高三一轮复习等差数列及其前n项和
高三一轮复习等差数列及其前n项和
⾼三⼀轮复习等差数列及其前n项和等差数列及其前n项和突破点⼀等差数列的基本运算1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能⽤等差数列有关知识解决相应的问题.4.了解等差数列与⼀次函数的关系[基本知识]1.等差数列的有关概念(1)定义:如果⼀个数列从第2项起,每⼀项与它的前⼀项的差都等于同⼀个常数,那么这个数列就叫做等差数列.符号表⽰为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.[基本能⼒]⼀、判断题(对的打“√”,错的打“×”)(1)若⼀个数列从第2项起,每⼀项与它的前⼀项的差都是常数,则这个数列是等差数列.()(2)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(3)等差数列{a n}的单调性是由公差d决定的.()(4)数列{a n}为等差数列的充要条件是其通项公式为n的⼀次函数.()答案:(1)×(2)√(3)√(4)√⼆、填空题1.若m和2n的等差中项为4,2m和n的等差中项为5,则m与n的等差中项是________.答案:32.在等差数列{a n}中,a2=3,a3+a4=9,则a1a6的值为________.答案:143.已知{a n}是等差数列,且a3+a9=4a5,a2=-8,则该数列的公差是________.答案:44.在等差数列{a n}中,已知d=2,S100=10 000,则S n=________.答案:n2[典例感悟]1.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=() A.-12B.-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代⼊上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 2.已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,∴ a 1=2,d =-3或a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4,∴S n =n (-4+3n -7)2=n (3n -11)2 .[⽅法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,⼀般可设出a 1和d ,利⽤等差数列的通项公式和前n 项和公式列⽅程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选⽤恰当的公式,利⽤⽅程(组)可求出剩余的两个量.[针对训练]1.已知数列?a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法⼀:设数列?a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法⼆:由于数列a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五⼈分五钱,令上⼆⼈所得与下三⼈等,问各得⼏何?”其意思为“已知甲、⼄、丙、丁、戊五⼈分五钱,甲、⼄两⼈所得与丙、丁、戊三⼈所得相同,且甲、⼄、丙、丁、戊所得依次成等差数列,问五⼈各得多少钱?”(“钱”是古代⼀种质量单位),在这个问题中,甲得________钱.( )A.53 B .32C.43D .54解析:选C 甲、⼄、丙、丁、戊五⼈所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即2a 1+d =52,3a 1+9d =52,解得a 1=43,d =-16,故甲得43钱,故选C.3.已知等差数列{a n }的前n 项和为S n ,n ∈N *,满⾜a 1+a 2=10,S 5=40. (1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d ,由题意知,a 1+a 2=2a 1+d =10, S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以?a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=?11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点⼆等差数列的性质及应⽤[基本知识]等差数列的常⽤性质(1)通项公式的推⼴:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运⽤性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则S n n 也是等差数列,其⾸项与{a n }的⾸项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S偶-S奇=nd,S奇S偶=a na n+1.(9)若等差数列{a n}的项数为奇数2n+1,则①S2n+1=(2n+1)a n+1;②S奇S偶=n+1n.[基本能⼒]1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.解析:依题意,得a2+a4+a6+a8=(a2+a8)+(a4+a6)=2(a3+a7)=74.答案:742.设{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的⾸项是________.答案:23.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则该数列前13项的和是________.答案:26[全析考法]考法⼀等差数列的性质[例1](1)若数列{an}为等差数列,S n为其前n项和,且a1=2a3-3,则S9=()A.25B.27C.50 D.54(2)在等差数列{a n}中,若a1,a2 019为⽅程x2-10x+16=0的两根,则a2+a1 010+a2 018=() A.10 B.15 C.20 D.40[解析](1)设等差数列{an}的公差为d,a1=2a3-3=2a1+4d-3,∴a5=a1+4d=3,S9=9a5=27.(2)因为a1,a2 019为⽅程x2-10x+16=0的两根,所以a1+a2 019=10.由等差数列的性质可知,a1 010=a1+a2 0192=5,a2+a2 018=a1+a2 019=10,所以a2+a1 010+a2 018=10+5=15.故选B.[答案](1)B(2)B[⽅法技巧]利⽤等差数列的性质求解问题的注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n 等项时,可以利⽤此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应⽤,如a n=a m+(n-m)d,d=a n-a mn-m,S2n-1=(2n-1)a n,n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. [提醒] ⼀般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n +a m +n =2a m .考法⼆等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利⽤⼆次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最⼩值. [解] (1)设{a n }的公差为d ,由题意得3a 1+3d =-15. ⼜a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法⼀:(⼆次函数法)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最⼩值,最⼩值为-16. 法⼆:(通项变号法) 由(1)知a n =2n -9,则S n =n (a 1+a n )2=n 2-8n . 由S n 最⼩a n ≤0,a n +1≥0,即?2n -9≤0,2n -7≥0,∴72≤n ≤92,⼜n ∈N *,∴n =4,此时S n 的最⼩值为S 4=-16. [⽅法技巧]求等差数列前n 项和S n 最值的2种⽅法(1)⼆次函数法利⽤等差数列前n 项和的函数表达式S n =an 2+bn ,通过配⽅或借助图象求⼆次函数最值的⽅法求解. (2)通项变号法①a 1>0,d <0时,满⾜a m ≥0,a m +1≤0的项数m 使得S n 取得最⼤值为S m ;②当a 1<0,d >0时,满⾜?a m ≤0,a m +1≥0的项数m 使得S n 取得最⼩值为S m .[集训冲关]1.[考法⼀]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则3a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8. ⼜S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15. 2.[考法⼀]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( ) A .9 B .10 C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2.⼜a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法⼆]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最⼤?解:法⼀:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. ∵a 1=25>0,由a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得n ≤1312,n ≥1212.∴当n =13时,S n 有最⼤值.法⼆:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从⽽S n =25n +n (n -1)(-2)=-n 2+26n =-(n -13)2+169. 故前13项之和最⼤.