5.2 李雅普诺夫稳定性的基本定理

合集下载

第八章 李雅普诺夫稳定性理论

第八章 李雅普诺夫稳定性理论

x
sin2
et
t
et
cos2t
x

sin2 t et
et
cos2t
x
0

x0
(2) 在x1,x2平面的一、三象限内 V(x1,x2)etx1x20
而在同一区域内 V e tx 1 x 2 e tx 1 x 2 e tx 1 x 2x12 x22 0
所以系统不稳定
❖推论. 1:当 V(x,t) 正定,V ( x, t ) 半正定, 且 V[x(t; x0,t),t]在非零状态不恒为零时,则

xx21
kx2 x1
k 0
V (x ,t)x 1 2 k2 2x(k 0 )
V ( x , t ) 2 x 1 x 1 2 k 2 x 2 x 2 k 1 x 2 x 2 k 1 x 2 x 0
故系统是李雅普诺夫意义下的稳定
定理四 设系统的状态方程为 xf(x,t) f(0 ,t)0 (tt0) 如果存在一个标量函数V(x,t),V(x,t)对向量x中 各分量具有连续的一阶偏导数,且满足条件:
定理一 设系统的状态方程为xf(x,t)
f(0 ,t)0 (tt0) 如果存在一个标量函数V(x,t),V(x,t)对向量x中 各分量具有连续的一阶偏导数,且满足条件: 1)V(x,t)为正定; 2) V ( x, t ) 为负定 则在状态空间原点处的平衡状态是渐近稳定的。
如果随 x 有 V(x,t),则在原点处的平 衡状态是大范围渐近稳定的。
定义三 对所有的状态(状态空间的所有点),如果 由这些状态出发的轨迹都具有渐近稳定性,则称 平衡状态xe为大范围渐近稳定。
定义四 :如果从球域 S( )出发的轨迹,无论球

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

李雅普诺夫稳定性的基本定理描述64页PPT

李雅普诺夫稳定性的基本定理描述64页PPT

1
0















谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
李雅普诺夫稳定性的基本定理描述
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。














9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

李雅普诺夫稳定性理论 (2)

李雅普诺夫稳定性理论 (2)


上式为向量函数的雅可比矩阵。
f f1

f2 fn
T
x x1 x2 xn
T
x x f ( xe )
f A T x
x xe
x x xe
则线性化系统方程为:
x Ax
结论: 1) 若 Re(i ) 0 i 1,2,, n ,则非线 性系统在 xe 处是渐进稳定的,与 g ( x) 无关。 2) 若 Re(i ) 0 Re( j ) 0 i j 1,, n 则不稳定。 3) 若 Re(i ) 0,稳定性与 g ( x)有关,
f x f ( xe ) T x
其中:
( x xe ) g ( x)
x xe
g ( x) --级数展开式中二阶以上各项之和)
f1 x f 1 T x f n x1 f1 x2 f n x2 f1 xn f n xn
g ( x) 0 则是李雅普诺夫意义下的稳定性。
5.4 李雅普诺夫第二法(直接法)
稳定性定理:
f ( x, t ) 设系统状态方程:x 其平衡状态满足 f (0, t ) 0 ,假定 状态空间原点作为平衡状态( xe 0),并设 在原点领域存在 V ( x, t )对 x 的连续的一阶 偏导数。
A非奇异: A奇异:
Axe 0 xe 0 Axe 0 有无穷多个 xe
b.非线性系统
f ( xe , t ) 0 可能有多个 xe x
eg. x 1 x1
2 x1 x2 x x

