数学分析研究生考试大纲 - 浙江师范大学
浙师大23考研考纲
浙师大23考研考纲浙江师范大学2023年考研考纲浙江师范大学(以下简称浙师大)是一所位于中国浙江省的综合性师范大学,是中国特色社会主义事业建设的重要支撑力量之一。
每年,浙师大都会发布考研考纲,以确定考试科目、内容和要求,帮助考生有针对性地备考。
以下将对浙师大2023年考研考纲进行详细介绍。
一、考试科目1. 专业课程考试:根据考生报考的专业类别,设置相应的专业课程考试科目。
这些科目旨在考察考生在相关领域的专业知识和能力。
2. 公共基础课程考试:包括英语、政治、数学、专业英语等,旨在考察考生的基础知识和综合素质。
二、考试内容1. 专业课程考试内容:按照浙师大相关学院的教学大纲和课程设置,确定考试内容。
考试内容主要涵盖专业领域的基础理论、专业知识和研究方法。
2. 公共基础课程考试内容:(1)英语:包括听力、阅读、写作和翻译等。
考试内容主要涉及英语语法、词汇、阅读理解和写作能力。
(2)政治:包括中国近现代史、马克思主义基本原理、中国特色社会主义理论体系等。
考试内容主要涉及政治理论、历史事件和现实问题。
(3)数学:包括数学分析、高等代数、概率论与数理统计等。
考试内容主要涉及数学基本概念、运算方法和应用能力。
(4)专业英语:根据考生报考的专业类别,设置相应的专业英语考试内容。
考试内容主要涉及专业术语、文献阅读和写作能力。
三、考试要求1. 考试形式:浙师大考研采取笔试形式,即考生需要在规定的时间内完成试卷上的题目。
2. 考试时间和地点:具体考试时间和地点将根据浙师大的安排通知考生。
考生需提前了解相关信息并提前做好准备。
3. 考试分数和评定:考试分数将根据考生答题情况进行评定,并按照一定的比例计入综合成绩。
考试成绩将作为研究生招生录取的重要参考依据。
四、备考建议1. 熟悉考纲:考生应仔细阅读浙师大2023年考研考纲,了解考试科目、内容和要求,明确备考方向。
2. 制定复习计划:根据考试科目和内容,制定合理的复习计划,并合理安排复习时间,确保全面复习。
浙江师范大学904数学分析与高等代数历年真题汇编
浙江师范大学2010年硕士研究生入学考试初试试题(A卷)科目代码:904科目名称:数学分析与高等代数适用专业:045104学科教学(数学)提示:1、请将所有答案写于答题纸上,写在试题上的不给分;2、请填写准考证号后6位:____________。
1.已知)0('f存在,且)3sin(3)(lim3⎰+=→xdxxxdxdxxfx,求)0('f2.⎰+-+=xdtttttxy1001000]100)12(cos[sin)(,求)()1001(xy3.已知星形线tay tax33sin,cos==围成的图形为A,求A的面积S4.证明:方程0199101=-+xx只有一个正根。
5.已知)(xyy=是由参数表示式x=⎰⎰=tutduteyudu,arcsin所确定的函数,求dxdyt0lim→6.设⎪⎩⎪⎨⎧=≠=1sin)(2xxxxxf证明)(xf在0=x处连续且可微,但)('xf在0=x处不连续。
7.求极限xxx xexsin1)23(lim+-+→8.求幂级数∑∞=--111)1(nnn xn的收敛半径、收敛域及和函数.9.计算I=yxzxxzzyzyyx⎰⎰∑-+-+-dd)33(dd)3(dd)2(,其中:0,0,0x y z∑===及1=++zyx所围立体表面的外侧.10.设,)(22bazyeu ax++=而baxbzxay,,cos,sin==为常数,求.ddxu科目代码:904科目名称:数学分析与高等代数适用专业:045104学科教学(数学)提示:1.请将所有答案写于答题纸上,写在试题上的不给分;2、请填写准考证号后6位:____________。
科目代码:904科目名称:数学分析与高等代数适用专业:045104学科教学(数学)提示:1.请将所有答案写于答题纸上,写在试题上的不给分;2、请填写准考证号后6位:____________。
浙江师范大学2013年硕士研究生入学考试初试试题(A卷)科目代码:904科目名称:数学分析与高等代数适用专业:045104学科教学(数学)提示:1.请将所有答案写于答题纸上,写在试题上的不给分;2、请填写准考证号后6位:____________。
《数学分析》考试大纲 - 河北教师教育网
第3章 函数极限
(1)熟练掌握使用"ε-δ"语言,叙述各类型函数极限。
(2)掌握函数极限的性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个重要极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
例题:P62: 例1,2.