突破点三等差数列的判定与证明[典例] 各项均不为0的数列{a n }满⾜a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明数列?1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n . [解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n =2a n +1,故数列1a n 是等差数列,设数列1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3 )=n 6(n +3).[⽅法技巧]等差数列的判定与证明⽅法[提醒] 判断时易忽视定义中从第2项起,以后每项与前⼀项的差是同⼀常数,即易忽视验证a 2-a 1=d 这⼀关键条件. [针对训练]已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则2a 1+d =2,3a 1+3×22d =-6,∴a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n (n -1)2d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2 =-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4,若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列,则-6n 2-4n -6=-6n 2-6n +4,解得n =5,∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.[课时跟踪检测][A 级基础题]1.已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( ) A .30 B .29 C .28D .27解析:选C 由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.故选C.2.数列{2n -1}的前10项的和是( ) A .120 B .110 C .100D .10解析:选C ∵数列{2n -1}是以1为⾸项,2为公差的等差数列,∴S 10=(a 1+a 10)×102=(1+19)×102=100.故选C.3.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于( ) A .2 B .0 C .-1D .-2解析:选D 因为a 1=1,a n +1=a n -1,所以数列{a n }为等差数列,公差d 为-1,所以a 4=a 1+3d =1-3=-2,故选D.4.设等差数列{a n }的公差为d ,且a 1a 2=35,2a 4-a 6=7,则d =( ) A .4 B .3 C .2D .1解析:选C ∵{a n }是等差数列,∴2a 4-a 6=a 4-2d =a 2=7,∵a 1a 2=35,∴a 1=5,∴d =a 2-a 1=2,故选C.5.已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( ) A .20 B .40 C .60D .80解析:选D 设等差数列{a n }的公差为d ,由已知得S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即a 1+2d =10,a 1+92d =20,解得?a 1=2,d =4.∴a 10+a 11=2a 1+19d =80.故选D.[B 级提升题]1.已知等差数列{a n }的前n 项和为S n ,且a 9=12a 12+6,a 2=4,则数列1S n 的前10项和为( )A.1112 B .1011C.910D .89解析:选B 设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d =12,⼜a 2=4,∴a 1=2,d =2,∴S n =n 2+n ,∴1S n=1n (n +1)=1n -1n +1,∴1S 1+1S 2+…+1S 10=1-12+12-13+…+110-111=1-111=1011.选B.2.已知等差数列{a n }各项均为正数,其前n 项和为S n ,若a 1=1,S 3=a 2,则a 8=( ) A .12 B .13 C .14D .15解析:选D 法⼀:设等差数列{a n }的公差为d ,由题意得3+3d =1+d ,解得d =2或d =-1(舍去),所以a 8=1+7×2=15,故选D.法⼆:S 3=a 1+a 2+a 3=3a 2,由S 3=a 2可得3a 2=a 2,解得a 2=3或a 2=0(舍去),则d =a 2-a 1=2,所以a 8=1+7×2=15,故选D.3.等差数列{a n }中,a 3+a 7=6,则{a n }的前9项和等于( ) A .-18 B .27 C .18D .-27解析:选B 法⼀:设等差数列的公差为d ,则a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =6,所以a 1+4d =3.于是{a n }的前9项和S 9=9a 1+9×82d =9(a 1+4d )=9×3=27,故选B. 法⼆:由等差数列的性质,得a 1+a 9=a 3+a 7=6,所以数列{a n }的前9项和S 9=9(a 1+a 9)2=9×62=27,故选B.4.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列?S n n 的前11项和为( )A .-45B .-50C .-55D .-66解析:选D ∵a n =-2n +1,∴数列{a n }是以-1为⾸项,-2为公差的等差数列,∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n2n =-n ,∴数列S n n 是以-1为⾸项,-1为公差的等差数列,∴数列S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,则第5节的容积为( ) A .1升B .6766升C.4744升 D .3733升解析:选B 设该等差数列为{a n },公差为d ,由题意得 a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即4a 1+6d =3,3a 1+21d =4,解得a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B. 6.已知等差数列{a n }中,a 1=11,a 5=-1,则{a n }的前n 项和S n 的最⼤值是( ) A .15 B .20 C .26D .30解析:选C 设数列{a n }的公差为d ,则d =a 5-a 15-1=-3,所以a n =a 1+(n -1)d =-3n +14,由a n ≥0,a n +1≤0?14-3n ≥0,11-3n ≤0,解得113≤n ≤143,即n =4,所以{a n }的前4项和最⼤,且S 4=4×11+4×32×(-3)=26,故选C.7.在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018=( ) A .2 018 B .-2 018 C .4 036D .-4 036解析:选C 设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,∴S n n 是等差数列.∵S 1212-S 10 10=2,∴S n n 的公差为1,⼜S 11=a 11=-2 015,∴S n n 是以-2 015为⾸项,1为公差的等差数列,∴S 2 0182 018=-2 015+2 017×1=2,∴S 2 018=4 036.故选C.8.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,等差数列{b n }满⾜b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n <2T n B .b 4=0 C .T 7>b 7D .T 5=T 6解析:选D 因为点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,所以S n =n 2-10n ,所以a n =2n -11,⼜b n +b n +1=a n (n ∈N *),数列{b n }为等差数列,设公差为d ,所以2b 1+d =-9,2b 1+3d =-7,解得b 1=-5,d =1,所以b n =n -6,所以b 6=0,所以T 5=T 6,故选D. 9.已知数列{a n }是等差数列,其前n 项和S n 有最⼤值,且a 2 019a 2 018<-1,则使得S n >0的n 的最⼤值为( ) A .2 018 B .2 019 C .4 035D .4 037解析:选C 设等差数列{a n }的公差为d ,由题意知d <0,a 2 018>0,a 2 018+a 2 019<0,所以S 4 035=4 035(a 1+a 4 035)2=4 035a 2 018>0,S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2<0,所以使得S n >0的n 的最⼤值为4 035,故选C.10.设等差数列{a n }满⾜a 3+a 7=36,a 4a 6=275,且a n a n +1有最⼩值,则这个最⼩值为( ) A .-10 B .-12 C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,⼜a 4a 6=275,联⽴,解得a 4=11,a 6=25或a 4=25,a 6=11,当a 4=11,a 6=25时,可得a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最⼩值;当 a 4=25,a 6=11时,可得a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最⼩值.综上,a n a n +1的最⼩值为-12.11.设等差数列{a n }的前n 项和为S n .若a 3=5,且S 1,S 5,S 7成等差数列,则数列{a n }的通项公式a n =________. 解析:设等差数列{a n }的公差为d ,∵a 3=5,且S 1,S 5,S 7成等差数列,∴a 1+2d =5,a 1+7a 1+21d =10a 1+20d ,解得?a 1=1,d =2,∴a n =2n -1.答案:2n -112.