3 2
1 0 x
xe 1 0

5.2 李雅普诺夫稳定性的基本定理

5.2 李雅普诺夫稳定性的基本定理

二次型函数和对称矩阵的正定性(4/4)--矩阵定号性定义 矩阵定号性定义
因此,由上述定义就可将判别二次型函数的正定性转换成为 判别对称矩阵的正定性。 对称矩阵P为正定、负定、非负定与非正定时,并可分别 记为 P>0, P<0, P≥0, P≤0。
矩阵正定性的判别方法(1/5)
(3) 矩阵正定性的判别方法 判别矩阵的正定性(定号性)的方法主要有 塞尔维斯特判别法、 矩阵特征值判别法和 合同变换法。 下面分别介绍。
上面定义了时不变函数V(x)的定号性,相应地可以定义标量时 变函数V(x,t)的定号性。
实函数的正定性(6/4)
定义5-7 设x∈Rn,是Rn中包含原点的一个封闭有限区域,实函 定义 数V(x,t)是定义在[t0,∞)×上的一个标量函数且V(0,t)=0,标量 连续函数α(||x||)和β(||x||)为非减(函数值单调增加)的且满足 α(0)=β(0)=0, 1) 如果对任意t≥t0和x≠0, V(x,t)为有界正定的,即 0<α(||x||)≤V(x,t)≤β(||x||) 0<α(||x||)≤V(x,t)≤β(||x||), 称函数V(x,t)为[t0,∞)×上的(时变)正定函数。 2) 如果对任意t≥t0和x≠0,分别为 有界负定,即0>-α(||x||)≥V(x,t)≥-β(||x||); 有界非负定,即0≤V(x,t)≤β(||x||); 有界非正定,即0≥V(x,t)≥-β(||x||),
李雅普诺夫第二法(3/3)
在给出李雅普诺夫稳定性定理之前,下面先介绍一些 数学预备知识,然后介绍一些 数学预备知识 李雅普诺夫稳定性定理的直观意义,最后介绍 李雅普诺夫稳定性定理的直观意义 李雅普诺夫稳定性定理
数学预备知识(1/1)

李雅普诺夫稳定性

李雅普诺夫稳定性

x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非

李雅普诺夫稳定性分析

李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。

因为它关系到系统是否能正常工作。

经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。

分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。

1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。

§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。

一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。

(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。

(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。

2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。

【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。

4非线性系统的李雅普诺夫稳定性分析汇总

4非线性系统的李雅普诺夫稳定性分析汇总

v(x)=i/r (x)/(x)r严J] ar r ■ 1 as严), ar r • ■ r /(x)+/r (x) = /(xM r (x)/(.r) + /r (x)J(x)/(x) =-111 FV(x) = /r (x)/(x)^系统的一个李雅评诺夫曲数,即/f (X)/(X)正定。

■因此,若j(x)负定•则V(x.O = /r (x)j(x)/(x 必为负定。

x 所以,由泄理54知•该非线性系统的卩衡态叫=0是渐近稳 定的。

□ □ □ 丸人索人斯仏法(“7〉 □在应用克拉索夫斯基定理时,还应注意下血儿点。

-克拉索夫斯堆丘理只是渐近稳左的一个充分条件,不是必 耍条件。

丁如对于渐近稳定的线性定常连续系统j(x) = J(x) +J r (x) =不是负定矩阵,故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。

/可见•该定理仅是一个充分条件判别定理。

x(/) = /(x) V(x}^ x T x^ 丸拉次先斯览7) -若V(x)=f(x}f(x)止定,为Ly叩unov函数•则说明只右'"|*0 时才有Wr)=O,即原点是唯一的平衡态。

“因此,只有原点是系统的唯一平衡态,才能用克拉索夫斯皋定理判别渐近稳运性,并且山该泄理判别出的渐近稳定的平衡态一定是大范国渐近稳定的。

-山克拉索夫斯基定理对知,系统的平衡态%=0是渐近稳定的条件IiJ(x)+Z(x)为负定矩阵函数。

"由负定矩阵的性质知,此时雅可比矩阵丿(x)的对角线元索恒取负值•因此向虽函数f(x)的第/个分量必须包禽变駁心含则•就不能应用克拉索夫斯基定理判别该系统的渐近稳定性。

”将克拉索夫斯卑定理推广到线性疋常连续系统可知:对称矩阵4+川负立,则系统的原点是大范用渐近稳定的。

丸拉索人斯肚注〔67>J例412试确定如下非线性系统的平衡态的忌定性:口解由于用)连续可导且/r(x)/(x) = (-3x| + x2)2 +(.V|-X2-X2)2 >0□町取作李雅普诺夫的数,因此•有兑拉廉夬浙临法(7/7)由塞尔维斯特准则有一6 2 5=-6<0> △?= 、二36x; + 8>02 2 61■,故矩阵函数j(x)负定,所以曲克拉索夫斯基定理可知,平衡态耳=0杲渐近稳定的。

