(完整版)空间直线与平面平行的性质

合集下载

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

高三第一轮复习 空间直线与平面的平行关系

高三第一轮复习 空间直线与平面的平行关系

空间直线与平面的平行关系【提纲挈领】主干知识归纳1. 直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理规律方法总结:1.平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.【指点迷津】【类型一】线面平行、面面平行的基本问题【例1】有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m. 其中真命题有( )A .4个B .3个C .2个D .1个解析:选B 由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题,于是选B.【例2】过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.解析:过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.答案:6【类型二】直线与平面平行的判定与性质【例2】如图,直三棱柱ABC -A1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积. [解] (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB.又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D. 所以VC -A 1DE =13×12×6×3×2=1.思考:在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连接DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC1⊂平面A1ACC1,∴DM∥平面A1ACC1.【类型三】平面与平面平行的判定与性质【例1】如图,四棱柱ABCD -A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD -A1B1D1的体积.[解](1)证明:由题设知,BB1∥DD1且BB1=DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊆平面CD1B1,∴BD∥平面CD1B1.∵A1D1∥B1C1∥BC且A1D1=B1C1=BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊆平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD -A1B1D1的高.又∵AO=12AC=1,AA1=2,∴A1O=AA21-OA2=1.又∵S△ABD=12×2×2=1,∴V ABD -A1B1D1=S△ABD×A1O=1.【例2】如图,在直四棱柱ABCD -A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:平面AD1E∥平面BGF证明:∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.【例3】如图1,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上一点,设Q 为PA 的中点,G 为ΔAOC 的重心,求证:QG//平面PBC解:如图2连接OG 交AC 于点E ,连接QE ∵点G 为ΔAOC 的重心 ∴点E 为AC 的中点 又点Q 为PA 的中点 ∴QE 为ΔPAC 的中位线 ∴QE ∥PCPBC PC PBC QE 平面,平面⊆⊄∴QE ∥平面PBC 同理OE ∥平面PBC 由E OEQE =⋂得平面QEO//平面PBCQEO QG 平面⊂∴QG//平面PBC【同步训练】【一级目标】基础巩固组1.已知直线a ,b ,平面α,则以下三个命题:①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b. 其中真命题的个数是( )A .0B .1C .2D .3解析:选A 对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.2.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )E图2图1A .①③B .②③C .①④D .②④解析:选C 对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行,故选C.3.(2014·济南模拟)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,故排除A.若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B.若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,故排除C.故选D.4.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎬⎫α∥c β∥c ⇒α∥β ②⎭⎬⎫α∥γβ∥γ⇒α∥β ③⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( )A .①②③B .①④C .②D .①③④解析:选C ②正确.①错在α与β可能相交.③④错在a 可能在α内.5.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.解析:由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.答案:M ∈线段FH6.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB.因此,MN ∥平面ABC 且MN ∥平面ABD.答案:平面ABC 、平面ABD7.(2016江苏.16,节选(1))如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:⑴ 直线//DE 平面11A C F ;⑵ 平面1B DE ⊥平面11A C F .解:,D E 为中点,DE ∴为ABC ∆的中位线 //DE AC ∴又111ABC A B C -为棱柱,11//AC AC ∴ 11//DE AC ∴又11AC ⊂平面11A C F ,且11DE AC F ⊄//DE ∴平面11A C F ;8. 如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点, 求证: (1)B ,C ,H ,G 四点共面;(2)平面EFA 1∥平面BCHG . 证明:(1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC. ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC.∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG . ∵A 1G ∥EB 且A 1G ∥EB ∴四边形A 1EBG 是平行四边形. ∴A 1E ∥GB.∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG . ∴A 1E ∥平面BCHG . ∵A 1E ∩EF =E∴平面EFA 1∥平面BCHG .【二级目标】能力提升题组1.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线FEC BAC 1B 1A 1B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:选A当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.2.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是()A.①③B.②④C.①④D.②③解析:选C对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内解析:选B由直线l与点P可确定一个平面β,则平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内,选B.4.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:选C由题意可知PQ∥AC,QM∥BD,PQ⊥QM,所以AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正确;由PN∥BD可知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以∠MPN=45°,故D正确;而AC=BD不确定,故选C.5.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MC⊥ANB.GB∥平面AMNC.平面CMN⊥平面AMND.平面DCM∥平面ABN解析:选C显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB⊂平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB∩BN =B ,CD∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.6.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有________. ①若m ∥α,n ∥α,则m ∥n ;②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,m ∥β,则α∥β;④若m ⊥α,n ⊥α,则m ∥n.解析:若m ∥α,n ∥α,m ,n 可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m ∥α,m ∥β,α,β可以相交,故③不正确;若m ⊥α,n ⊥α,则m ∥n ,④正确.答案:④7.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面PAO.解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥PA.连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面PAO ,QB ⊄平面PAO ,所以D 1B ∥平面PAO ,QB ∥平面PAO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面PAO.故Q 满足条件Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO.答案:Q 为CC 1的中点8.设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ. 可以填入的条件有________.解析:由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.答案:①或③9.已知直三棱柱ABC -A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求三棱锥C -MNB 的体积.解:(1)证明:如图,连接AB ′,AC ′, ∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点, ∴MN ∥AC ′,又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, ∴MN ∥平面A ′ACC ′. (2)由图可知V C -MNB =V M -BCN ,∵∠BAC =90°,∴BC =AB 2+AC 2=22,又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4, ∴S △BCN =12×22×4=4 2.∵A ′B ′=A ′C ′=2,∠B ′A ′C ′=90°,点N 为B ′C ′的中点,∴A ′N ⊥B ′C ′,A ′N = 2.又BB ′⊥平面A ′B ′C ′, ∴A ′N ⊥BB ′, ∴A ′N ⊥平面BCN. 又M 为A ′B 的中点, ∴M 到平面BCN 的距离为22, ∴V C -MNB =V M -BCN =13×42×22=43.10.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB.过A作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB.因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC.同理EG ∥平面ABC.又EF ∩EG =E , 所以平面EFG ∥平面ABC.(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC.因为BC ⊂平面SBC ,所以AF ⊥BC.又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB. 因为SA ⊂平面SAB ,所以BC ⊥SA.【高考链接】1.(2016北京理.17),14分,节选(3)) 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值; (3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.解:设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=.因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅BM ,∵平面PCD 的一个法向量)2,2,1(-=n即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM .2.(2016新课标Ⅲ.文19,12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【解析】 (1)取PB 中点Q ,连接AQ 、NQ , ∵N 是PC 中点,NQ//BC ,且NQ=12BC ,又22313342AM AD BC BC ==⨯=,且//AM BC , ∴//QN AM ,且QNAM=.∴AQNM是平行四边形.∴//MN AQ .又MN ⊄平面PAB ,AQ ⊂平面PAB ,∴//MN平面PAB .(2)由(1)//QN平面ABCD.∴1122N BCM Q BCM P BCM P BCA V V V V ----===.∴11142363N BCM ABCV PA S-∆=⨯⋅=⨯⨯=.。