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法⼀:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法⼆:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴a n =6n -3.答案:a n =6n -313.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最⼤值时,n 的值是________.解析:依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.⼜数列{a n }是等差数列,所以在该数列中,前6项均为正数,⾃第7项起以后各项均为负数,于是当S n 取最⼤值时,n =6. 答案:614.设公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 11成等⽐数列,且a 11=2(S m -S n )(m >n >0,m ,n ∈N *),则m +n 的值是________.解析:设等差数列{a n }的公差为d (d ≠0),因为a 2,a 5,a 11成等⽐数列,所以a 25=a 2a 11,所以(a 1+4d )2=(a 1+d )(a 1+10d ),解得a 1=2d ,⼜a 11=2(S m -S n )(m >n >0,m ,n ∈N *),所以2ma 1+m (m -1)d -2na 1-n (n -1)d =a 1+10d ,化简得(m +n +3)(m -n )=12,因为m >n >0,m ,n ∈N *,所以 m -n =1,m +n +3=12或m -n =2,m +n +3=6,解得?m =5,n =4或m =52,n =12(舍去),所以m +n =9.答案:915.已知等差数列{a n }的前n 项和为S n ,且S 5=45,S 6=60. (1)求数列{a n }的通项公式;(2)若数列{b n }满⾜b n +1-b n =a n (n ∈N *),且b 1=3,求?1b n 的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,则a 6=S 6-S 5=15,所以?a 6=a 1+5d =15,S 5=5a 1+10d =45,解得a 1=5,d =2,所以a n =2n +3.(2)b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =a n -1+a n -2+…+a 1+3=n 2+2n ,所以1b n =1n (n +2)=121n -1n +2,所以T n =121+12-1n +1-1n +2=3n 2+5n 4n 2+12n +8.16.已知数列{a n }是等差数列,且a 1,a 2(a 1(2)在(1)中,设b n =S n n +c ,求证:当c =-12时,数列{b n }是等差数列.解:(1)∵a 1,a 2(a 12·4=2n 2-n .(2)证明:当c =-12时,b n =S n n +c=2n 2-n n -12=2n ,∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为⾸项,2为公差的等差数列.。
高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文
n≤10 , 即 共 有
10
个数.所以
S10
=
10(1+19) 2
=
100或S10=10×1+1பைடு நூலகம்× 2 9×2=100,故选 C.
12/13/2021
第七页,共四十二页。
(必修 5 P46B 组 T2 改编)等差数列{an}的前 n 项和为 Sn,若 S10=20,S20=50,则 S30=________. 解析:根据等差数列性质 S10,S20-S10,S30-S20 成等差数列, 所以 2(S20-S10)=S10+S30-S20,所以 S30=3(S20-S10)=3(50 -20)=90. 答案:90
12/13/2021
第二十七页,共四十二页。
考点四 等差数列的单调性与最值
(1)下面是关于公差 d>0 的等差数列{an}的四个命题:p1: 数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中真命题为
12/13/2021
第十六页,共四十二页。
当 n≥2 时,由22SSnn=-1=a2na+n2-a1n+,an-1, 得 2an=a2n+an-a2n-1-an-1. 即(an+an-1)(an-an-1-1)=0, 因为 an+an-1>0, 所以 an-an-1=1(n≥2), 所以数列{an}是等差数列.
ak+al=am+an.
(3)若{an}是等差数列,公差为 d,则{a2n}也是等差数列,公差 为__2_d_.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
12/13/2021
第三页,共四十二页。
5.等差数列的前 n 项和公式 设等差数列{an}的公差为 d,其前 n 项和 Sn=n(a12+an)或 Sn=____n_a_1+ __n__(__n_2-__1_)__d________.
新高考2023版高考数学一轮总复习练案35第六章第二讲等差数列及其前n项和
第二讲 等差数列及其前n 项和A 组基础巩固一、单选题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( D ) A .12 B .14 C .16D .18[解析] 由a 2=2,a 3=4知d =4-23-2=2.所以a 10=a 2+8d =2+8×2=18.故选D.2.(2021·贵州阶段性检测)在等差数列{a n }中,已知a 3+a 5+a 7=15,则该数列前9项和S 9=( D )A .18B .27C .36D .45[解析] 本题考查等差数列的性质,前n 项和公式.在等差数列{a n }中,a 3+a 5+a 7=3a 5=15,a 5=5,所以S 9=a 1+a 92×9=2a 52×9=9a 5=9×5=45.故选D.3.已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( D ) A .3 B .7 C .9D .10[解析] 因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,所以d =22-4a 22=3,a 1=a 2-d =4-3=1,a n =a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,解得n =10.4.(2022·安徽合肥模拟)记等差数列{a n }的公差为d ,前n 项和为S n .若S 10=40,a 6=5,则( C )A .d =3B .a 10=12C .S 20=280D .a 1=-4[解析] 依题意,得S 10=a 1+a 10·102=5(a 5+a 6)=40,解得a 5=3,则d =a 6-a 5=2,则a 10=a 6+4d =5+8=13,a 1=a 5-4d =3-8=-5,S 20=20a 1+190d =-100+380=280,故选C.5.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( D )A .d >875B .d <325C .875<d <325D .875<d ≤325[解析] 由题意可得⎩⎪⎨⎪⎧a 10>1,a 9≤1,即⎩⎪⎨⎪⎧125+9d >1,125+8d ≤1,解得875<d ≤325.故选D.6.(2021·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( C )A .18B .16C .14D .12[解析] 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14,可得⎩⎪⎨⎪⎧6a 1+13d =2,a 1+3d =2,解得⎩⎪⎨⎪⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 二、多选题7.等差数列{a n }是递增数列,满足a 7=3a 5,前n 项和为S n ,下列选项正确的是( AD ) A .d >0 B .a 1>0C .当n =5时S n 最小D .S n >0时,n 最小值为8[解析] ∵a 7=3a 5,∴a 1+6d =3a 1+12d , ∴a 1=-3d ,由已知得d >0, ∴a 1<0,故A 正确,B 不正确.S n =d 2n 2+(a 1-d 2)n =d 2n 2-72dn =d2(n 2-7n ),当n =3或4时,S n 最小,故C 不正确.S n >0解得n >7或n <0,因此S n >0时n 最小为8,故D 正确,选A 、D.8.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( AC )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0[解析] 根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8, 即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d , 又由a n =a 1+(n -1)d =(n -10)d , 则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确; 又由S n =na 1+n n -1d2=-9nd +n n -1d 2=d2×(n 2-19n ), 则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,∵d ≠0,∴S 20≠0,则D 不正确. 三、填空题9.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= 14 . [解析] 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14. 10.已知等差数列{a n }的前n 项为S n ,若S 4=3,S 5=4,则a 9= 75.[解析] 由题知:⎩⎪⎨⎪⎧S 4=4a 1+6d =3S 5=5a 1+10d =4,解得a 1=35,d =110.∴a 9=a 1+8d =35+8×110=75.11.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13= 3 . [解析] 因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.12.