三角函数辅助角公式练习题

合集下载

数学课程三角函数公式练习题及答案

数学课程三角函数公式练习题及答案

数学课程三角函数公式练习题及答案在学习数学的过程中,三角函数是一个非常重要的概念。

它们是研究三角形及各种周期现象的数学工具。

熟练掌握三角函数公式可以帮助我们解决很多实际问题。

本文将为大家提供一些三角函数公式的练习题及答案,以帮助大家巩固对这一知识点的掌握。

练习题一:正弦函数的基本关系式1. 已知角A的正弦值sin(A)=0.6,求角A的度数。

2. 已知角B的度数为45°,求sin(B)的值。

3. 已知角C的正弦值为√3/2,求角C的度数。

答案一:1. 根据正弦函数的定义,sin(A)=对边/斜边,可得对边=0.6×斜边。

由此可知,三角形中的角A的度数为arcsin(0.6)。

2. 对于一个45°的角度,根据特殊角的性质得知,sin(B)=cos(B)=1/√2。

3. 根据正弦函数的定义,sin(C)=√3/2,可得角C的度数为arcsin(√3/2)。

练习题二:余弦函数的基本关系式1. 已知角D的余弦值cos(D)=0.8,求角D的度数。

2. 已知角E的度数为60°,求cos(E)的值。

3. 已知角F的余弦值为1/2,求角F的度数。

答案二:1. 根据余弦函数的定义,cos(D)=邻边/斜边,可得邻边=0.8×斜边。

由此可知,三角形中的角D的度数为arccos(0.8)。

2. 对于一个60°的角度,根据特殊角的性质得知,cos(E)=1/2。

3. 根据余弦函数的定义,cos(F)=1/2,可得角F的度数为arccos(1/2)。

练习题三:正切函数的基本关系式1. 已知角G的正切值tan(G)=1.5,求角G的度数。

2. 已知角H的度数为30°,求tan(H)的值。

3. 已知角I的正切值为√3,求角I的度数。

答案三:1. 根据正切函数的定义,tan(G)=对边/邻边,可得对边=1.5×邻边。

由此可知,三角形中的角G的度数为arctan(1.5)。

辅助角公式练习题

辅助角公式练习题
12、【答案】解: 解:
, 的最小正周期为
辅助角公式练习题
,

,则

,
, ,
.
【解析】本题主要考查了两角与与差的三角函数公式及二倍角公式的使用,同时考查三 角函数的周期性,属于基础题.
利用两角与差的三角函数公式及二倍角公式进行化简,再根据最简形式即可得到最 小正周期.

,再根据两角与差的余弦公式进行求解即可.
辅助角公式练习题
20200628 手动选题组卷 3
副标题
题号 得分



总分
一、选择题(本大题共 8 小题,共 40、0 分)
1. 函数
的最大值就是
A、 13
B、 17
C、
D、 12
2. 已知函数
的最小正周期与函数
的最小正周期相同,且
,
,则 等于
A、
B、
C、
D、
3. 设函数
,则
A、 在 单调递增,其图象关于直线 对称
B、 在 单调递增,其图象关于直线 对称
C、 在 单调递减,其图象关于直线 对称
D、 在 单调递减,其图象关于直线 对称
4. 设当 时,函数
取得最大值,则
A、
B、
C、
D、
5. 将偶函数 得到
A、
6. 已知
A、
7. 函数
A、
的图象,则 的一个单调递减区间为
B、
C、
,则 a 的取值范围就是
B、
C、
的最小正周期就是

,结合
,解得
,
所以
.
故选 B.
3、【答案】C
【解析】【分析】 本题考查三角函数的化简,三角函数的图象与性质,属于基础题.