5李雅普诺夫稳定性分析.ppt

5李雅普诺夫稳定性分析.ppt
➢ 由于导数表示的状态的运动变化 方向,因此平衡态即指能够保持 平衡、维持现状不运动的状态, 如上图所示.
平衡态(2/4) —定义1
平衡态
平衡态 平衡态
李雅普诺夫稳定性研究的平衡
x2
态附近(邻域)的运动变化问题.
➢ 若平衡态附近某充分小邻
xe
域内所有状态的运动最后
都趋于该平衡态,则称该
平衡态是渐近稳定的;
李雅普诺夫意义下的稳定性—范数(1/2)
1) 范数
范数在数学上定义为度量n维空间中的点之间的距离. ➢ 对n维空间中任意两点x1和x2,它们之间距离的范数记为 ||x1-x2||. ➢ 由于所需要度量的空间和度量的意义的不同,相应有各种 具体范数的定义. ➢ 在工程中常用的是2-范数,即欧几里德范数,其定义式为
对于定常系统来说,上述定义中的实数(,t0)与初始时刻t0必定 无关,故其稳定性与一致稳定性两者等价. ➢ 但对于时变系统来说,则这两者的意义很可能不同.
李雅普诺夫意义下的稳定性—稳定性定义(4/4)
概述(8/5)
李雅普诺夫稳定性理论不仅可用来分析线性定常系统,而且 也能用来研究 ➢ 时变系统、 ➢ 非线性系统,甚至 ➢ 离散时间系统、 ➢ 离散事件动态系统、 ➢ 逻辑动力学系统
等复杂系统的稳定性,这正是其优势所在.
概述(9/5)
可是在相当长的一段时间里,李雅普诺夫第二法并没有引起 研究动态系统稳定性的人们的重视,这是因为当时讨论系统 输入输出间关系的经典控制理论占有绝对地位.
t
式中,x(t)为系统被调量偏离其平衡位置的变化量; 为任意小的规定量。 ✓ 如果系统在受到外扰后偏差量越来越大,显然它不 可能是一个稳定系统。
概述(3/5)
分析一个控制系统的稳定性,一直是控制理论中所关注的最 重要问题.

线性系统理论精简版 ——5.系统的稳定性

线性系统理论精简版 ——5.系统的稳定性

内部稳定性和外部稳定性在满足一定条件下是等 价的(后面讨论)。
经典理论判稳方法及局限性 间接判定:方程求解-(对非线性和时变通常很难)
直接判定:单入单出中,基于特征方程的根是否都
分布在复平面虚轴的左半部分;以及采用劳斯判据、 奈魁斯特频率判据等。局限性是仅适用于线性定常, 不适用于非线性和时变系统。
0 1
xe , 3
0 1
5.2.2 李雅普诺夫稳定 定义:若状态方程
f ( x, t ) x 所描述的系统,对于任意的>0和任意初始
x2
时刻t0,都对应存在一个实数(,t0)>0,
使得对于任意位于平衡态xe的球域S(xe,) 的初始状态x0,当从此初始状态x0出发的 状态方程的解x都位于球域S(xe,)内,则 称系统的平衡态xe是李雅普诺夫意义下稳
现代控制理论判稳方法: 李雅普诺夫稳定性理论是稳定性判定的通用方法,适用于 各种系统。 李亚普诺夫第一法:先求解系统微分方程,根据解的性质
判定稳定性--间接法。
李亚普诺夫第二法:直接判定稳定性。思路:构造一个李
亚普诺夫函数V(x),根据V(x)的性质判稳。--对任何复
杂系统都适用。
5.2
V ( X ) 0 X 0 V ( X ) 0 X 0
例5-2
2 2 V ( X ) x1 2x2
当 x1 0, x2 0 时,V ( X ) 0; 当 x1 0, x2 0 时, V ( X ) 0。所以,V(X)是正定的。
(2) 正半定性(准正定) 如果对任意非零向量 X ( X 0) ,恒有 V ( X )≥0, 且当 X 0时V ( X ) 0 ,则称 V ( X ) 为正半定的。即

《现代控制理论》李雅普诺夫稳定性分析

《现代控制理论》李雅普诺夫稳定性分析
向量和矩阵的范数
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当