《数学综合》考试大纲
一、《数学分析》考试大纲
教材:《数学分析》(华东师范大学数学系编)(第三版)
一、 课程的性质、目的与要求:
《《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。 是从事数学理论及其应用工作的必备知识。要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、课程内容与考核要求:
第1章 实数集与函数
(1)了解实数域及性质
(2)掌握几种主要不等式及应用。
(3)熟练掌握上确界,下确界定义和确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
例题:P6:例2;P7:例3;P17: 例2;
(2)掌握函数列、函数项级数一致收敛的判别法。
(3)了解函数列的极限函数,函数项级数的和函数性质。
例题:P30: 例3.
习题:P35:1(1)(2)(4),2,4,8(2);P41: 7.
第14章 幂级数
(1)熟练幂级数收敛域,收敛半径,及和函数的求法。
初试科目考试大纲-904数学分析与高等代数
浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 045104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。
(三)试卷内容结构各部分内容所占分值为:数学分析约80分高等代数约50分综合分析题约20分(四)试卷题型结构计算题:6大题,约80分。
证明分析题:3大题,约50分。
论述分析题:1大题,约20分。
二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程及用高等数学观点理解初等数学问题及教学的内容,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题,以及能利用数学分析、高等代数中的知识、数学思想理解、讨论初等数学问题及相关教学问题。
三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换第三部分:高观点下的初等数学考查内容利用数学分析、高等数学的知识及数学思想审视初等数学问题及相关教学问题。
601《数学分析》考研大纲
16、理解可微性、全微分和偏导数的概念,熟练掌握多元函数可微的条件、几何意义及其应用。熟练掌握多元复合函数的求导法则及全微分的求法。掌握高阶偏导数的概念及求法,了解多元函数中值定理和泰勒公式。理解多元函数极值的概念;掌握多元函数极值的求法。
2、理解数列极限的概念,熟练掌握收敛数列的性质,数列极限存在的条件。理解函数极限的概念,熟练掌握函数极限的性质,理解函数极限存在的条件。掌握函数极限与数列极限之间的关系,函数极限的柯西准则。掌握无穷大量与无穷小量的概念及相关性质。理解函数连续、一致连续的概念,熟练掌握连续函数的性质以及初等函数的连续性。
11、掌握一致收敛的概念与和性质,熟练掌握函数项级数一致收敛性的判别方法。
12、熟练掌握幂级数与Taylor数的概念、幂级数的收敛域与和函数的分析性质,熟练掌握常用基本初等函数的幂级数展开。
13、掌握函数展开为傅立叶级数的充分条件,能熟练将以2及2l为周期的函数展开为傅立叶级数。
14、掌握含参变量积分的概念、性质及判别法。
8、掌握定积分在几何和简单物理问题中应用的基本方法,能够应用定积分计算平面面积、体积、平面弧长、功、压力、引力等。
9、掌握反常积分的概念、无穷积分和瑕积分的性质及收敛性的判别方法。
10、熟练掌握数项级数收敛、绝对收敛与条件收敛的概念、性质,熟练掌握正项级数收敛的判别法,掌握一般项级数收敛的判别法,了解无穷乘积的概念及简单性质。
专业课《数学分析》考研大纲和参考书目
参考教材:《数学分析》(第三版),华东师范大学数学系编,高等教育出版社
参考用书:《数学分析》(第三版),陈传璋等编(复旦大学数学系),高等教育出版社
浙江师范大学数学分析与高等代数2006真题
入 学 考 试 试 题
考试科目: 数学分析与高等代数 报考学科、专业: 课程与教学论(数学教育学)
数 学 分 析 部 分
一、求下列极限(每小题 5 分,共 30 分) 1. n lim (1 1 ) n , 3. 5.
