2021年人教版九年级数学上册《圆》精品课件.ppt

合集下载

新人教版数学九年级上24.1.1圆的认识(共19张ppt)

新人教版数学九年级上24.1.1圆的认识(共19张ppt)
圆是生活中常见的图形,许多物体都给我们以圆的形象.
观察思考
观察画圆的过程,你能由此说出圆的形 成过程吗?
二、圆的概念
第一定义: 圆的形成
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
r线段OAຫໍສະໝຸດ 做半径O·以点O为圆心的圆,记作 “⊙O”,读作“圆O”.
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦;
(7)圆心相同,半径相等的两个圆是同心圆; (8)半径相等的两个圆是等圆.
练习三:
在⊙0中,AB,CD为直径,判断AD与BC的 位置关系
C
A
B
O
D
练习四:
已知:如图,CD是⊙O的直径,∠EOD=780 , AE交⊙O于点B,且AB=OC,求∠A的度数。
C
和直径,则a,d的大小关系是( )
如果a,d分别是两个等圆的弦 和直径,则a,d的大小关系是(
A
)D
O
B
(4) 直径 是圆中最长的弦,它 是 半径 的2倍。
(5)如图,图中有 一 条直径, 条非直径二的弦,圆中以A为一个端点
的优弧有 条,以A为一四个端点劣
弧有 条。

D
OE
A
B
C F
练习二:判断下列说法的正误:
圆的第二定义: 圆的组成
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.

人教版九年级数学上册圆课件(第1课时共24张)

人教版九年级数学上册圆课件(第1课时共24张)

D O
F
B
I
E
A
⌒ ⌒ ACD ACF
A⌒C A⌒E
C
⌒ ⌒ ADE ADC
A⌒F A⌒D
3、如图,OA、OB、OC是⊙O的三条 半径,∠AOC=∠BOC ,M、N分别是 OA、OB的中点。 求证:MC=NC。
MON
A
B
C
A
4.如图,①半径有:
OA、OB、OC
O●
B ②若∠AOB=60°,则
△AOB是 等边三角形.
C
③弦有: AB、BC、AC
④弧有 条,分别是:
_
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.
O●
若∠AOB=60°,则
△AOB是等__边腰___三角
C
形.
FC
3.问:AB、CD、FC、
MB
OE、CM是弦吗?
AO
3.与圆有关的概念
弧 圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆.
等弧
E
F

1
A
B

2
D C
在同圆或等圆中,能够互相重合的弧叫做等弧。
4.应用拓展,培养能力
1.判断下列说法的正误:

人教版九年级数学上册 (圆)教学课件精品课件

人教版九年级数学上册 (圆)教学课件精品课件

人教版九年级数学上册
谢谢
课堂练习
6.某市承办一项大型比赛,在市内有三个体育馆承接所有比赛,现 要修建一个运动员公寓,使得运动员公寓到三个体育馆的距离相 等,若三个体育馆的位置如图27-11所示,那么运动员公寓应建 立在何处?
任意作连结A、B、C三点中的两点所成 的线段的中垂线的交点.
课堂练习
同心圆
定义

有关 概念
同圆
等圆
一个圆的最大弦长是10cm,则此圆的半径是
5
cm.
巩固练习
在同一平面内与已知点A的距离等于5cm的所有点所组成的图形 圆

.
巩固练习
如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线相交于点
C , 且 有 D C = O E , 若 ∠ C = 2 0 ° , 则 ∠ E O B 的6度0°数 是
r

探究新知
O
同心圆 圆心相同,半径不同 确定一个圆的两个要素: 一是圆心, 二是半径.
等圆 半径相同,圆心不同
探究新知
A ·r O
问题1:圆上各点到定点(圆心 O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
探究新知
形成性定义(动态):在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆。
问题1:圆上各点到定点(圆心 O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
新知探究 圆的定义
观察画圆过程
回答: (1)圆上各点到定点 (圆心) 的距离都等于 定长(半径r) 。
(2)到定点的距离等于定长的点都 在 同一个圆上 。