直线平面平行的判定及其性质

直线平面平行的判定及其性质

解析几何中的应用
在解析几何中,直线与平面的平行关系 也是非常重要的。例如,在求解一些涉 及平面解析几何的问题时,需要使用直 线与平面平行的判定定理和性质来解决

ቤተ መጻሕፍቲ ባይዱ
直线与平面平行的判定定理的应用:在 解析几何中,利用直线与平面平行的判 定定理,可以用来判断一个点是否在一 条直线上,或者判断两个平面是否平行
直线与平面平行的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都没有交 点。
直线与平面平行的判定定理的应用
在几何学中,这个定理经常被用来判断两条直线是否平行,或者一个平面是否平 行于另一个平面。
02
直线与平面平行的性质
直线平行于平面的性质
直线平行于平面,则 直线与平面内的任意 一条直线都平行。
直线平行于平面,则 直线与平面内的任意 一条直线都平行或异 面。
直线平行于平面,则 直线与平面内的任意 一条直线都没有公共 点。
平面平行于直线的性质
平面平行于直线,则平面与直 线的任意一条平行线都平行。
平面平行于直线,则平面与直 线的任意一条垂线都垂直。
平面平行于直线,则平面与直 线的任意一条垂线都垂直或平 行。
直线与平面平行的判定定理的应用:在空间几何中,利用直线与平面平 行的判定定理,即“如果直线与平面内的一条直线平行,则直线与该平
面平行”,可以用来判断建筑物的结构是否符合设计要求。
直线与平面平行的性质的应用:直线与平面平行的性质定理的应用,即 “如果直线与平面平行,则直线与平面的垂线互相垂直”,可以用来判 断建筑物的高度和角度是否符合设计要求。
直线平行于平面的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都平行 。