2n 1 1 lim , x 1 x 1 ln x n k lim k , n k 1 3 ln(1 x) , tan x n 1 4. n lim , k ( k 1) k 1 1 3 5 2 n 1 6. lim 。 x 2 4 6 2n
2.
a b b b a b b b a b b b
b b b a
。
七、当 a,b 取何值时,下列方程组有解,在有解的情况下,求解此 线性方程组,并写出方程组的一般解( 12 分)
2 x1 x2 3 x3 2 x4 6 , 3 x1 3 x2 3 x3 2 x4 5 , ax4 3 , x1 2 x2 5 x 4 x 6 x x b . 2 3 4 1
Q3 的一个线性变换 A,满足:
1 A(ε1,ε2,ε3)=(ε1,ε2,ε3) 2 3
1 1 3 7 , 2 4
(1) 求线性变换 A 在 Q 上的特征值与特征向量; ( 8 分) (2) 分别求线性变换 A 的值域 AV 与核 A-1(0)的一组基。 ( 8 分) 十、设 A 是一个实对称矩阵,在 Rn 上定义线性变换 A: Aα=Aα,
n 1
2.
n 1
n (n 1)!
四、设数列 an 满足 lim
a1 a2 an a a , a 为实数. 求证 lim n 0 。 n n n n
最新《数学分析》考试大纲45460
《数学分析》考试大纲45460《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
(4)掌握在一点连续性质及在区间上连续性质。
(5)了解初等函数的连续性。
第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
浙江师范大学数学分析考研真题试题2008—2012年
< 1;
2 {xn } 67!TvcA,
22
浙江师范大学 2010 年硕士研究生入学考试初试试题
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分; 2、请填写准考证号后 6 位:____________。
−1
3
−1≤ x≤1
w 12 "xyzW y = 1 − x2下 y = x2 − 1 `a=1d D,{T|}~ D K
? DD,
12 "N a ≥ 1下
下
下
下
下
下
下
下
x1
=
a,
x2
=
a
a +
, a
x3
=
a
a +a
a+a
,K ,{g
1 ∀n ≥ 2, 下
1 2
≤
xn
1 3 (2n 1)
6、求极限 lim
。
n 2 4 2n
7、求级数 (2n 1)x2n2 的收敛域。
n1
2n
8、计算曲线积分 (ex sin y 2 y)dx (ex cos y 2)dy ,其中 L 为上半圆周: L
(x a)2 y2 a2 , y 0 ,沿逆时针方向。
ln(1 t3)
1、求
lim
t0
t2 sin t
.
2、求
lim
x
x( x 1
x).
1
3、求 t ln tdt .
0
4、求 lim (x2 y2 )xy . (x, y)(0,0)
浙江师范大学2010年硕士研究生入学考试初试试题681数学分析2010初试科目试题
浙江师范大学2010年硕士研究生入学考试初试试
题
科目代码:681科目名称:数学分析
适用专业:基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
一、计算题:(共8小题,每小题8分,共64分)
1、求极限。
2、。
3、求极限。
4、设,求。
5、若,其中可微,求。
6、求极限。
7、求级数的收敛域。
8、计算曲线积分,其中为上半圆周:,,沿逆时针方向。
二、简答题:(共3小题,每小题5分,共15分)
1、用定义证明。
2、试举一个在某点累次极限存在但重极限不存在的二元函
数。
3、无界数列是无穷大量吗?试说明理由。
三、(11分)讨论函数的可导性,其中
四、(12分)设在上连续,在内二阶可导,连结端点,的弦与曲
线相交于点。
证明存在使。
五、(12分)设在上连续,证明在上一致连续的充要条件是和都
存在。
六、(12分)讨论级数的绝对收敛与条件收敛。
七、(12分)将积分化成(1)直角坐标,(2)柱面坐标,