记S n 为正项等差数列{a n }的前n 项和,若a 1=1,a 3·a 4=S 7,则S n = 32n 2-12n .[解析] 设等差数列的公差为d ,由题意得a 3·a 4=S 7=a 1+a 72×7=7a 4,所以a 3=7,所以1+2d =7,∴d =3,所以S n =n +n n -12×3=32n 2-12n .故答案为:32n 2-12n .四、解答题13.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.[解析] (1)设{a n }的公差为d .由S 9=-a 5得a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由S 9=-a 5得a 1=-4d ,故a n =(n -5)d ,S n =n n -9d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0, 解得1≤n ≤10.所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.[解析] (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0, 所以a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1, 即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3, 所以a 2=-2,这与数列{a n }的各项均为正数矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.B 组能力提升1.(2021·湖北咸宁联考)等差数列{a n }的前n 项和为S n ,若S 2=3,S 5=10,则{a n }的公差为( C )A .23B .12C .13D .14[解析] 由题意知a 1+a 2=3①,S 5=5a 1+a 52=10,即a 1+a 5=4②,②-①得3d =1,∴d =13,故选C.2.设S n 是等差数列{a n }的前n 项和,若S 674=2,S 1 348=12,则S 2 022=( C ) A .22 B .26 C .30D .34[解析] 由等差数列的性质知,S 674,S 1 348-S 674,S 2 022-S 1 348成等差数列,则2(S 1 348-S 674)=S 674+S 2 022-S 1 348,即2×(12-2)=2+S 2 022-12,解得S 2 022=30.3.(2020·课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A .3 699块B .3 474块C .3 402块D .3 339块[解析] 本题考查等差数列的性质及其前n 项和.设由内到外每环的扇面形石板的块数构成数列{a n },由题意知a 1=9.又因为向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,所以数列{a n }为公差为9的等差数列.解法一:设每层环数为n (n ∈N *),则上层由内向外每环的扇面形石板的块数依次为a 1,a 2,…,a n ,中层由内向外每环的扇面形石板的块数依次为a n +1,a n +2,…,a 2n ,下层由内向外每环的扇面形石板的块数依次为a 2n +1,a 2n +2,…,a 3n .由题意知(a 2n +1+a 2n +2+…+a 3n )-(a n+1+a n +2+…+a 2n )=729,由等差数列的性质知a 2n +1-a n +1=a 2n +2-a n +2=…=a 3n -a 2n =9n ,所以9n 2=729,得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.解法二:设每层环数为n (n ∈N *),设数列{a n }的前n 项和为S n ,由等差数列的性质知,S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=9n 2,则9n 2=729,解得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.4.(多选题)(2021·商洛市高考模拟)我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始,已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列选项正确的有( ABC )A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短[解析] 由题意可知夏至到冬至的晷长构成等差数列{a n},其中a1=15寸,a13=135寸,公差为d寸,则135=15+12d,解得d=10寸,同理可知由冬至到夏至的晷长构成等差数列{b n},首项b1=135,末项b13=15,公差d=-10(单位都为寸).故A正确;∵春分的晷长为b7,∴b7=b1+6d=135-60=75,∵秋分的晷长为a7,∴a7=a1+6d=15+60=75,故B正确;∵立冬的晷长为a10,∴a10=a1+9d=15+90=105,即立冬的晷长为一丈五寸,故C正确;∵立春的晷长,立秋的晷长分别为b4,a4,∴a4=a1+3d=15+30=45,b4=b1+3d=135-30=105,∴b4>a4,故D错误.故选A、B、C.。
2023年新高考数学一轮复习7-2 等差数列及其前n项和(知识点讲解)解析版
专题7.2 等差数列及其前n 项和(知识点讲解)【知识框架】【核心素养】1.与归纳推理相结合,考查数列的概念与通项,凸显逻辑推理的核心素养.2.与函数、不等式相结合,考查数列的概念及其性质,凸显数学抽象、逻辑推理、数学运算的核心素养. 3.与递推公式相结合,考查对求通项公式的方法的掌握,凸显数学运算、数学建模的核心素养.【知识点展示】(一)等差数列1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . 2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=,,成等差数列. 4.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 5.注意区分等差数列定义中同一个常数与常数的区别. (二)等差数列的前和的求和公式:. (三)等差数列的通项公式及前n 项和公式与函数的关系(1)当d ≠0时,等差数列{a n }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. (2)当d ≠0时,等差数列{a n }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. (四)等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. (五)等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.(8)设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. (9)等差数列中,(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+{}n a {}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶(10)如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.(11)若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a Sb S --=. (12)等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.【常考题型剖析】题型一:等差数列基本量的运算例1.(2019·全国·高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A . 【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .例2.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______. 【答案】2 【解析】【分析】转化条件为()112+226a d a d =++,即可得解. 【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.{}n a【总结提升】1.解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a 1和公差d ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a 1,d 表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程. 2.等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.题型二:等差数列的判定与证明例3. (2020·山东·高考真题)某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决. 【答案】140里. 【解析】 【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同, 所以该男子这9天中每天走的路程数构成等差数列, 设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d , 则91260S =,147390a a a ++=. 因为1(1)2n n n S na d -=+,1(1)n a a n d =+-, 1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=, 所以该男子第5天走140里.例4.(2021·全国·高考真题(文))记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】的公差d,进一步写出的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列是等差数列,设公差为d(n -()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦∴{}n a 是等差数列.例5.