新高考 核心考点与题型 立体几何 第3讲 空间直线与平面的平行 - 解析

新高考 核心考点与题型 立体几何 第3讲  空间直线与平面的平行 - 解析

第3讲空间直线与平面的平行1.直线与平面平行(1)直线与平面平行的定义:直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理2.(1)平面与平面平行的定义:没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.[微点提醒] 平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊄α,a ⊄β,则α⊄β. (2)平行于同一平面的两个平面平行,即若α⊄β,β⊄γ,则α⊄γ. (3)垂直于同一个平面的两条直线平行,即若a ⊄α,b ⊄α,则a ⊄b .考点一 直线与平面平行的判定与性质多维探究角度1 直线与平面平行的判定【例2-1】在如图所示的几何体中,四边形ABCD 是正方形,P A ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,P A =AB =1.证明:EF ∥平面PDC ; 证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点,∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形,∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形,∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC ,∴EF ∥平面PDC .规律方法 利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【变式】如图,在直三棱柱ABC ­A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .证明:如图,连接A 1C .在直三棱柱ABC ­A 1B 1C 1中,侧面AA 1C 1C 为平行四边形. 又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N , 且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC .又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .角度2直线与平面平行性质定理的应用【例2】如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.解(1)如图所示,V B1-A1BE =V E-A1B1B=13S△A1B1B· DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【变式1】如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.证明:在四棱柱ABCD ­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【变式2】如图所示,在四棱锥P ABCD-中,//BC平面PAD,12BC AD=,E是PD的中点.(⊄)求证://BC AD;(⊄)求证://CE平面PAB;(⊄)若M是线段CE上一动点,则线段AD上是否存在点N,使//MN平面PAB?说明理由.【分析】(⊄)根据线面平行的性质定理即可证明;(⊄)取PA的中点F,连接EF,BF,利用中位线的性质,平行四边形的性质,以及线面平行的判断定理即可证明;(⊄)取AD中点N,连接CN,EN,根据线面平行的性质定理和判断定理即可证明.【解答】(⊄)在四棱锥P ABCD-中,//BC平面PAD,BC⊂平面ABCD,平面ABCD⋂平面PAD AD=,//BC AD∴,(⊄)取PA的中点F,连接EF,BF,E是PD的中点,//EF AD∴,12EF AD=,又由(⊄)可得//BC AD,12BC AD=,//BC EF∴,BC EF=,∴四边形BCEF是平行四边形,//CE BF∴,CE⊂/平面PAB,BF⊂平面PAB,//CE∴平面PAB.(⊄)取AD中点N,连接CN,EN,E,N分别为PD,AD的中点,//EN PA∴,EN⊂/平面PAB,PA⊂平面PAB,//EN∴平面PAB,又由(⊄)可得//CE平面PAB,CE EN E=,∴平面//CEN平面PAB,M是CE上的动点,AN⊂平面CEN,//MN∴平面PAB,∴线段AD存在点N,使得//MN平面PAB.考点二面面平行的判定与性质典例迁移【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:平面EF A1∥平面BCHG.证明:∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【变式1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,⊄四边形A1ACC1是平行四边形,⊄M是A1C的中点,连接MD,⊄D为BC的中点,⊄A1B⊄DM.⊄A1B⊄平面A1BD1,DM⊄平面A1BD1,⊄DM⊄平面A1BD1,又由三棱柱的性质知,D1C1綉BD,⊄四边形BDC1D1为平行四边形,⊄DC1⊄BD1.又DC1⊄平面A1BD1,BD1⊄平面A1BD1,⊄DC1⊄平面A1BD1,又DC1∩DM=D,DC1,DM⊄平面AC1D,因此平面A1BD1⊄平面AC1D.【变式2】如图为一简单组合体,其底面ABCD 为正方形,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,求证:平面//EBC 平面PDA .【分析】推导出//AD BC ,//PD EC ,由此能证明平面//EBC 平面PDA . 【解答】底面ABCD 为正方形,//AD BC ∴,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,//PD EC ∴, ADPD D =,BCEC C =,∴平面//EBC 平面PDA .【例4】如图,已知//αβ,P 是平面α,β外的一点,直线PAB ,PCD 分别与α、β相交于A 、B 和C 、D .(1)求证://AC BD ;(2)已知4PA =,5AB =,3PC =,求PD 的长.【分析】(1)由面面平行的性质即可得证;(2)由平行线的性质即可求解. 【解答】解:(1)证明://αβ,平面PBD AC α=,平面PBD BD β=,//AC BD ∴;(2)由(1)可知,PA PC PB PD =,即4345PD =+,∴274PD =. 规律方法 利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.