(3)球面坐标下的三次积分,其中是由所围立体。
八、(12分)证明级数在任何有穷区间上一致收敛,但在任何一
点处不绝对收敛。
初试科目考试大纲-904数学分析与高等代数
初试科目考试大纲-904数学分析与高等代数浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 420104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。
(三)试卷内容结构各部分内容所占分值为:数学分析约100分高等代数约50分(四)试卷题型结构计算题:7大题,约100分。
分析论述题:3大题,约50分。
二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。
三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换参考教材或主要参考书:华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。
《数学分析》考试大纲
三、 一元积分学
1. 不定积分法与可积函数类 2. 定积分的概念、性质与计算
级数 数项级数的敛散判别与性质 函数项级数与一致收敛性 幂级数 Fourier 级数
五、 1、 2、 3、 4、 5、 6、 7、 8、
多元微分学 欧式空间 多元函数的极限 多元连续函数 偏导数与微分 隐函数定理 Taylor 公式 多元微分学的几何应用 多元函数的极限
求某些级数的和(如
1 )。
n1 n 2
五、多元微分学 1、理解欧式空间中的概念及欧式空间的内积与模、开集、开区域与闭区域的意义,了解 完备性定理及紧性定理。 2、理解多元函数的概念,掌握多元函数的重极限、累次极限和特殊路径极限的意义,并 能够根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的重极限和累 次极限。 3、理解多元连续函数的概念及其性质。并能够判断多元函数的连续性,了解多元函数的 一致连续性。 4、理解偏导数的概念,掌握其计算法则,能够熟练计算多元函数的偏导数和复合函数的 导函数,能计算给定函数在给定方向上的导函数。 5、理解多元函数的微分的概念,并能够判断函数的可微性。 6、理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。 7、理解 Taylor 公式的意义,并能够求出二元函数的具有指定阶数的 Taylor 公式。 8、能应用偏导数求空间的切线、法平面及空间曲面的法线和切平面的方程。 9、理解多元函数的极限和最值的意义,极值的充分必要条件,掌握求多元函数极值、条 件极值及在闭区域上的最值的方法,并用于解决实际问题。
完整word版,浙江师范大学硕士研究生入学考试数学分析初试试题
4、求 ,其中L为圆周: ;
5、设 在 上可微,且 ,求 ;
6、计算 ,其中 。
4、(15分)二元函数
(1)求 ;
(2)证明 在原点 不连续;
(3)判断函数 在原点 处的可微性。
5、(10分)设 可微,求 。
六、(10分)求幂级数 的和函数。
1、若 收敛,则 。
2、 在 处两个偏导数存在,则 在该点连续。
3、有限区间 上的Riemann可积函数一定Riemann绝对可积
二、简答题(每小题5分,共10分)
1、叙述含参量广义积分 在[a,b]上一致收敛的柯西准则。
2、叙述函数极限 存在的Heine归结原理。
三、计算题(每小题8分,共48分)
七、(12分) 确定了隐函数 ,求 。
八、(12分)证明:若 收敛,且 在 上一致连续,则
九、(15分)判定广义积分 的敛散性。
(收敛性需说明绝对收敛和条件收敛)
浙江师范大学2012年硕士研究生入学考试初试试题(A卷)
科目代码:
601
科目名称:
数学分析
适用专业:
070100数学、071101系统理论、071400统计学
提示:
1、请将所有答案写于答题纸上,写在试题纸上的不给分;
2、请填写准考证号后6位:____________。
1、是非判断题
(下列命题正确的证明之,错误的举出反例。每小题6分,共18分)
(整理)初试科目考试大纲-601数学分析.
浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 601数学分析适用专业: 070100数学(一级学科)、071101系统理论、071400统计学(一级学科)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
(三)试卷题型结构全卷一般由九个大题组成,具体分布为是非判断题:3小题,每小题6分,共18分简答题:2~3小题,每小题6分,共12~18分计算题:5~6小题,每题8分,约40~48分分析论述题(包括证明、讨论、综合计算):6大题,每题10~15分,约70~80分二、考查目标(复习要求)要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论分析、解决相关问题。
三、考查范围或考试内容概要本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学等等。
第一章实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。
2.掌握函数复合、基本初等函数、初等函数及常用特性。
(单调性、周期性、奇偶性、有界性等)3.掌握基本初等不等式及应用。
第二章数列极限1.熟练掌握数列极限的ε-N定义。
2.掌握收敛数列的常用性质。
3.熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy准则、压缩映射原理、Stolz变换等)。
4.能够熟练求解各类数列的极限。
第三章函数极限1.深刻领会函数极限的“ε-δ”定义及其它变式。
2.熟练掌握函数极限存在的条件及判别。
(归结原则,柯西准则,左、右极限、单调有界等)。
3.熟练应用两个重要极限求解较复杂的函数极限。
4.理解无穷小量、无穷大量的概念;会应用等价无穷小求极限;熟悉等价无穷小、同阶无穷小、高阶无穷小及其性质。
第四章函数连续性1.掌握函数在某点及在区间上连续的几种等价定义,尤其是ε-δ定义。
(整理)数学分析08—12
1、请将所有答案写于答题纸上,写在试题上的不给分;
2、请填写准考证号后6位:____________。
一、计算题:(共5小题,每小题8分,共40分)
1、求极限 。
2、求极限 。
3、设 ,求 和 。
4、求积分 。
5、计算曲线积分 ,其中 为: ,起点为A(0,0),终点为B(,0)。
二、简答题:(共2小题,每小题10分,共20分)
5、
6、1.建设项目环境影响评价机构的资质管理(10分)设 可微,求 。
8.编制安全预评价报告六、(10分)求幂级数 的和函数。
七、(12分) 确定了隐函数 ,求 。
八、(12分)证明:若 收敛,且 在 上一致连续,则
九、(15分)判定广义积分 的敛散性。
(收敛性需说明绝对收敛和条件收敛)
1、叙述下面定义:
(1) ;
(2)当 时,f(x)不以A为极限。
2、讨论二元函数在一点可微与偏导数存在的关系,并说明理由。
三、(12分)设 。证明 的极限存在,
并求此极限。
四、(12分)设 ,其中A,a,b为常数。试问A,a,b为
何值时,f(x)在x=0处可导,为什么?并求 。
五、(15分)叙述 在 上不一致连续的定义。并证明:
提示:
1、请将所有答案写于答题纸上,写在试题上的不给分;
2、请填写准考证号后6位:____________。
一、计算题:(共8小题,每小题8分,共64分)
1、求极限 。2、 。3源自求极限 。4、设 ,求 。
5、若 ,其中 可微,求 。
6、求极限 。
7、求级数 的收敛域。
8、计算曲线积分 ,其中 为上半圆周: , ,沿逆时针方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试科目:数学分析
适用专业:基础数学、计算数学、应用数学、运筹学与控制论、系统理论
一、复习要求:
要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论求解和证明相关命题。 二、主要复习内容
本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学:
(3)熟练掌握函数列、函数项级数一致收敛的判别法,知道函数列的极限函数和函数项级数的和函数的性质。
(4)熟练掌握幂级数收敛域、收敛半径以及和函数的求法,知道幂级数的若干性质。
(5)熟练掌握函数的幂级数展开的方法,会用间接法求函数的幂级数展开式。
(6)熟记付里叶系数公式,会求付里叶展式。掌握余弦级数,正弦级数的求法。
(22)了解场论初步知识,知道梯度,散度和旋度的慨念。
三、重点内容:
1、求极限的方法与类型。
2、掌握实数完备性定理,如数列的单调有界定理、柯西收敛准则、确界原理、有限覆盖定理、魏尔斯特拉斯聚点原则。
3、海涅归结原则、函数的一致连续性。
4、微分中值定理,微积分基本定理、导数及其应用。
5、积分法则、广义积分敛散性判别法、定积分的可积性及可积类的讨论、含参量广义积分的一致收敛判别法。
6、级数、函数列的各种收敛性判别法、幂级数的收敛域、和函数、幂级数展式。
7、多元函数极限和连续性、偏导数、全微分、一个方程确定的隐函数的导数、偏导数。
8、多元函数的极值。
9、二重积分换序、重积分及其几何意义。
(1)熟练掌握导数的定义、几何意义,知道导数的物理意义。
(2)熟练掌握求导法则和求导公式。
(3)掌握微分的概念,并会用微分进行近似计算。
(4)熟练掌握理解连续、可导、可微之间的关系。
(5)熟练掌握微分中值定理及其应用。
(6)熟练运用洛必达法则求极限。
(7)熟练掌握单调区间、极值、最值的求法。并能证明相关命题。
(13)掌握原函数与不定积分的概念。
(14)记住基本积分公式,熟练掌握换元法、分部积分法。
(15)知道有理函数的积分步骤,会求可化为有理函数的积分。
(16)掌握定积分定义和性质,知道可积条件和可积类。
(17)深刻理解微积分基本定理,并会熟练应用。
(18)熟练计算定积分,掌握广义积分收敛定义及判别法,会计算广义积分。
10、格林公式、高斯公式、斯托克斯公式、积分与路径无关性。
四、参考书目:
1、《数学分析》(上、下册),华东师大编,(任意版本),高等教育出版社。
我们都不是好孩子!