,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,

时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为

第四章 李雅普诺夫稳定性PPT课件

第四章 李雅普诺夫稳定性PPT课件
第五章 李雅普诺夫稳定性分析
5.1 几个稳定性概念 5.2李雅普诺夫稳定性定理 5.3线性系统中李雅普诺夫稳定性分析 5.4非线性系统中李雅普诺夫稳定性分析
1
稳定性定义
稳定性与能控性,能测性一样,均是系统的结构性 质。一个动态系统的稳定性,通常指系统的平衡状 态是否稳定。简单的说,稳定性是指系统在扰动消 失后,由初始偏差状态恢复到原平衡状态的性能, 其是系统的一个自身动态属性。
系统的平衡状态是一致渐近稳定的。
10
李雅普诺夫稳定性定理
定理5-1(李雅普诺夫稳定性的基本定理) 并称 V ( x , t ) 是系统的一个李雅普诺夫函数。 进一步,若 V ( x , t ) 还满足: (3) limV(x,t) ,则系统的平衡状态是大
x
范围一致渐近稳定的。
11
李雅普诺夫稳定性定理
2
平衡状态
对于系统自由运动,令输入 u 0 ,系统的齐次状态方程

为 xf(x,t) (5-1)式(5-1)的解为 x(t) (t;x0,t0) (5-2)
式(5-2)描述了系统(5-1)在n维状态空间的运动轨线。
在式(5-1)所描述的系统中,存在状态点 x e ,当系统运动
到该点时,系统状态各分量维持平衡,不在随时间变化,即
发的状态轨迹都收敛于x e 。
8
李雅普诺夫稳定性定理
李雅普稳定性理论提出了判断系统稳定性的两 种方法。
1.第一方法:利用状态方程解的性质来判断系 统的稳定性。
2.第二方法:无须求解状态方程而是借助于象 征广义能量的李雅普诺夫函数 V ( x , t ) 及其对 时间的偏导数V• ( x , t ) 的符号特征直接判定平 衡状态的稳定性。
存在(,t0) 0,使得当 x0xe (,t0)时,系统(5-1) 从任意初始状态 x(t0) x0出发的解满足

李雅普罗夫 稳定性

李雅普罗夫  稳定性

§6.2李雅普诺夫稳定性1、稳定性定义李雅普诺夫稳定性概念如果对于任意给定的0>ε和0t ≥0都存在0),(0>=t εδδ,使得只要0x 满足δ<-10x x就有εϕ<-),,(),,(1000x x x t t t t对一切0t t ≥成立,则称微分方程),(d d x x t f t= (6.6)的解),,(10x x t t ϕ=是稳定的.否则是不稳定的.假设),,(10x x t t ϕ=是稳定的,而且存在)0(11δδδ≤<,使得只要0x 满足1δ<-10x x就有0)),,(),,((lim 1000=-∞→x x x t t t t t ϕ则称(6.6)的解),,(10x x t t ϕ=是渐近稳定的.注意:微分方程(6.6)式中的函数),(x t f 对nR D ⊆∈x 和(,)t ∈-∞+∞连续,对x 满足局部李普希兹条件.一般情况下,我们把解),,(10x x t t ϕ=的稳定性化成零解的稳定性问题进行讨论. 这样就有下面的关于零解0=x 稳定性的定义:定义1 若对任意0ε>和00t ≥,存在0),(0>=t εδδ,使当δ<0x 时有ε<),,(00x x t t对所有的0t t ≥成立,则称(6.6)的零解是稳定的.反之是不稳定的.定义2 若(6.6)的零解是稳定的,且存在10δ>, 使当1δ<0x 时有0),,(lim 00=∞→x x t t t则称(5.1)的零解是渐近稳定的. 2、李雅普诺夫第二方法定义3(李雅普诺夫函数) 若函数R G →:)(x V满足V (0)=0, )(x V 和),,2,1(n i x i=∂∂V 都连续,且若存在0<H ≤K ,使在{}H x x ≤=|D 上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除0x =外总有)0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号的.定理1(零解稳定判别定理) 对系统nR x x F tx ∈=),(d d (6.7)若在区域D 上存在李雅普诺夫函数V (x )满足(1) 正定; (2)∑=∂∂=ni i iF xVt1)2.5()(d d x V 常负.则(6.7)的零解是稳定的.注意:(6.7)式中Tn x F x F x F ))(,),(()(1 =在{}K G ≤∈=x R x n|上连续,满足局部李普希兹条件,且(0)0F =.引理 若V (x )是正定(或负定)的李雅诺夫函数,且对连续有界函数()x t 有0))((lim =∞→t t x V则.0)(lim =∞→t x t定理2(零解渐近稳定判别定理) 对系统(5.2),若在区域D 上存在李雅普诺夫函数V (x )满足(1) 正定, (2)(6.7)1d ()d ni i iV tx =∂=∂∑V F x 负定,则(6.7)的零解渐近稳定.定理3(零解不稳定判别定理) 对系统(5.11)若存在李雅普诺夫函数V (x )满足(1)∑=∂∂=ni i ix F xVdtd 1)2.5()(V 正定,(2)V (x )不是常负函数, 则系统(6.7)的零解是不稳定的.。