【变式】如图,平面//αβ,线段AB 分别交α,β于M ,N ,线段AD 分别交α,β于C ,D ,线段BF 分别交α,β于F ,E ,若9AM =,11MN =,15NB =,78FMC S ∆=.求END ∆的面积.【分析】利用面面平行的性质得到两个三角形对应边的比,结合面积公式即可得解.【解答】解:平面//αβ,又平面AND ⋂平面MC α=,平面AND ⋂平面ND β=,//MC ND ∴, 同理//EN FM ,又9AM =,11MN =,15NB =,∴926,2015MC AM FM BM ND AN EN BN ====, 又FMC END ∠=∠,所以1sin 92678212015100sin 2FMC ENDFM MC FMCS SEN ND END ∠==⨯=∠,78FMC S ∆=,100END S ∆∴=.故END ∆的面积为:100.方法总结(1)线面平行思考途径 I.转化为直线与平面无公共点;II.转化为线线平行; III.转化为面面平行支持定理 ①; ②; ③配图助记(2)线线平行:思考途径 I.转化为判定共面二直线无交点;II.转化为二直线同与第三条直线平行; III.转化为线面平行; IV.转化为线面垂直; V.转化为面面平行.支持定理①;②;③;④配图助记(3)面面平行:思考途径 I.转化为判定二平面无公共点;II.转化为线面平行; III.转化为线面垂直.////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭////a a αββα⎫⇒⎬⊂⎭//a a a αββαα⊥⎫⎪⊥⇒⎬⎪⊄⎭////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭//a a b b αα⊥⎫⇒⎬⊥⎭////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭//////a b c b a c ⎫⇒⎬⎭αb βa a b αb γβ α aαβaaαbβαa支持定理 ①;②;③配图助记空间平行的判定与性质 基础巩固题组(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( ) A.α内的所有直线与l 异面 B.α内不存在与l 平行的直线 C.α与直线l 至少有两个公共点 D.α内的直线与l 都相交解析 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线. 答案 B2.已知直线l ,m ,平面α,β,γ,则下列条件能推出l ∥m 的是( ) A.l ⊂α,m ⊂β,α∥β B.α∥β,α∩γ=l ,β∩γ=m C.l ∥α,m ⊂αD.l ⊂α,α∩β=m解析 选项A 中,直线l ,m 也可能异面;选项B 中,根据面面平行的性质定理,可推出l ∥m ,B 正确;选项C 中,直线l ,m 也可能异面;选项D 中,直线l ,m 也可能相交.故选B. 答案 B3.如图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于DE ,则DE 与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析 在三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1,,////,//a b a b o a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭//a a ααββ⊥⎫⇒⎬⊥⎭//////αβαγγβ⎫⇒⎬⎭a β αbOβ aαβ αγ∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.答案B4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案D5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.答案C二、填空题6.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析 根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt △DEF 中,DE =DF =1,故EF = 2. 答案27.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′共点于O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析 相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB =OA ′OA =23.S △ABC =12×2×1×32=32, 所以S △A ′B ′C ′=32×⎝⎛⎭⎫232=32×49=239.答案2398.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ② 三、解答题9.已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面P AB ⊥平面ABCD ,E 是棱P A 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点.又E 是P A 的中点,连接EO ,则EO 是△P AC 的中位线,所以PC ∥EO , 又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是P A 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)连接AE ,则AE 必过DF 与GN 的交点O , 连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .能力提升题组 (建议用时:20分钟)11.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥P A.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,PO⊂平面P AO,P A⊂平面P AO,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,所以平面D1BQ∥平面P AO.故Q为CC1的中点时,有平面D1BQ∥平面P AO.答案Q为CC1的中点14.已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH ⊥平面ABC ,∴NG ⊥平面ABC , 易知DH =3,∴NG =32, 又S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =13·S △ABC ·NG =63.。