辅助角公式练习题

辅助角公式练习题

辅助角公式练习题辅助角公式练习题在数学中,辅助角公式是解决三角函数的重要工具之一。

它们帮助我们在计算复杂的三角函数问题时,能够简化运算并得到准确的结果。

本文将通过一些练习题来巩固和应用辅助角公式的知识。

题目一:计算sin(75°)解析:我们知道sin(75°)可以表示为sin(45°+30°)。

利用辅助角公式sin(A+B)=sinAcosB+cosAsinB,我们可以将sin(75°)转化为sin(45°)cos(30°)+cos(45°)sin(30°)。

根据三角函数的定义,sin(45°)=cos(45°)=√2/2,sin(30°)=1/2,cos(30°)=√3/2。

代入公式,我们得到sin(75°)=(√2/2)(√3/2)+(√2/2)(1/2)=(√6+√2)/4。

题目二:计算tan(105°)解析:我们可以将t an(105°)表示为tan(45°+60°)。

利用辅助角公式tan(A+B)=(tanA+tanB)/(1-tanAtanB),我们可以将tan(105°)转化为(tan(45°)+tan(60°))/(1-tan(45°)tan(60°))。

根据三角函数的定义,tan(45°)=1,tan(60°)=√3。

代入公式,我们得到tan(105°)=(1+√3)/(1-√3)。

题目三:计算cos(105°)解析:我们可以将cos(105°)表示为cos(45°+60°)。

利用辅助角公式cos(A+B)=cosAcosB-sinAsinB,我们可以将cos(105°)转化为cos(45°)cos(60°)-sin(45°)sin(60°)。

三角函数复习之辅助角公式经典讲义

三角函数复习之辅助角公式经典讲义
3、已知 , ,那么 的值是_____
4、已知 ,且 , 求 的值
5、求值
6、已知 ,求 的值
7、已知A、B为锐角,且满足 ,则 =_____
8、设 中, , ,则此三角形是____三角形
9、若 ,化简 为_____
10、化简:
11、已知 ,求
12、若 ,则 __
13、若 ,求 的值。
14、若 ,且 、 是方程 的两根,则求 的值____
(A)奇函数(B)偶函数(C)在[(2k―1)π,2kπ]k∈Z为增函数(D)减函数
4.函数y=3sin(2x― )的图象,可看作是把函数y=3sin2x的图象作以下哪个平移得到()(A)向左平移 (B)向右平移 (C)向左平移 (D)向右平移
5.在△ABC中,cosAcosB>sinAsinB,则△ABC为()
(A)a<b<c(B)b<a<c(C)c<b<a(D)a<c<b
12.若sinx< ,则x的取值范围为()
(A)(2kπ,2kπ+ )∪(2kπ+ ,2kπ+π)(B)(2kπ+ ,2kπ+ )
(C)(2kπ+ ,2kπ+ )(D) (2kπ- ,2kπ+ )以上k∈Z
二、填空题:
13.一个扇形的面积是1cm2,它的周长为4cm,则其中心角弧度数为______。
三角函数复习之辅助角公式经典讲义
———————————————————————————————— 作者:
———————————————————————————————— 日期:
三角函数复习之辅助角公式
一、两角和与差及二倍角强化训练
1、下列各式中,值为 的是
A、 B、 C、 D、

辅助角公式例题及解析十道

辅助角公式例题及解析十道

辅助角公式例题及解析十道辅助角公式是解决三角函数问题的一种重要工具,它可以将复杂的三角函数表达式化简为更易于处理的形式。

以下是十道辅助角公式的例题及解析:1. 例题:求函数y = 2sin(x + π/3) + cos(x - π/6) 的值域。

解析:利用辅助角公式将原函数化简为y = √3sinx + cosx + 1,再进一步化简为y = 2sin(x + π/6) + 1。

由于正弦函数的值域为 [-1, 1],因此原函数的值域为 [-1, 3]。

2. 例题:求函数 y = sin(2x - π/3) + cos(2x - π/6) 的单调递增区间。

解析:利用辅助角公式将原函数化简为y = √3sin(2x - π/6),再利用正弦函数的性质,求得单调递增区间为[kπ - π/6, kπ + π/3],其中 k 是整数。