(2021·全国·高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①①①中选取两个作为条件,证明另外一个成立. ①数列{}n a是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①②作条件证明③时,结合,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选②③作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =. 选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=,)1n =+=所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a +-03a=-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d =-=故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a两项的差1d11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论. 【总结提升】等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 提醒:判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.题型三:等差数列的前n 项和例6.【多选题】(2022·湖南永州·三模)已知等差数列{}n a 是递减数列,n S 为其前n 项和,且78S S =,则( )A .0d >B .80a =C .150S >D .7S 、8S 均为n S 的最大值【答案】BD 【解析】【分析】根据等差数列的性质以及其前n 项和的性质,逐个选项进行判断即可求解 【详解】因为等差数列{}n a 是递减数列,所以,10n n a a +-<,所以,0d <,故A 错误; 因为78S S =,所以8870a S S =-=,故B 正确; 因为()115158151502a a S a +===,故C 错误; 因为由题意得,789000a a a >⎛ = <⎝,所以,*78()n S S S n N =≥∈,故D 正确;故选:BD例7.(2020·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________. 【答案】25 【解析】 【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =. 故答案为:25.例8.(2018·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)n a =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得nS 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{}n a 的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{n a }的通项公式为n a =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.例9.(2021·全国·高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.例10.(2022·福建·厦门一中模拟预测)已知数列{}n a 的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{}n a 的通项公式;(2)设1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n T .【答案】(1)23a =,21n a n =- (2)24(21)n T n n =+ 【解析】 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到24n n a a +-=,再根据等差数列通项公式计算可得;(2)由(1)可得(1)(21)(21)n n b n n =--+,利用并项求和法计算可得; (1)解:当1n =时,12141a a a =-,解得23a =, 由题知141n n n a a S +=-①,12141n n n a a S +++=-②,由②-①得121()4n n n n a a a a +++-=,因为0n a >,所以24n n a a +-=, 于是:数列{}n a 的奇数项是以11a =为首项,以4为公差的等差数列, 即()2114(1)432211n a n n n -=+-=-=--,偶数项是以23a =为首项,以4为公差的等差数列,即234(1)41n a n n =+-=- 所以{}n a 的通项公式21n a n =-; (2)解:由(1)可得(1)(21)(21)n n b n n =--+,212(43)(41)(41)(41)4(41)n n b b n n n n n -=---+-+=-+21234212(341)()()()4[37(41)]44(21)2n n n n n T b b b b b b n n n -+-=++++++=+++-=⨯=+. 【总结提升】1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 题型四:等差数列性质及应用例11.(2020·浙江·高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b =【答案】D 【解析】 【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立. 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,n a n a()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.例12.(2014·北京高考真题(理))若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =__________时,{}n a 的前n 项和最大. 【答案】8 【解析】由等差数列的性质,,,又因为,所以所以,所以,,故数列的前8项最大.例13.(2016·北京·高考真题(理))已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【答案】6 【解析】 【详解】试题分析:因为{}n a 是等差数列,所以35420a a a +==,即40a =,又4136a a d -==-,所以2d =-, 所以616156615(2)6S a d =+=⨯+⨯-=.故答案为6.例14.(2021·江西新余四中高二月考(理))等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,若2132n n S n T n +=+,则2517208101214a a a ab b b b +++=+++________.【答案】4365【分析】 证明得出2121n n n n a S b T --=,结合等差中项的基本性质可求得结果. 【详解】因为等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,则()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,所以,25172011218101214112142211434321265a a a a a Sb b b b b T +++⨯+====+++⨯+.故答案为:4365. 【温馨提醒】等差数列的性质主要涉及“项的性质”和“和的性质”,因此,要注意结合等差数列的通项公式、前n 项和公式求解.。
高中数学一轮专题复习:等差数列及其前n项和课件
∵a7+a10=a8+a9<0 ∴a9<0
∴等差数列{an}的前8项都为正,第9项开始为负
∴当n=8时,{an}的前n项和最大
题型四、等差数列的判定与证明
例6:若数列{an}前n项和为Sn,且an+2SnSn-1=0(n≥2),
a1
=
1 2
.( 1)求证:数列
1 Sn
是等差数列;(2)求数列an
an = a1 + (n-1)d
an = am + (n-m)d
一、基础知识梳理 3.等差数列的前n项和公式
①Sn
n(a1 2
an )
(Sn,a1,n,an知三求一)
代入an a1 n 1d
②Sn
na1
n(n 1) 2
d
(Sn,a1, n, d知三求一)
一、基础知识梳理
4.等差数列的性质
角度二:求前n项和 变式2:在等差数列{an}中:a3+a7-a10=-1,a11-a4=21,
则数列{an}的前8项和S8=( D )
A.50 B.70 C.120 D.100
解析:设数列{an}的公差为d,则 a11-a4= 7d=21,∴d=3
∵a3+a7-a10=(a1+2d)+(a1+6d)-(a1+9d)=a1-d =a1-3=-1
解析:由{an}是等差数列,得 S3,S6-S3,S9-S6为等差数列,
即 2(S6-S3)=S3+(S9-S6), 即S9-S6=2S6-3S3 =2×36-3×9=45 即 S9-S6=a7+a8+a9 =45
题型三、等差数列前n项和的最值问题
例5:(1)在等差数列{an}中,a1=20,前n项和为Sn,且 S10=S15,则Sn取最大值时,n的值为( )
2023年高考数学(文科)一轮复习——等差数列及其前n项和
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。
高考数学一轮总复习第6章数列第二节等差数列及其前n项和课件理
的等差中项且 A=a+2 b
.
3.通项公式
(1)如果等差数列{an}的首项为 a1,公差为 d,那么通项公 式为 an= a1+(n-1)d,n∈N*. (2)通项公式的推广:an=am+(n-m)d(n,m∈N*).
►三个定义
[①等差数列的定义;②等差中项的定义;③等差数列的通项 公式.] (1)在数列{an}中,a1=1,an+1=an+3,则该数列的通项公式 为an=________. 解析 {an}为等差数列,a1=1,公差d=an+1-an=3.通项公 式an=a1+(n-1)d=3n-2. 答案 3n-2
解析
答案 2 000 [点评] 每两个树坑间的距离都是10米,表示出每个树坑与 第i个树坑间的距离,得出等差数列,然后求和,根据i的取值 求出最小值.