立体几何直线平面平行的判定和性质课件文

立体几何直线平面平行的判定和性质课件文

2023-11-06•直线与平面平行的判定•直线与平面平行的性质•直线与平面平行的重要结论•立体几何直线平面平行问题建模•立体几何直线平面平行问题的求解策略目录01直线与平面平行的判定直线与平面平行是指直线与平面内任意一条直线都无公共点,即直线与平面平行。

直线与平面平行的基本性质是:如果直线与平面平行,则直线与平面内的任意一条直线都平行。

直线与平面平行的定义直线与平面平行的判定定理如果一条直线与一个平面平行,那么这条直线与此平面内的任何一条直线都平行。

如果一条直线与一个平面平行,那么这条直线的方向向量与此平面的法向量垂直。

如果一条直线与一个平面平行,那么这条直线的斜率与此平面的法向量的斜率互为相反数的倒数。

在工程学中,直线与平面平行的判定定理也被广泛应用,例如在机械加工、建筑设计等领域中,都需要用到这个定理来计算和设计物体的位置和形状。

直线与平面平行判定的应用在立体几何中,我们常常需要判断一条直线是否与一个平面平行,或者判断一个平面是否与另一个平面平行。

通过直线与平面平行的判定定理,我们可以很容易地判断出直线与平面的位置关系,从而解决一些立体几何的问题。

02直线与平面平行的性质直线与平面平行的性质定理直线与平面平行,则该直线与平面内的任意一条直线均无交点,因此它们平行或异面。

若直线与平面平行,则该直线与平面的垂线互相垂直。

若两条直线都与同一平面平行,则它们的夹角为0度。

直线与平面平行性质的应用在建筑学中,可以利用直线与平面平行的性质来设计建筑物的结构,确保其稳定性和安全性。

在机械加工中,可以利用直线与平面平行的性质来加工和测量工件的尺寸和形状。

在实际生活中,可以利用直线与平面平行的性质来检测平直的物体或线段是否平行。

直线与平面平行性质的证明方法方法一01利用直线与平面平行的判定定理证明直线与平面平行,然后根据性质定理得出结论。

方法二02利用反证法证明直线与平面平行。

假设直线与平面不平行,根据性质定理可得出矛盾,从而证明直线与平面平行。

2024届新高考一轮复习人教B版 主题三 第七章 第3节 空间直线、平面的平行 课件(40张)

2024届新高考一轮复习人教B版 主题三 第七章 第3节 空间直线、平面的平行 课件(40张)

3.(多选题)在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,则(
A.平面PAD内任意一条直线都不与BC平行
B.平面PBC内存在无数条直线与平面PAD平行
C.平面PAB和平面PCD的交线不与底面ABCD平行
D.平面PAD和平面PBC的交线不与底面ABCD平行
ABD
)
解析:若平面PAD内存在直线与BC平行,则BC∥平面PAD,
所以A′B′∶AB=3∶7,所以S△A′B′C′∶S△ABC=9∶49.
答案:9∶49
直线、平面平行的基本问题
1.(多选题)平面α与平面β平行的条件可以是( BCD
)
A.α内有无数条直线都与β平行
B.α内的任何直线都与β平行
C.两条相交直线同时与α,β平行
D.两条异面直线同时与α,β平行
解析:当α内有无数条直线与β平行时,α与β可能平行,也可能相交,故A错误;
又EF⊂平面ACE,
BD1⊄平面ACE,
所以BD1∥平面ACE.
答案:平行
3.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC
于A′,B′,C′,若PA′∶AA′=3∶4,则S△A′B′C′∶S△ABC=
.

解析:由题意,因为平面α∥平面ABC,所以A′B′∥AB,B′C′∥BC,A′C′∥AC,
如果平面外一条直线与此平面
内的一条直线 平行 ,那么该
判定定理
直线与此平面平行(线线平行⇒
线面平行)
一条直线与一个平面平行,如果
过该直线的平面与此平面相交,
性质定理
那么该直线与交线平行(线面平
行⇒线线平行)
图形语言
符号语言

空间中的平行(经典)

空间中的平行(经典)