3. 例题:求函数 y = sin(x) + cos(x) 的最大值和最小值。

解析:利用辅助角公式将原函数化简为y = √2sin(x + π/4),正弦函数的最大值为 1,最小值为 -1,因此原函数的最大值为√2,最小值为 -√2。

4. 例题:已知sinθ + sin(θ + π/3) = 1,求cos(θ + π/6) 的值。

解析:利用辅助角公式和已知条件,将原问题转化为求sin(2θ + π/6) 的值,再利用三角恒等式化简求解。

5. 例题:已知sinαcosβ = 1/2,求cosαsinβ 的取值范围。

解析:利用辅助角公式将原问题转化为求sin(α + β) 的取值范围,再利用三角恒等式和已知条件求解。

6. 例题:求函数 y = sin(x) + cos(x) 在区间[0, π] 上的最大值和最小值。

解析:利用辅助角公式将原函数化简为y = √2sin(x + π/4),再利用正弦函数的性质求解。

7. 例题:已知sinαcosβ = 1/3,求(sinαcosβ)^2 + (cosαsinβ)^2 的值。

三角函数复习之辅助角公式经典讲义

三角函数复习之辅助角公式经典讲义

三角函数复习之辅助角公式一、两角和与差及二倍角强化训练1、下列各式中,值为12的是 A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .-D 、1302cos +2、已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为____ 3、已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ 4、已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=求cos()αβ+的值5、求值sin 50(13tan10)+6、已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值7、已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B +=_____8、设ABC ∆中,33tan A tan B tan Atan B ++=,34sin Acos A =,则此三角形是____三角形9、若32(,)αππ∈,化简111122222cos α++为_____10、化简:42212cos 2cos 22tan()sin ()44x x x x ππ-+-+11、已知tan 2α=,求22sin sin cos 3cos αααα+-12、若 sin cos x x t ±=,则sin cos x x = __ 13、若1(0,),sin cos 2απαα∈+=,求tan α的值。

14、若,(0,)αβπ∈,且tan α、tan β是方程2560x x -+=的两根,则求αβ+的值____ 二、辅助角公式1、回顾 两角和与差的正弦公式:()sin αβ+=___________()sin αβ-=___________口答:利用公式展开sin 4πα⎛⎫+ ⎪⎝⎭=_____________________反之,若要将22sin cos 22αα+化简为只含正弦的三角比的形式,则可以是22sin cos 22αα+=____________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式(1)31sin cos 22αα+ (2)sin 3cos αα- 2、辅助角公式及推导:3、例题:例1、试将以下各式化为)sin(βα+A ()0A >的形式. (1)31sin cos 22αα-(2)ααcos sin +(3)2sin 6cos αα+ (4)ααcos 4sin 3-例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)3sin cos αα-- 例3、若sin(50)cos(20)3x x +++= ,且0360x ≤< ,求角x 的值。

三角函数辅助角公式练习题讲解学习

三角函数辅助角公式练习题讲解学习
(3)、()渐渐()。
又细又长又白又胖又唱又跳又紫又亮原(草原)(平原)(高原)(原来)(原因)
双人旁:得、往、很④高兴——高高兴兴大小——大大小小多少——多多少少
雪白的肚皮白白的手帕白白的墙
一条尾巴一只猴子一群猴子一枝铅笔一袋洗衣粉
例:我已经长大了。小树已经发芽了。
乡(家乡)(老乡)(乡亲)(乡情)(乡下)很红很红的苹果很多很多的小鸟很美很美的花儿6.已知函数
4.已知函数f(x)= (sinx-cosx)
(1)求它的定义域和值域;(2)求它的单调减区间;
(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期.
5.已知函数y= cos2x+ sinx·cosx+1(x∈R),
(1)当函数y取得最大值时,求自变量x的集合;
(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样式成立的是()
A、 B、
C、 D、
2.sin15°cos30°sin75°的值等于()
A. B. C. D.
3.函数y=sin( -2x)的单调增区间是()
A.[kπ- ,kπ+ ](k∈Z)B.[kπ+ ,kπ+ ](k∈Z)
C.[kπ- ,kπ+ ](k∈Z)D.[kπ+ ,kπ+ ](k∈Z)
③又香又甜又大又圆又高又大又细又长
竖心旁:快、忙、情、怕
(以后)——(以前)(冷淡)——(热情)黑暗——(光明、明亮)尖尖的铅笔闪闪的星星蓝蓝的天空
走字旁:赶、起
人字头:全、会、合雪(雪白)(雪花)(白雪)(下雪)(雪人)
干(干净)吃(吃草)办(办法)跳(跳高)队(大队)像(好像)我(我的)座(座位)例:西瓜长得那么大,那么圆。苹果那么香那么甜。zh?ng(长高) lè(快乐)zhī(一只)kòng(有空)将f(x)写成 的形式,并求其图象对称中心的横坐标;