方程思想在等差数列中的应用 【示例】 已知等差数列{an}的前n项和为Sn,a5=8,S3=6.
(1)求数列{an}的通项公式; (2)若数列{an}的前k项和S=72,求k的值.
第二节 等差数列及其前n项和
知识点一 等差数列的有关概念
1.等差数列的定义 如果一个数列从第 2 项起,每一项与它的前一项的差等于 同一个常数 ,那么这个数列就叫做等差数列,这个常 数叫做等差数列的公差,通常用字母d表示,定义的表达式为 an+1-an=d .
2.等差中项:如果 a,A,b 成等差数列,那么 A 叫做 a 与 b
【例1】 (1)(2016·江西重点中学十校联考)已知等差数列{an}
的前n项和为Sn,a4=2,S10=10,则a7的值为( )
A.0
B.1
C.2
D.3
(2)(2016·黑龙江哈六中模拟)已知等差数列{an}中,a2=6,
2025高考数学一轮复习-4.2.3-第2课时-等差数列前n项和的性质【课件】
4.2 等差数列 4.2.3 等差数列的前n项和 第2课时 等差数列前n项和的性质
必备知识·情境导学探新知
知识点
1.等差数列前 n 项和公式可以转化为关于 n 的一元二次函数(d≠0) 或一次函数(d=0).
反过来,如果一个数列的前 n 项和是关于 n 的一元二次函数,那 么该数列一定是等差数列吗?
类型 2 裂项相消法求和 【例 2】 在等差数列{an}中,a1=3,公差 d=2,Sn 为前 n 项和,
求S11+S12+…+S1n. [解] ∵等差数列{an}的首项 a1=3,公差 d=2, ∴前 n 项和 Sn=na1+n(n- 2 1)d =3n+n(n-2 1)×2=n2+2n(n∈N*), ∴S1n=n2+1 2n=n(n1+2)=121n-n+1 2,
C.11
D.12
B [∵SS偶奇=n+n 1, ∴116550=n+n 1. ∴n=10.故选 B.]
关键能力·合作探究释疑难
类型1 类型2 类型3
类型 1 “片段和”的性质 【例 1】 在等差数列{an}中,S10=100,S100=10.求 S110. [思路探究] (1)可利用方程(组)思想求解. (2)可利用性质求解,如看作{an}中,依次取 10 项的和所得新数 列的前 11 项的和求解.
2.在项数为 2n 或 2n+1 的等差数列中,奇数项的和与偶数项的 和存在什么样的关系?
知识点 等差数列前 n 项和的性质 (1)在等差数列{an}中,其前 n 项和为 Sn,则{an}中连续的 n 项和 构成的数列 Sn,___S_2n_-__S_n__,S3n-S2n,__S_4_n-__S_3_n__,…构成等差数列. (2)数列{an}是等差数列⇔Sn=an2+bn(a,b 为常数).
2023年新高考数学一轮复习7-2 等差数列及其前n项和(真题测试)解析版
专题7.2 等差数列及其前n 项和(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D2.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64 B .96C .128D .160【答案】C 【解析】 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C.3.(2020·全国·高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C 【解析】 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C4.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021.故选:C.5.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.6.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9B .10C .11D .12【答案】C 【解析】【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .7.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( ) A .9 B .8C .7D .6【答案】C 【解析】 【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得. 【详解】因为()9353m S a a a =++,又959S a =, 所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=,设等差数列{}n a 的公差为d ,则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠,所以18m +=, 所以7m =. 故选:C.8.(2023·全国·高三专题练习)等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有( )A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项 【答案】B 【解析】 【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ; 90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D. 【详解】对于选项A ,∵n S 有最大值,∴ 等差数列{}n a 一定有负数项, ∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确; 对于选项B ,∵6139100a a a a +=+=,且10a >, ∴90a >,100a <, ∴179=170S a >,910181802a a S +=⨯=, 则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <, 故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<, ∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确. 故选:B. 二、多选题9.(2023·全国·高三专题练习)已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC 【解析】 【分析】由91011S S S =<,得100,0d a >= ,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC10.(2022·江苏·南京市宁海中学模拟预测)定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有( )A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S = D .2S ,4S ,6S 成等差数列 【答案】ABC 【解析】【分析】由新定义可得112222n n n a a a n -++⋯+=⋅,利用该递推关系求出数列{}n a 的通项公式,然后逐一核对四个选项得答案. 【详解】 由已知可得112222n n nn a a a H n-+++==,所以112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确, 所以()32n n n S +=,所以32n S n n +=故2022202520222S =,故C 正确. 25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .11.(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d 【答案】ABD 【解析】 【分析】对于A ,利用对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD12.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 三、填空题13.(2019·全国·高考真题(理))记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 14.(2019·江苏·高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 15.(2021·福建省华安县第一中学高三期中)已知数列{}n a 的前n 项和为n S ,11a =,121n n a a n +=++(*n ∈N ),则99a 的值为________,99S 的值为________. 【答案】 99 4950 【解析】 【分析】利用数列的递推关系可知数列{}n a 的奇数项是首项为1,公差为2的等差数列,偶数项是首项为2,公差为2的等差数列,利用等差数列的通项公式和前n 项和公式即可求解. 【详解】将1n =代入121n n a a n +=++得2312a =-=, 由121n n a a n +=++①得123n n a a n +++=+2②, ②-①得22n n a a +-=,所以数列{}n a 的奇数项、偶数项都是以2为公差的等差数列,()991501299a =+-⨯=, ()()991359924698S a a a a a a a a =+++++++++ 5049494815022492495022⨯⨯=⨯+⨯+⨯+⨯=, 故答案为:99 ; 4950.16.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________. 【答案】232n n - 【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -. 四、解答题17.(2023·全国·高三专题练习)已知数列{}n a 中,11a =,当2n ≥时,11n n n n a a a a ---=⋅.求证:数列1{}na 是等差数列.【答案】证明见解析 【解析】 【分析】利用定义法证明出数列1{}na 是等差数列.【详解】当2n ≥时,11n n n n a a a a ---=⋅,因11a =,显然0n a ≠,否则10n a -=,由此可得10a =,矛盾, 两边同时除以1n n a a -⋅,得1111n n a a --=,而11a =1, 所以数列1{}na 是以1为首项,1为公差的等差数列.18.(2019·北京·高考真题(文))设{n a }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{na }的通项公式;(Ⅱ)记{na }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得{}n a 的通项公式;(Ⅱ)首先求得n S 的表达式,然后结合二次函数的性质可得其最小值. 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-.19.