李雅普诺夫稳定性的基本定理

李雅普诺夫稳定性的基本定理

试确定系统在原点处的稳定性。 试确定系统在原点处的稳定性。 解 1: 由状态方程知 原点为该系统的平衡态。 原点为该系统的平衡态。 : 由状态方程知,原点为该系统的平衡态 将系统在原点处线性化,则系统矩阵为 将系统在原点处线性化 则系统矩阵为 0 ∂f (x) A= = τ ∂x x =xe − K 2 1 − K1
因此,系统的特征方程为 因此 系统的特征方程为 |λI-A|=λ2+K1λ+K2=0
李雅普诺夫第一法(8/7)
2. 由李雅普诺夫第一法知 原非线性系统的原点为渐近稳定的充 由李雅普诺夫第一法知,原非线性系统的原点为渐近稳定的充 分条件为: 分条件为 K1>0 和 K2>0.
参看课本P168 参看课本
李雅普诺夫第二法(2/3)
李雅普诺夫第二法又称为直接法。 李雅普诺夫第二法又称为直接法。 它是在用能量观点分析稳定性的基础上建立起来的。 它是在用能量观点分析稳定性的基础上建立起来的。 若系统平衡态渐近稳定,则系统经激励后 其储存的能 若系统平衡态渐近稳定 则系统经激励后,其储存的能 则系统经激励后 量将随着时间推移而衰减。当趋于平衡态时,其能量 量将随着时间推移而衰减。当趋于平衡态时 其能量 达到最小值。 达到最小值。 反之,若平衡态不稳定 则系统将不断地从外界吸收能 反之 若平衡态不稳定,则系统将不断地从外界吸收能 若平衡态不稳定 其储存的能量将越来越大。 量,其储存的能量将越来越大。 其储存的能量将越来越大 基于这样的观点,只要能找出一个能合理描述动态系统的 基于这样的观点 只要能找出一个能合理描述动态系统的 n维状态的某种形式的能量正性函数 通过考察该函数随 维状态的某种形式的能量正性函数,通过考察该函数随 维状态的某种形式的能量正性函数 时间推移是否衰减,就可判断系统平衡态的稳定性。 时间推移是否衰减 就可判断系统平衡态的稳定性。 就可判断系统平衡态的稳定性

李雅普诺夫稳定性理论PPT课件

李雅普诺夫稳定性理论PPT课件

b.非线性系统
f ( xe , t ) 0 可能有多个 xe x
eg. x 1 x1
2 x1 x2 x x

3 2
1 0 x
xe 1 0

2 0 x
0 xe3 1

0 xe2 1
=f(x,t)的解为 x(t , x0 , t0 ) 2.初态 x
x(t0 , x0 , t0 ) x0 初态
3.平衡状态:

xe 系统的平衡状态 e f ( xe , t ) 0 x n Ax xR x a.线性系统
A非奇异: A奇异:
Axe 0 xe 0 Axe 0 有无穷多个 xe
4)判
正负半定 ( x, t ) 0 ? V x0 V
( x, t ) 0 反设 V 0 李氏意义下的稳定 若x 0,V 0, 渐近稳定 若 x 0 , V
1 x2 x1 ( x1 x2 ) 试用李氏第二法判稳 eg1.x 2 x1 x2 ( x1 x2 ) x
1 2 2
且 lim x(t , x0 , t0 ) xe
t 0
t t0
则称 xe 是李氏意义下的稳定。
与t0无关 一致稳定
2.渐近稳定 1)是李氏意义下的稳定
x(t , x0 , t0 ) xe 0 2) lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
0
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个 实数 ( , t0 ) 0 满足 x0 xe ( , t0 )