空间中的平行一、知识梳理<一>线线平行与线面平行1.线线平行:定义:空间中两直线共面且没有交点,则两直线平行.证明两直线平行的主要方法是:①三角形中位线平行并等于底边的一半;②平行四边形两组对边分别平行;③梯形的一组对边平行;④直线平行的传递性:若a//b,b//c,则a//c.2.线面平行定义:若直线和平面没有交点,则称直线和平面平行.判定1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭判定2:两平面平行,一平面上的任一条直线与另一个平面平行.a a a a αβαββααβ⇒⇒⊂⊂⎫⎫⎬⎬⎭⎭或线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行.<二>面面平行1.定义:若两个平面没有交点,则两个平面平行2.判断:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.,,a b a b A a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭,,,a b a b A a a b b a b ααββ⊂⎫⎪=⎪⇒⎬''⎪⎪''⊂⎭判定定理的推论: 一个平面内的两条相交直线与另一个平面上的两条直线分别平行,两平面平行.3.两平面平行的性质: 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行.a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭性质Ⅱ:平行于同一平面的两平面平行;性质Ⅲ:夹在两平行平面间的平行线段相等;,,A C AC BD B D AB CD αβαβ∈⇒=∈⎫⎪⎪⎬⎪⎪⎭二、典例精析【例1】如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点.求证:DF ∥平面ABC .【练习】如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点.求证:MN ∥平面P AD .【例2】已知正方形ABCD 所在的平面和正方形ABEF 所在的平面相交与AB ,M 、N 分别是AC 、BF 上的中点.求证:MN//平面BCE .【练习】如图,在四棱锥P-ABCD 中,底面ABCD 为矩形,E 为PD 的上一点,且PE=2ED .若F 为PE 的中点.求证:BF ∥平面AEC .【例3】如图,四棱锥P-ABCD 中,底面ABCD 为梯形,AB ∥DC ,AB ⊥BC .AB =BC=22AD ,点E 在棱PB 上,且PE=2EB .求证:PD ∥平面EAC .【练习】如图,正四棱锥P-ABCD 中,PA=AB ,点M ,N 分别在PA ,BD 上,且31==BD BN PA PM .求证:MN ∥平面PBC .2【例4】a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合平面,现给出六个命题①a ∥c ,b ∥c ⇒a ∥b ②a ∥γ ,b ∥γ ⇒a ∥b ③α∥c ,β∥c ⇒α∥β④ α∥γ ,β∥γ ⇒α∥β ⑤α∥c ,a ∥c ⇒α∥a ⑥α∥γ ,a ∥γ ⇒α∥a其中正确的命题是( )A.①②③⑥ B .①④⑤ C .①④ D .①④⑥【练习】下面六个命题中正确命题的个数是( )①如果a 、b 是两条直线,b a //,那么a 平行于经过b 的任何一个平面;②如果直线a 和平面α满足a //α,那么a 与平面α内的任何一条直线平行;③如果直线a //α,b //α,那么b a //;④如果直线a 、b 和平面α满足b a //,a //α,α⊄b ,那么b //α;⑤如果直线a 与平面α上的无数条直线平行,则a //α;⑥如果平面α的同侧有两点A 、B 到平面α的距离相等,则AB //α.A. 0B. 1C. 2D. 3【例5】一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定【练习】直线a //平面α,α内有n 条直线交于一点,这n 条直线直线中与直线a 平行的直线( )A.至少有一条 B .至多有一条 C .有且只有一条 D .没有三、课后练习1.已知直线a ∥平面α,P α∈,那么过点P 且平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 2.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A .平行B .相交C .相交或平行D .以上答案都不对3.下列结论中正确的是( ) ①α∥β,β∥γ,则α∥γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交.A .①②③B .②③④C .①③④D .①②③④4.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( )A .过A 且平行于a 和b 的平面可能不存在B .过A 有且只有一个平面平行于a 和bC .过A 至少有一个平面平行于a 和bD .过A 有无数个平面平行于a 和b5.如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系是( )A .平行B .相交C .平行或相交D .AB ⊂α6.如图所示,在棱长为a 的正方体1111ABCD A BC D -中,E ,F ,P ,Q 分别是BC ,11C D ,1AD ,BD 的中点.(1)求证:PQ //平面11DCC D ;(2)在DC 上找一点H ,使EFH //平面11BB D D .7.如图,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD .8.如图所示,已知三棱锥BCD A -被一平面所截,截面为平行四边形EFGH ,求证:(1)//EF 平面BCD ;(2)CD EF //.。

空间中的平行与垂直

空间中的平行与垂直

空间中的平行与垂直【知识梳理】 平行的判定与性质1、直线、平面有关的平行判定与性质平面与平面的位置关系有相交、平行两种情况.1、直线与平面平行定义:直线与平面没有公共点,称这条直线与这个平面平行。