(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.20.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.【答案】(1)()12n n n a +=(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 21.(2022·安徽·合肥一中模拟预测(文))已知()f x =数列{}na 的前n 项和为n S ,点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈)且11a =,0n a >.(1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n T ,且满足212211683++=+--n nn n T Tn n a a ,确定1b 的值使得数列{}n b 是等差数列.【答案】(1)*N =∈n a n (2)1 【解析】 【分析】(1)根据点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),得到11+n a 212141+-=n n a a ,利用等差数列的定义求解; (2)由(1)化简得到114143+-=+-n n T Tn n ,利用等差数列的定义得到()()1431=-+-n T n T n ,再利用数列通项与前n 项和的关系求解. (1)解:因为()f x =11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),所以11+=n a 212141+-=n n a a ,所以21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,所以()2114143=+-=-n n n a,即*N =∈n a n ; (2)由(1)知:212211683++=+--n nn n T Tn n a a ,即为()()()()143414341+-=++-+n n n T n T n n ,整理得:114143+-=+-n n T Tn n , 所以数列43⎧⎫⎨⎬-⎩⎭n T n 是以1T 为首项,以1为公差的等差数列, 则1143=+--nT T n n ,即()()1431=-+-n T n T n , 当2n ≥时,114811-=-=+-n n n b T T b n , 若{}n b 是等差数列,则1b 适合上式, 令1n =,得1143=-b b ,解得11b =.22.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=.【整体点评】 (1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路. (2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及其前n项和突破点一等差数列的基本运算1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列有关知识解决相应的问题.4.了解等差数列与一次函数的关系[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(3)等差数列{a n}的单调性是由公差d决定的.()(4)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()答案:(1)×(2)√(3)√(4)√二、填空题1.若m和2n的等差中项为4,2m和n的等差中项为5,则m与n的等差中项是________.答案:32.在等差数列{a n}中,a2=3,a3+a4=9,则a1a6的值为________.答案:143.已知{a n}是等差数列,且a3+a9=4a5,a2=-8,则该数列的公差是________.答案:44.在等差数列{a n}中,已知d=2,S100=10 000,则S n=________.答案:n2[典例感悟]1.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=() A.-12B.-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 2.已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8, ∴⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,∴⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n (-4+3n -7)2=n (3n -11)2.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( ) A.53B .32C.43 D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎨⎧2a 1+d =52,3a 1+9d =52,解得⎩⎨⎧a 1=43,d =-16,故甲得43钱,故选C.3.已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40. (1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10, S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解. (6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1.(9)若等差数列{a n}的项数为奇数2n+1,则①S2n+1=(2n+1)a n+1;②S奇S偶=n+1n.[基本能力]1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.解析:依题意,得a2+a4+a6+a8=(a2+a8)+(a4+a6)=2(a3+a7)=74.答案:742.设{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________.答案:23.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一等差数列的性质[例1](1)若数列{a n}为等差数列,S n为其前n项和,且a1=2a3-3,则S9=()A.25B.27C.50 D.54(2)在等差数列{a n}中,若a1,a2 019为方程x2-10x+16=0的两根,则a2+a1 010+a2 018=() A.10 B.15C.20 D.40[解析](1)设等差数列{a n}的公差为d,a1=2a3-3=2a1+4d-3,∴a5=a1+4d=3,S9=9a5=27.(2)因为a1,a2 019为方程x2-10x+16=0的两根,所以a1+a2 019=10.由等差数列的性质可知,a1 010=a1+a2 0192=5,a2+a2 018=a1+a2 019=10,所以a2+a1 010+a2 018=10+5=15.故选B.[答案](1)B(2)B[方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应用,如a n=a m+(n-m)d,d=a n-a mn-m,S2n-1=(2n-1)a n,S n=n(a1+a n)2=n(a2+a n-1)2(n,m∈N*)等.[提醒]一般地,a m+a n≠a m+n,等号左、右两边必须是两项相加,当然也可以是a m-n+a m+n=2a m.考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n (a 1+a n )2=n 2-8n . 由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92,又n ∈N *,∴n =4, 此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( ) A .15 B .17 C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8. 又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15. 2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( ) A .9 B .10 C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大? 解:法一:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. ∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d , 解得d =-2. 从而S n =25n +n (n -1)2(-2)=-n 2+26n =-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] 各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n . [解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n =2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3 )=n6(n +3).[方法技巧]等差数列的判定与证明方法[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件. [针对训练]已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由. 解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6, ∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n , S n =na 1+n (n -1)2d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2 =-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.[课时跟踪检测][A 级 基础题]1.已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( )A .30B .29C .28D .27解析:选C 由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.故选C.2.数列{2n -1}的前10项的和是( ) A .120 B .110 C .100D .10解析:选C ∵数列{2n -1}是以1为首项,2为公差的等差数列, ∴S 10=(a 1+a 10)×102=(1+19)×102=100.