辅助角公式

辅助角公式

辅助角公式一. 合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中t a n ϕB =A. 二. 练习 1.x x y cos sin += 2. x x y cos sin 3+=3. x x y 3cos 3sin 3+=4. x x y 2cos 2sin +=5. x x y cos 23sin 21+=6. )cos (sin 2x x y -=7. x x y sin 6cos 2-= 8. x x y cos 53sin 153+= 9. )4cos(46)4sin(42x x y -+-=ππ 10. x x y 2cos 2sin 23+=11. ()x x x y cos sin cos 2+= 12. 43cos 33sin cos 2+-⎪⎭⎫ ⎝⎛+=x x x y π 13. x x y sin 23cos 23-=14.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围. 分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭. 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 15. (1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值. (2)求函数sin cos sin cos y x x x x =⋅++的最大值.分析:可化为二次函数求最值问题.解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈-,则2sin [,1]3x ∈-. 22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当2sin 3x =-时,2sin cos y x -有最小值49.(2)设sin cos x x t +=(t ≤,则21sin cos 2t x x -⋅=,则21122y t t =+-,当t =时,y 有最大值为12+【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简一、解答题1.已知函数()22sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭, x R ∈(1)求()f x 的对称中心;(2)讨论()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性.2.已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期;(2)求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值及取得最值时x 的值.3.已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间及最大值与最小值.4.设函数()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的值域. 6.已知函数()21cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 8.设函数()()sin ?cos 2tan x x x f x x π⎛⎫+- ⎪⎝⎭=. (1)求()f x 的最小正周期;(2)讨论()f x 在区间0,2π⎛⎫ ⎪⎝⎭上的单调性.9.已知函数()223sin cos 2cos 1f x x x x =-+,(I )求()f x 的最大值和对称中心坐标;(Ⅱ)讨论()f x 在[]0,π上的单调性。

辅助角公式经典例题

辅助角公式经典例题

辅助角公式经典例题The concept of the complementary angle formulas is a classic topic in trigonometry that is often encountered in mathematics classes. These formulas are essential tools that help us manipulate trigonometric functions to solve various problems involving angles. One of the well-known complementary angle formulas is the sine of a complementary angle. These formulas are based on the fact that the sine, cosine, and tangent of complementary angles are related in a specific way. By understanding and applying these formulas, students can simplify trigonometric expressions and equations, making it easier to solve complex problems.辅助角公式是三角学中经典的话题,经常在数学课堂中遇到。

这些公式是帮助我们操纵三角函数以解决涉及角度的各种问题的重要工具。

其中一个著名的辅助角公式是补角的正弦。

这些公式是基于事实,即互余角的正弦、余弦和切线有特定的关系。

通过理解和应用这些公式,学生可以简化三角函数表达式和方程,从而更容易解决复杂的问题。

One classic example of using the complementary angle formulas is finding the value of a trigonometric function for a given angle byusing the complementary angle of that angle. For instance, if we know the sine of 30 degrees, we can use the fact that the sine of a complementary angle is the cosine of the original angle to find the cosine of 60 degrees. This technique allows us to calculate trigonometric values for angles beyond the basic reference angles, increasing our problem-solving capabilities in trigonometry.使用辅助角公式的一个经典例子是通过使用给定角的补角来找到该角的三角函数值。