(1)直线和平面平行的判定定理:平面外一条直线与此平面 的一条直线 ,则该直线与此平面平行. 符号表示:若l α⊄,a α⊂,l ∥a ,则l ∥α. (2)直线和平面平行的性质:一条直线与一个平面平行,则过这条直线的 与此平面的 与该直线平行.符号表示:若l ∥α,l β⊂,a αβ= ,则l ∥a . 2、面面平行(1)两平面平行的判定定理:如果一个平面内有两条 与另一个平面平行,则这 两个平面平行.符号表示:若 . 另外三个有用的判定定理判定定理1:若, a b αα⊂⊂,a b P = ,a ∥β,b ∥β,则α∥β;判定定理2:若, l l αβ⊥⊥,则α∥β; 判定定理3:若α∥β,β∥γ,则α∥γ。

(2)平面和平面平行的性质定理:性质定理1:若α∥β,a α⊂,则a ∥β;性质定理2:若α∥β,且a γα= ,b γβ= ,则a ∥b ;性质定理3:若α∥β,且l α⊥,则l β⊥。

垂直的判定与性质 1、直线和平面垂直 (1)直线和平面垂直定义:如果直线l 和平面α内的 ,我们就说直线l 与平面α互相垂直,记作l α⊥.(2)直线和平面垂直的判定定理:一条直线与一个平面内的 ,则该直线与此平面垂直. 符号语言:若, , m n m n P αα⊂⊂= ,, l m l n ⊥⊥,则l α⊥。

(3)直线与平面垂直的性质:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的 . 符号语言:,l m l m αα⊥⊂⇒⊥性质定理:垂直于同一个平面的两条直线 .符号语言:,//l m l m αα⊥⊥⇒2、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是,就说这两个平面垂直.表示方法:平面α与β垂直,记作 .(2)平面与平面垂直的判定定理:一个平面过另一个平面的 ,则这两个平面垂直. 符号语言: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
B
求证:AP∥GH。 P