故选C.3.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于( ) A .2 B .0 C .-1D .-2解析:选D 因为a 1=1,a n +1=a n -1,所以数列{a n }为等差数列,公差d 为-1,所以a 4=a 1+3d =1-3=-2,故选D.4.设等差数列{a n }的公差为d ,且a 1a 2=35,2a 4-a 6=7,则d =( ) A .4 B .3 C .2D .1解析:选C ∵{a n }是等差数列,∴2a 4-a 6=a 4-2d =a 2=7,∵a 1a 2=35,∴a 1=5,∴d =a 2-a 1=2,故选C.5.已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( ) A .20 B .40 C .60D .80解析:选D 设等差数列{a n }的公差为d , 由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4.∴a 10+a 11=2a 1+19d =80.故选D.[B 级 提升题]1.已知等差数列{a n }的前n 项和为S n ,且a 9=12a 12+6,a 2=4,则数列⎩⎨⎧⎭⎬⎫1S n 的前10项和为( )A.1112 B .1011C.910D .89解析:选B 设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d =12,又a 2=4,∴a 1=2,d =2,∴S n =n 2+n ,∴1S n =1n (n +1)=1n -1n +1,∴1S 1+1S 2+…+1S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011.选B.2.已知等差数列{a n }各项均为正数,其前n 项和为S n ,若a 1=1,S 3=a 2,则a 8=( ) A .12 B .13 C .14D .15解析:选D 法一:设等差数列{a n }的公差为d ,由题意得3+3d =1+d ,解得d =2或d =-1(舍去),所以a 8=1+7×2=15,故选D.法二:S 3=a 1+a 2+a 3=3a 2,由S 3=a 2可得3a 2=a 2,解得a 2=3或a 2=0(舍去),则d =a 2-a 1=2,所以a 8=1+7×2=15,故选D.3.等差数列{a n }中,a 3+a 7=6,则{a n }的前9项和等于( ) A .-18 B .27 C .18D .-27解析:选B 法一:设等差数列的公差为d ,则a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =6,所以a 1+4d =3.于是{a n }的前9项和S 9=9a 1+9×82d =9(a 1+4d )=9×3=27,故选B. 法二:由等差数列的性质,得a 1+a 9=a 3+a 7=6,所以数列{a n }的前9项和S 9=9(a 1+a 9)2=9×62=27,故选B.4.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66解析:选D ∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n=-n2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A .1升 B .6766升C.4744升 D .3733升解析:选B 设该等差数列为{a n },公差为d ,由题意得⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B. 6.已知等差数列{a n }中,a 1=11,a 5=-1,则{a n }的前n 项和S n 的最大值是( ) A .15 B .20 C .26D .30解析:选C 设数列{a n }的公差为d ,则d =a 5-a 15-1=-3,所以a n =a 1+(n -1)d =-3n +14,由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⇒⎩⎪⎨⎪⎧14-3n ≥0,11-3n ≤0,解得113≤n ≤143,即n =4,所以{a n }的前4项和最大,且S 4=4×11+4×32×(-3)=26,故选C.7.在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018=( ) A .2 018 B .-2 018 C .4 036D .-4 036解析:选C 设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,∴⎩⎨⎧⎭⎬⎫S n n 是等差数列.∵S 1212-S 1010=2,∴⎩⎨⎧⎭⎬⎫S n n 的公差为1,又S 11=a 11=-2 015,∴⎩⎨⎧⎭⎬⎫S n n 是以-2 015为首项,1为公差的等差数列,∴S 2 0182 018=-2 015+2 017×1=2,∴S 2 018=4 036.故选C.8.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,等差数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n <2T n B .b 4=0 C .T 7>b 7D .T 5=T 6解析:选D 因为点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,所以S n =n 2-10n ,所以a n =2n -11,又b n +b n +1=a n (n ∈N *),数列{b n }为等差数列,设公差为d ,所以2b 1+d =-9,2b 1+3d =-7,解得b 1=-5,d =1,所以b n =n -6,所以b 6=0,所以T 5=T 6,故选D. 9.已知数列{a n }是等差数列,其前n 项和S n 有最大值,且a 2 019a 2 018<-1,则使得S n >0的n 的最大值为( ) A .2 018 B .2 019 C .4 035D .4 037解析:选C 设等差数列{a n }的公差为d ,由题意知d <0,a 2 018>0,a 2 018+a 2 019<0,所以S 4 035=4 035(a 1+a 4 035)2=4 035a 2 018>0,S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2<0,所以使得S n >0的n 的最大值为4 035,故选C.10.设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧ a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12.11.设等差数列{a n }的前n 项和为S n .若a 3=5,且S 1,S 5,S 7成等差数列,则数列{a n }的通项公式a n =________. 解析:设等差数列{a n }的公差为d ,∵a 3=5,且S 1,S 5,S 7成等差数列,∴⎩⎪⎨⎪⎧ a 1+2d =5,a 1+7a 1+21d =10a 1+20d , 解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. 答案:2n -112.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法一:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法二:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴a n =6n -3.答案:a n =6n -313.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________. 解析:依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.又数列{a n }是等差数列,所以在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.答案:614.设公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 11成等比数列,且a 11=2(S m -S n )(m >n >0,m ,n ∈N *),则m +n 的值是________.解析:设等差数列{a n }的公差为d (d ≠0),因为a 2,a 5,a 11成等比数列,所以a 25=a 2a 11,所以(a 1+4d )2=(a 1+d )(a 1+10d ),解得a 1=2d ,又a 11=2(S m -S n )(m >n >0,m ,n ∈N *),所以2ma 1+m (m -1)d -2na 1-n (n -1)d=a 1+10d ,化简得(m +n +3)(m -n )=12,因为m >n >0,m ,n ∈N *,所以⎩⎪⎨⎪⎧ m -n =1,m +n +3=12或⎩⎪⎨⎪⎧ m -n =2,m +n +3=6,解得⎩⎪⎨⎪⎧ m =5,n =4或⎩⎨⎧ m =52,n =12(舍去),所以m +n =9.答案:915.已知等差数列{a n }的前n 项和为S n ,且S 5=45,S 6=60.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解:(1)设等差数列{a n }的公差为d , 则a 6=S 6-S 5=15,所以⎩⎪⎨⎪⎧ a 6=a 1+5d =15,S 5=5a 1+10d =45, 解得a 1=5,d =2,所以a n =2n +3.(2)b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =a n -1+a n -2+…+a 1+3=n 2+2n , 所以1b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2,所以T n =12⎝⎛⎭⎫1+12-1n +1-1n +2=3n 2+5n4n 2+12n +8.16.已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根.(1)求数列{a n }的前n 项和S n ;(2)在(1)中,设b n =S nn +c ,求证:当c =-12时,数列{b n }是等差数列.解:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根, ∴a 1=1,a 2=5,∴等差数列{a n }的公差为4, ∴S n =n ·1+n (n -1)2·4=2n 2-n .(2)证明:当c =-12时,b n =S nn +c =2n 2-nn -12=2n ,∴b n +1-b n =2(n +1)-2n =2,b 1=2. ∴数列{b n }是以2为首项,2为公差的等差数列.。