新人教版九年级上《圆》课件

新人教版九年级上《圆》课件
推导过程中涉及了圆的半径、圆心坐标、点到圆心的距离等概念,以及代数运算 和方程的求解方法。
圆的方程的应用
圆的方程在解决实际问题中具有广泛的应用,如计算圆的面 积、周长、圆弧长度等几何量。
圆的方程还可以用于解决与圆相关的几何问题,如求两圆的 位置关系、圆与直线的交点等。
圆的方程与其他几何图形的关系
圆在物理学中的应用
总结词
基础且重要,不可或缺
详细描述
在物理学中,圆是一个非常重要的概念。例如,在力学中,圆周运动是一个基本运动形式;在电磁学 中,圆代表电流的方向和大小。这些物理现象都离不开圆的几何特性。
圆在数学建模中的应用
总结词
抽象但实用,解决问题的重要工具
详细描述
在数学建模中,圆是一个重要的几何图形。它可以用来描述各种实际问题,如最短路径 问题、面积和周长问题等。通过建立数学模型,我们可以更好地理解和解决这些问题。
02
圆的对称性
圆的基本性质
圆是中心对称图形
圆关于其圆心对称,任意一点关 于圆心对称的点都在圆上。
圆是轴对称图形
圆关于经过其圆心的任意直线对 称。
圆与对称图形的关系
01
圆是唯一的既是中心对称又是轴 对称的二维图形。
02
对称性在几何学中具有重要地位 ,圆作为最简单的封闭二维曲线 ,是理解对称性的基础。
计。
西方的圆文化
在西方文化中,圆常被用来代表 变化、运动和无限。例如,毕达 哥拉斯学派认为“万物皆数”,
并将数与圆联系起来。
生活中的圆
在日常生活中,许多物品和建筑 都采用了圆形设计,如轮胎、井 盖、管道等,这主要是因为圆形
具有旋转对称性,方便实用。
谢谢您的聆听
THANKS

人教版数学九年级上册24.圆 课件

人教版数学九年级上册24.圆 课件

C
D
A
O
B
C
D
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.
圆的两种定义
动态:如图,在一个平面内,线段OA绕它固定 的一个端点O旋转一周,另一个端点A所形成的
24.1.1 圆的认识
一 感知圆的世 圆是生活中常见的图形,许界多物体都给我们以圆的形象.
二 圆的形成
观 察
如图,观察画圆的过程,你能由此说出圆的形成过程吗?
三、圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
r

线段OA叫做半径
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。

圆课件(共18张PPT)人教版数学九年级上册

圆课件(共18张PPT)人教版数学九年级上册
【实践性作业】找 一 根绳子,以其中 一 头为圆心,自选
长度为半径画圆,感受圆的定义 .

∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结



义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的

人教版九年级数学上册《24.1.1 圆》 课件(共19张PPT)

人教版九年级数学上册《24.1.1 圆》 课件(共19张PPT)

(
( (
练习巩固,综合应用
8.若⊙O的半径是12 cm,OP=8 cm,求点P到圆 上各点的距离中最短距离和最长距离.
解:点P到圆上各点的距离中最短距离为 12-8=4(cm); 点P到圆上各点的距离中最长距离为 12+8=20(cm).
课堂小结
圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另 一个端点A所形成的图形叫做圆.
练习巩固,综合应用
7.(1)若点O为⊙O的圆心,则线段___O_A__,O__B_,O__C_____ 是圆O 的半径;线段____A_B__,A__C_,B__C______是圆O 的弦,其 中最长的弦是__A_C___;_A_B__B_C_是劣弧;_A__B_C__是半圆.
(2)若∠A =40°,则∠ABO =__4_0_°__.
确定一个圆的要素是什么?
一是圆心 二是半径
圆心确定其位置 半径确定其大小
例题分析,深化提高
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同 一个圆上.
证明:∵四边形ABCD为矩形,
∴OA=OC=OB=OD.
∴OA=OC= 1 AC,OB=OD= 1 BD,AC=BD.
练习巩固,综合应用
1.下列说法:①半圆是最长的弧;②面积相等的
两个圆是等圆;③长度相等的弧是等弧;④经过圆内
的一个定点可以作无数条弦;⑤经过圆内一定点可以
作无数条直径.其中不正确的语句的个3个
D.4个
2.下列结论正确的是( A.直径是弦 C.半圆不是弧
A) B.弦是直径 D.弧是半圆
练习巩固,综合应用
3.以已知点O为圆心、已知线段a为半径作圆,可以