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫稳定性的定义
李雅普诺夫第一法(间接法)
李雅普诺夫第二法(直接法)
4.1 李雅普诺夫关于稳定性的定义 一、系统状态的运动及平衡状态 设系统的齐次状态方程为:
x f (x, t )
n维状态向量
展开式为:
(4.1)
n维向量函数
i f i ( x1 , x2 ,, xn , t ) i 1,2,, n x
系统每个平衡点不稳定。
第一法在非线性系统中的应用 对于非线性系统,可以在一定条件下用它的近似线性化模 型来研究它在平衡状态的稳定性。
非线性系统: x f (x,t )
将f(x)在x e 邻域展成泰勒级数 : f f(x,t )=f(x e ,t )+ x f x x
x xe
(x-x e ) R(x) (高阶项之和)
作线形变换x=Px,使得A=P-1AP为约当阵。 因 eAt P-1 eAt P , eAt 有界等价于 eAt 有界。
1t 1t e te 1t e 1 2 1t te 2 te1t e1t 0 0 0 0 e3t
x1 0 3 x x x 1 2 2 0
0 0 0 x e1 , x e 2 , x e3 0 1 1
二、稳定性的几个定义 欧式范数
2 2 x x12 x2 xn
表示向量 x 的长度
x xe ( x1 x1e ) 2 ( x2 x2e ) 2 ( xn xne ) 2
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李雅普诺夫第一法(7/7)—例5-1
� 例5-1 某装置的动力学特性用下列常微分方程组来描述:
⎡ ⎢ ⎣
x1′ x2′
⎤ ⎥ ⎦
=

⎢ ⎣
K
1
(
x12
x2 − 1) x2

K
2
x1
⎤ ⎥ ⎦
K1, K2 > 0
试确定系统在原点处的稳定性。
� 解 1: 由状态方程知,原点为该系统的平衡态。
� 将系统在原点处线性化,则系统矩阵为
∂f (x)
⎡0
A = ∂xτ x=xe = ⎢⎣− K 2
因此,系统的特征方程为
1⎤

