采用递推分析.不妨将第二种方法作一个简单介绍:三棱锥的4个面延展后就成了4个平面两两相交,且交线互不平行,每3个平面相交于一点,4个交点就是三棱锥的4个顶点.每个顶点各自“对着”一部分空间,4个顶点,6条棱,4个面“对着”14
个部分空间,但4个面中间围了一部分空间,所以4个平面最多可将空间分成
15个部分.
但用类似的方法却不能解决n个平面分空间的问题.但是我们采用实验、观察、归纳的方法得出了n个平面最多可以将空间分为部分.
我们的探索过程是这样的:1个点最多将1条直线分为2部分,2个点分为3部分,3个点分为4部分……;l条直线最多将平面分为2部分,2条直线分为4
部分,3条直线分为7部分……;1个平面最多将空间分为2部分,2个平面分成4部分,3个平面分为8部分……通过列表、观察、归纳,得出了一个递推关系,于是推得结论.
这是一个与自然数n有关的数学命题,它的证明要用到数学归纳法
特别地, P(1,n)=n+1,即n个点可把一条直线(一维空间)最多分成n+1部分;
,即n条直线可把一个平面(二维空间)最多分成
部分;,即n个平面可把一个空间(三维空间)最多分成部分.
简单的概括就
n个点最多把直线分成C(n,0)+C(n,1)份;
n条直线最多把平面分成C(n,0)+C(n,1)+C(n,2)份;
n个平面最多把空间分成C(n,0)+C(n,1)+C(n,2)+C(n,3)=(n³+5n+6)/6份;
n个空间最多把“时空”分成C(n,0)+C(n,1)+C(n,2)+C(n,3)+C(n,4)份;……
C(a,b)表示从a个元素中取b个的组合数。

而对于一般的多面体,所有表面把空间分成的部分数也有一个公式:面数+棱数+顶点数+1。

相关文档
最新文档