《辅助角公式》专题二

《辅助角公式》专题二

《辅助角公式》专题2014年( )月( )日 班级 姓名宝剑锋从磨砺出,梅花香自苦寒来。

【辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)】问题 请写出把a sin x +b cos x 化成A sin(ωx +φ)形式的过程.a sin x +b cos x=a 2+b2x x ⎛⎫⎪⎭=a 2+b 2(sin x +cos x ) (想想正弦、余弦的定义) =a 2+b 2sin(x +φ)(其中sin φ=b a 2+b 2,cos φ=aa 2+b2). 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=a a 2+b 2,sin φ=ba 2+b 2, 其中φ(a ,b )决定.辅助角公式在研究三角函数的性质中有着重要的应用. 1.化下列代数式为一个角的三角函数1sin 2αα;3cos 2x x -cos αα+;x x +sin cos αα-cos 22x x +sin()cos()6363ππαα-+-.5sin 12cos αα+)cos()4444ππαα-+-2.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为( )A .1B .2 C1 D2 3. (2009安徽卷理)已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈4.如果函数y=sin2x+acos2x 的图象关于直线x=-π8对称,那么a= ( )(A )2(B )-2 (C )1 (D )-15. 函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________.62)cos()12123x x ππ+++=,且 02x π-<<,求sin cos x x -的值。

三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简三角函数辅助角公式化简一、解答题1.已知函数()22sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的单调性、 2.已知函数()4sin cos 33f x x x π⎛⎫=++ ⎪⎝⎭、 (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值及取得最值时x 的值、 3.已知函数()4tan sin cos 323f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间及最大值与最小值. 4.设函数()233cos sin cos 2f x x x x =+-、 (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间、 5.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (Ⅰ)求函数()f x 的最小正周期与图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的值域、 6.已知函数()213sin cos cos 2f x x x x =--、 (Ⅰ)求函数()f x 的对称中心;(Ⅱ)求()f x 在[]0,π上的单调区间、 7.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值、 8.设函数()()sin 3cos ?cos 2tan x x x f x xπ⎛⎫+- ⎪⎝⎭=、(1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π⎛⎫⎪⎝⎭上的单调性、 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I)求()f x 的最大值与对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。

辅助角公式练习(含解析)

辅助角公式练习(含解析)
【点睛】
本题考查了辅助角公式,考查了正弦型函数最小正周期公式,考查了数学运算能力.
10.
【解析】
【分析】
由题意可知 是函数的最小值,化简函数 ( , ),利用 求 .
【详解】
( , ),
由题意可知, 是函数的最小值,

当 时,函数取值最小值,

.
故答案为:
【点睛】
本题考查三角函数的恒等变形以及三角函数性质的综合应用,属于中档题型,本题的关键是通过化简得到 ,并且已知 , .
(2)根据(1)中求出的正弦型函数,求出在区间 的值域.
【详解】
(1)
单调递增 ,
解得: ,
所以 单调递增区间为
(2)由(1)知
因为 ,所以
所以
【点睛】
本题考查通过公式的运用对三角函数进行化简,以及正弦型函数的单调区间和值域,属于简单题.
13.(1)0;(2)最小正周期为 ;(3)最大值为2, 取得最大值的x的集合为 .
故选A.
【点睛】
本题主要考查了三角函数的“辅助角公式”,属于基础题.
3.C
【解析】
【分析】
运用辅助角公式和两角差的余弦公式进行求解即可.
【详解】
原式 .故选C.
【点睛】
本题考查了辅助角公式和两角差的余弦公式,考查了特殊角的三角函数值.
4.A
【解析】
【分析】
利用二倍角的正弦公式、余弦公式、辅助角公式,把函数 的解析式化为正弦型函数解析形式,最后利用正弦型函数的单调性求出 在区间 上的最大值,选出正确答案.
【详解】
,向左平移 ,得 ,又 为偶函数,令 ,得 ,由于 , ,∴ 最小值为 ,
故选:A.
【点睛】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档