K1Leabharlann ⎥ ⎦|λI-A|=λ2+K1λ+K2=0
李雅普诺夫第一法(8/7)
2. 由李雅普诺夫第一法知,原非线性系统的原点为渐近稳定的充 分条件为: K1>0 和 K2>0.
李雅普诺夫第二法(1/3)
5.2.2 李雅普诺夫第二法
A = ∂f ( x) ∂x τ
x = xe
⎡ ∂f1/∂x1
=
⎢ ⎢
...
⎢⎣ ∂f n / ∂x1
... ... ...
∂f1/∂xn ⎤
...
⎥ ⎥
∂fn/∂xn ⎥⎦ x=xe
李雅普诺夫第一法(4/7)
� 上述线性化方程的右边第一项A(x-xe)代表原非线性状态方程 的一次近似式,如果用该一次近似式来表达原非线性方程的近 似动态方程,即可得如下线性化的状态方程: x’=A(x-xe) � 由于对如上式所示的状态方程总可以通过n维状态空间中 的坐标平移,将平衡态xe移到原点。 � 因此,上式又可转换成如下原点平衡态的线性状态方程: x’=Ax
李雅普诺夫第一法(1/7)
5.2.1 李雅普诺夫第一法
� 李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是: � 首先,对于非线性系统,可先将非线性状态方程在平衡态附 近进行线性化, � 即在平衡态求其一次Taylor展开式, � 然后利用这一次展开式表示的线性化方程去分析系 统稳定性。 � 其次,解出线性化状态方程组或线性状态方程组的特征值, 然后根据全部特征值在复平面上的分布情况来判定系统 在零输入情况下的稳定性。
2. 若线性化系统的系统矩阵A的特征值中至少有一个具有正 实部,则原非线性系统的平衡态xe不稳定,而且该平衡态的 稳定性与高阶项R(x)无关。
3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。
李雅普诺夫第一法(6/7)
Ch.5 李雅普诺夫稳定性 分析
目录
� 概述 � 5.1 李雅普诺夫稳定性的定义 � 5.2 李雅普诺夫稳定性的基本定理 � 5.3 线性系统的稳定性分析 � 5.4 非线性系统的稳定性分析 � 5.5 Matlab问题 � 本章小结
目录(1/1)
李雅普诺夫稳定性的基本定理(1/2)
5.2 李雅普诺夫稳定性的基本定理
李雅普诺夫第一法(2/7)
� 下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态 稳定性中的应用。
� 设所讨论的非线性动态系统的状态方程为 x’=f(x)
其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
李雅普诺夫第一法(3/7)
� 欲讨论系统在平衡态xe的稳定性,先必须将非线性向量函数 f(x)在平衡态附近展开成Taylor级数,即有
� 判别非线性系统平衡态xe稳定性的李雅普诺夫第一法的思想 即为:
� 通过线性化,将讨论非线性系统平衡态稳定性问题转换到 讨论线性系统x’=Ax的稳定性问题。
李雅普诺夫第一法(5/7)
� 李雅普诺夫第一法的基本结论是:
1. 若线性化系统的状态方程的系统矩阵A的所有特征值都具 有负实部,则原非线性系统的平衡态xe渐近稳定,而且系统 的稳定性与高阶项R(x)无关。
� 本节主要研究李雅普诺夫意义下各种稳定性的判定定理和判 定方法。讨论的主要问题有:
基本概念: 矩阵和函数的定号性(正定性、负定性等)
基本方法: 非线性系统线性化方法 李雅普诺夫第一法
难点喔!
矩阵符号(正定性、负定性等)检验方法
李雅普诺夫第二法
李雅普诺夫稳定性的基本定理(2/2)
� 下面先讲述 � 李雅普诺夫第一法,然后讨论 � 李雅普诺夫第二法
x′ =
f ( xe ) +
∂f ( x) ∂x τ
x = xe
( x-xe ) + R( x-xe )
= A( x-xe ) + R( x-xe )x= xe
其中A为n×n维的向量函数f(x)与x间的雅可比矩阵; R(x-xe)为Taylor展开式中包含x-xe的二次及二次以上的余项。 雅可比矩阵A定义为
� 反之,若平衡态不稳定,则系统将不断地从外界吸收能 量,其储存的能量将越来越大。
� 基于这样的观点,只要能找出一个能合理描述动态系统的 n维状态的某种形式的能量正性函数,通过考察该函数随 时间推移是否衰减,就可判断系统平衡态的稳定性。
李雅普诺夫第二法(3/3)
� 在给出李雅普诺夫稳定性定理之前,下面先介绍一些 � 数学预备知识,然后介绍一些 � 李雅普诺夫稳定性定理的直观意义,最后介绍 � 李雅普诺夫稳定性定理
� 由李雅普诺夫第一法的结论可知,该方法能解决部分弱非线性 系统的稳定性判定问题,但对强非线性系统的稳定性判定则无 能为力,而且该方法不易推广到时变系统。 � 下面我们讨论对所有动态系统的状态方程的稳定性分析 都适用的李雅普诺夫第二法。
李雅普诺夫第二法(2/3)
� 李雅普诺夫第二法又称为直接法。 � 它是在用能量观点分析稳定性的基础上建立起来的。 � 若系统平衡态渐近稳定,则系统经激励后,其储存的能 量将随着时间推移而衰减。当趋于平衡态时,其能量 达到最小值。
� 由上述李雅普诺夫第一法的结论可知,该方法与经典控制理论 中稳定性判据的思路一致,需求解线性化状态方程或线性状态 方程的特征值,根据特征值在复平面的分布来分析稳定性。
� 值得指出的区别是: � 经典控制理论讨论的是输出稳定性问题,而李雅普诺 夫方法讨论状态稳定性问题。
� 由于李雅普诺夫第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,而不能推广至时变系统。
数学预备知识(1/1)
相关文档
最新文档