24.1.1 圆. 教学 课件(共21张PPT) 人教版九年级数学上册

24.1.1 圆. 教学 课件(共21张PPT)  人教版九年级数学上册

固定一点,拉直卷尺,旋转. 追问3:你能否用数学的几何元素来刻画这些关键的操作字眼吗?同时在 纸上画一画圆.
项目活动 探索定义 追问3:你能否用数学的几何元素来刻画这些关键的操作字眼吗?同时在纸上
画一画圆.
圆的旋转定义(描述性定义): 如图,在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,则另一个端点 A 所形成的封闭曲线叫做圆. 其固定的端点 O 叫做圆心; 线段 OA 叫做半径,一般用 r 表示;
察两个圆是否能够重合.
等圆:能够完全重合的两个圆. 等弧:在同圆或等圆中,能够互相重合的弧.
深入思考 探究概念
思考4:长度︵相等的弧︵是等弧吗?
如图,如果 AB 和 CD 的拉直长度都是 10 cm,移动 并调整小圆的位置,是否能使这两条弧完全重合?
不可能完全重合
B D 这两条弧弯曲程度不同
“等弧”≠“长度相等的弧”
弦:连接圆上任意两点的__线__段__.
B 例如:AB、AC.
A
O
C 直径:经过__圆__心___的__弦____. 例如:AB.
直径是_最__长__的弦.
深入思考 探究概念 思考2:用弦将圆分成两部分,请动手画画有几种情况. A
C
O
A
B
O
弦将圆分成两个_不__相__等_的圆弧. 直径将圆分成两个相__等__的圆弧.
道树木的年龄.把树干的横截面看成是圆形的,如果一棵20 年树龄的树的树干直径是23cm,这棵树的半径平均每年增 加多少?
解:这棵树的直径平均每年增加:23÷20=1.15cm; 则其半径平均每年增加:1.15÷2=0.575cm.
课堂小结 收获反思 定义
旋转定义 集合定义
弦(直径)

《圆》九年级初三数学上册PPT课件(第24.1.1课时)

《圆》九年级初三数学上册PPT课件(第24.1.1课时)
归纳:圆心为O、半径为r的圆可以看成是所有到定 点O的距离等于定长r的点组成的图形.
A
r

思考
为什么车轮都采用圆形,而不是三角形、正方形或其他?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在 平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐 车的人会感觉到非常平稳,假如车轮变了形,不成圆形了,到轴的距离不相等了,车就不 会再平稳。
➢ 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
B

B A

A
与圆有关的概念(优弧和劣弧)

小于半圆的弧(如图中的 AC)叫做劣弧; ⌒ 大于半圆的弧(用三个字母表示,如图中的 ABC )叫做优弧.
B

C A
【注意】 1)弧分为是优弧、劣弧、半圆。 2)已知弧的两个起点,不能判断它是优弧还是 劣弧,需分情况讨论。
方法二
方法三
A

利用图钉画圆
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端 点A所形成的图形叫做圆.
➢ 固定的端点O叫做圆心 ➢ 线段OA叫做半径
➢ 以点O为圆心的圆,记作“⊙O”,读作“圆 O”.
A
r

圆的特征
尝试画出一个圆,在画圆的过程中你发现了什么? 【发现一】圆上各点到定点(圆心O)的距离都等 于定长(半径r); 【发现二】到定点的距离等于定长的点都在同一个圆上.
直线与圆的位置关系的判定方法二:
直线l:Ax+By+C=0 圆C:(x-a)2+(y-b)2=r2(r>0) 利用圆心到直线的距离d与半径r的大小关系判断:

人教版九年级数学上册(课件)24.1 圆

人教版九年级数学上册(课件)24.1 圆

直径是圆中 最长的弦
C
弧 A
曲作线:BC、BBA⌒CC、都是B⌒A⊙CO的弧分别记
B⌒C、B⌒AC有什么区别?
A
B
一个比半圆大一个比半圆小!
大于半圆的弧叫做优弧,小于
O●
半圆的弧叫做劣弧
劣弧有: A⌒B B⌒C
C
半圆有 :
优弧有:

ACB
A⌒BC
B⌒AC
等弧:在同圆或等圆中,能够完全重合的弧。
注意:
长(半径r)的点都在同一个圆上。
圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.