(16)掌握含参量)掌握用积分号下求导数、积分号下求积分方法计算一些定积分(广义积分)。
(18)了解欧拉积分,递推公式及性质。
(19)熟练掌握第一、二型曲线、曲面积分的计算。
(20)知道曲线积分,两种曲面积分的关系。
(21)熟练掌握格林公式、高斯公式、斯托克斯公式,掌握积分与路径无关的条件。
(10)会求空间曲线的切线与法平面,会求空间曲面的切平面与法线。
(11)知道二重积分、三重积分定义与性质。
(12)熟练掌握二重积分的换序和变量代换。
(13)了解三重积分的换序,熟练运用球、柱、广义球坐标变换计算三重积分。
(14)掌握含参量正常积分的定义及性质。
(15)知道重积分应用,会求曲面面积,转动惯量,重心坐标等。
(7)熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、柯西准则等)。
(8)熟练掌握"ε-δ"等语言,且能用它叙述各类型的函数极限。
(9)掌握函数极限的常用性质。
(10)熟练掌握函数极限存在的条件,(归结原则,柯西准则,左、右极限、单调有界等)。
(11)熟练应用两个重要极限。
(5)熟练掌握二元函数连续、偏导数连续、可微、可导之间的关系。
(6)会计算偏导数和全微分,会求空间曲面的切平面、法线。
(7)会求函数的方向导数与梯度,会求二元函数的泰勒展式、无条件极值、条件极值。
(8)熟练掌握一个方程确定的隐函数的条件,隐函数性质,隐函数的导数和微分公式。
(9)掌握由m个方程n个变元组成方程组,确定n-m个隐函数组的条件,并会求这n-m个隐函数对各个变元的偏导数。
(3)理解收敛性定理,掌握贝塞尔不等式、勒贝格引理等几个重要定理。
4、多元微积分学
(1)了解平面点集的若干概念,掌握二元函数、二重极限的定义、性质。
(2)熟练掌握二次极限、二重极限与二次极限的关系。
(3)熟练掌握二元连续函数的定义、性质
(4)掌握全微分和偏导数的几何意义
1、实数理论和连续函数
(1)了解实数域及性质.
(2)掌握几种不等式及应用。
(3)熟练掌握邻域,上确界,下确界的概念和确界原理。
(4)熟练掌握函数复合、基本初等函数、初等函数及常用特性(单调性、周期性、奇偶性、有界性等)。
(5)熟练掌握数列极限的"ε-N"定义。
(6)掌握收敛数列的常用性质。
(12)掌握无穷小量、无穷大量的定义和性质,熟悉等价无穷小、同阶无穷小、高阶无穷小及其性质。
(13)熟练掌握函数在某点连续的定义和等价定义。
(14)掌握间断点及类型。
(15)熟练掌握区间上连续函数和一致连续函数的性质。
(16)知道初等函数的连续性。
2、一元微积分学
(8)熟练掌握曲线的凹凸性及拐点的求法,并掌握凸函数及性质。
(9)会求曲线各种类型的渐近性。
(10)掌握区间套、覆盖、有限覆盖、聚点、予列的含义。
(11)掌握实数完备性的七个定理的等阶性,并且知道每个定理的条件与结论。
(12)会用七个定理证明其它问题,如连续函数性质定理等。
(19)熟练掌握平面图形面积的计算,会求旋转体或已知截面面积的体积。
(20)会利用定积分求孤长、旋转体的侧面积。
(21)会用微元法求解某些物理问题(压力、变力功、静力矩、重心等)。
3、级数
(1)熟练掌握级数收敛和发散的定义、性质和判别法。
(2)熟练掌握条件收敛、绝对收敛及莱布尼兹定理。