M
D
G
C
H
A
N
B
直线l∥平面α,平面α内的所有 直线和直线l有那些位置关系。
l
eb
cd
平行或异面
直线l∥平面α,α内一定有直线
与l平行。 你能快速地找出一条,且
有理由保证它与l平行吗?
l
β
m
直线 l∥ 平面α
β
l
l ∥m
m
α
直线与平面平行的性质定理:
一条直线和一个平面平行,则过这条直线的 任一平面与这个平面的交线与该直线平行。
一点P和棱BC将木料锯开,应怎样画线?(2)所 画的线和面AC有什么关系?
解:(1)过点P作EF∥B’C’, 分别交棱A’B’,C’D’于点E,
F。连接BE,CF,则
EF,BE,CF就是应画的线。
D1
E
C1
P
A1
F
B1
D
C
B A
例题示范
例1:有一块木料如图,已知棱
BC平行于面A′C′(1)要经过木料表面
练习:
3、如果两个相交平面分别经过两条平行直线中 的一条,那么它们的交线和这两条直线平行。
l
a
b
α
β
4.已知:直线AB∥平面α,经过AB的
两个平面β和γ分别和平面α交于直
线a,b。
B
求证:a∥b
A
gb a
例题示范
例1:有一块木料如图,已知棱BC平行于面 A′C′(1)要经过木料表面A′B′C′D′ 内的
则这两条直线平行.
(假)
(4)若两条直线都和第三条直线平行,
则这两条直线平行.
(真)
小结
线面平行的判定定理 线线平行 线面平行
如果不在一个平面内的一条直线和平面内的 一条直线平行,那么这条直线和这个平面平行。
线面平行的性质定理 线面平行 线线平行
如果一条直线和一个平面平行,经过这条直线的 平面和这个平面相交,那么这条直线和交线平行。
符号表示:
a //, a , b
作用: 可证明两直线平行。
a // b
β
a
α
b
欲证“线线平行”,可先证明“线面平 行”。
已知:直线a , a , b
求证:a // b
证明: a //
a与没有公共点 a
又因为b在内
a与b没有公共点
b
又 a与b都在平面内
且没有公共点
a // b
直线和平面平行的判定定理:
α的位置关系可能是 b∥α,或b α, 或b与 α相交
(2)若两直线a、b相交,且a ∥ α,则b与 α的位置关系可能是 b ∥ α,b与 α相交
3.判断下列命题的真假
(1)过直线外一点只能引一条直线与
这条直线平行.
(真)
(2)过平面外一点只能引一条直线与
这个平面平行.
(假)
(3)若两条直线都和第三条直线垂直,
例题示范
如图,已知直线a,b,平面α, 且a//b,a//α,a,b都在平面 α外.求证:b//α.
证明:过a作平面β,使它与 平面α相交,交线为c. 因为a//α,a β,α Çβ=c, 所以 a// c. 因为a//b,所以,b//c. 又因为c α, b α, 所以 b// α。
例3 求证:如果三个平面两两相交于三条直线,并且 其中两条直线相平交行,那么第三条直线也和和这它两们条平直行线。有怎样
画出过G和AP的平面。 P
M
G
D
C
H
O
A
B
2.已知直线a,b和平面α,下列命 题正确的是( D)
A.若a // ,b ,则a // b B.若a // ,b // ,则a // b C.若a // b,b ,则a // D.若a // b, a //,则b //或b
填空:
(1)若两直线a、b异面,且 a ∥ α,则b与
例题示范
例2:已知平面外的两条平行直线中的一条平行 于这个平面,求证:另一条也平行于这个平面。
第一步:将原题改写成数学 符号语言
如图,已知直线a,b,平面α, 且a//b,a//α,a,b都在平面 α外.求证:b//α. 第二步:分析:怎样进行平 行的转化?→如何作辅助平 面?
第三步:书写证明过程
复习:线面平行的判定定理
如果平面外一条直线和这个平面内的一条直线 平行,那么这条直线和这个平面平行。
a
a
b
a∥
a∥ b
b
注明:
1、定理三个条件缺一不可。
2、简记:线线平行,则线面平行。 3、定理告诉我们:要证线面平行,得在面内找
一条线,使线线平行。
如何寻找互相平行的直线
• 1.在三角形中利用中位线 • 2.利用平行四边形做载体 • 3.利用平行四边形、矩形对角线互相平分
①若a∥b,b,则a∥ ②若a∥,b∥,则a∥b ③若a∥b,b∥,则a∥ ④若a∥,b,则a∥b
其中正确命题的个数是( ) (A)0个 (B)1个 (C)2个 (D)3个
练习:
2。如果一条直线和一个平面平行,则这条直线 ( D)
A 只和这个平面内一条直线平行; B 只和这个平面内两条相交直线不相交; C 和这个平面内的任意直线都平行; D 和这个平面内的任意直线都不相交。
的位置关系?
ßγ n
l
已知:平面,ß ,γ , ∩ß =l, ɑ ∩ γ =m, ß ∩ γ =n,且l// m
求证: n// l ,n// m
m
证明:l// m
l γ mγ
l// γ l ß
n// l
ß ∩ γ =n
同理, n// m
练习:
1、已知ABCD是平行四边形,点P是平面ABCD
外一点,M是PC的中点,在DM上取一点G,
的性质 • 4.利用线段成比例的关系 • 5.利用直线和平面平行的性质
1,P为长方形ABCD所在平面外一点,M、N分别为
AB,PD上的中点

P
求证:MN∥平面PBC。
N
Q
2,ABCD是平行四边形,P
是平面ABCD外一点,M D
C
是PC的中点,在DM上取
一 交点平G面,BD过MG于和GAHP。作平面 A
A′B′C′D′ 内的一点P和棱BC将木料锯开,应
怎样画线?(2)所画的线和面AC有什么关系?
(2)因为棱BC平行于平面A'C',平面BC'与平 面A'C'交于B'C',所以BC∥B'C',由(1)知, EF∥B'C',所以,EF∥BC,因此,EF//BC, EF平面AC,BC平面AC.所以,EF//平面AC. BE、CF显然都与平面AC相交。
直线与直线平行
直线与平面平行
直线和平面平行的性质定理:
注意:
平面外的一条直线只要和平面内的任一条直 线平行,则就可以得到这条直线和这个平面平行; 但是若一条直线与一个平面平行,则这条直线并 不是和平面内的任一条直线平行,它只与该平面 内与它共面的直线平行.
课堂练习:
(1)以下命题(其中a,b表示直线,表示平面)
相关文档
最新文档