连结圆上任意两点的线段叫做弦。
A
如图,弦有 AB、BC、AC
B O●
①线段OA所形成的图形叫做圆面,而圆是一个封
闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要
素,圆心确定位置,半径确定大小.
③以点O为圆心的圆,记作“⊙O”,读作“圆O”.
那么以点A这种说法正确吗? 直径是圆中最长的弦吗?
心,线段OA叫做半径.
圆的确定
O●
要确定一个圆,必须确定圆的_圆__心_和__半__径 圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
B
C
rr
· r O r
r
A E
1.圆上各点到定点(圆心O)的距 离都等于定长(半径r)
2.到定点(圆心O)的距离都等于定
D
②“半圆是弧,弧是半圆”这种说法正确吗? ③面积相等的两个圆是等圆吗?周长相等的 两个圆呢?

2021年人教版九年级数学上册《圆》公开课课件.ppt

2021年人教版九年级数学上册《圆》公开课课件.ppt
z x xk
静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
同心圆
圆心相同,半径不同
等圆
圆心不同,半径相同
结论:确定一个圆的要素: 一是圆心, 二是半径.
圆心确定其位置, 半径确定其大小.
同步练习
1、填空: (1)根据圆的定义,“圆”指的是“圆周 ”, 而不是“圆面”。 (2)圆心和半径是确定一个圆的两个必需条件, 圆心决定圆的 ,位半置径决定圆的 ,二者 缺一大不小可。
解: 23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增加0.575cm
3、想一想:判断下列说法的正误:
(1)弦是直径; (2)半圆是弧;
() ()
(3)过圆心的线段是直径; (
)
(4)过圆心的直线是直径; (
)
(5)半圆是最长的弧;
()
(6)直径是最长的弦;
(
)
(7)圆心相同,半径相等的两个圆是同心圆;( )
(8)半径相等的两个圆是等圆. (
)
(9)长度相等的弧是等弧
()
A
B
4.如图,半径 有:____O_A_、__O__B_、__O_C
O●
5.若∠AOB=60°,
则△AOB是_等__边__三角形.
C
AC 6.如图,弦有:__A_B_、__B_C_______
直径是过圆心的弦,凡是
提示直:径在都圆是中弦有,长但度弦不等一的定弦是,直
第24章 圆
z x xk
观察下列画圆的过程,你能由此 说出圆的形成过程吗?
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1 圆的有关性质
24.1.1 圆
圆是生活中常见的图形,许多物体都给我们以圆的形象 倍 速 课 时 学 练
如图,观察画圆的过程,你能由此说出圆的形成过程吗?
倍 速 课 时 学 练
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
。2021年1月9日星期六2021/1/92021/1/92021/1/9
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/92021/1/92021/1/91/9/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/92021/1/9January 9, 2021
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
r

线段OA叫做半径


课 时
以点O为圆心的圆,记作

“⊙O”,读作“圆O”.

我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上.
B

速 课


学ABiblioteka C练劣弧与优弧
小于半圆的弧(如图中的 A C )叫做劣弧;
大于半圆的弧(用三点表示,如图中的 A B C)叫做优弧.
B
倍 速

课 时
A
C


1.如何在操场上画一个半径是5m的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为圆心端, 另一端系上一根尖木棒,木棒以5米长尖端划动一周,所 形成的图形就是所要画的圆.
• 10、人的志向通常和他们的能力成正比例。2021/1/92021/1/92021/1/91/9/2021 2:48:38 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/92021/1/92021/1/9Jan-219-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/92021/1/92021/1/9Saturday, January 09, 2021 • 13、志不立,天下无可成之事。2021/1/92021/1/92021/1/92021/1/91/9/2021

因此,圆心为O、半径为r的圆可以看成是所有到定点
速 课
O的距离等于定长r 的点组成的图形.






把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半
时 径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变.因此,当车辆
学 在平坦的路上行驶时,坐车的人会感觉到非常平稳,这就是车轮都做成圆形的 练
数学道理.
与圆有关的概念

连接圆上任意两点的线段(如图AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
倍 速

课 时
A
C



圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记 作 AB ,读作“圆弧AB”或“弧AB”.
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.



根据圆的形成定义



2 你见过树木的年轮吗?从树木的年轮,可以很清楚地看 出树木生长的年龄,如果一棵20年树龄的红杉树的树干直 径是23 cm,这棵红杉树的半径每年增加多少?
解: 23÷2÷20=0.575(cm)


课 时 学
答: 这棵红杉树的半径每年增 加0.575 cm.

• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/92021/1/9Saturday, January 09, 2021

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/92021/1/92021/1/92021/1/9
谢谢观看
倍 速 课 时 学 练
相关文档
最新文档