第4章 拉普拉斯变换
第4章_拉普拉斯变换
若 x(t ) 是右边信号, T t , 0 在ROC内,
则有 x(t )e 0t 绝对可积,即:
T
x(t )e 0t dt
若 1 0 ,则
T
T
x(t )e 1t dt
0t ( 1 0 ) t
x(t )e e
( 1 0 )T
9.1 拉普拉斯变换
The Laplace Transform 复指数信号 e st 是一切LTI系统的特征函数。 如果LTI系统的单位冲激响应为 h(t ),则系统对
e 产生的响应是:
y(t ) H (s)e ,其中 H (s) h(t )e st dt
st
st
显然当s
t 2t
j
1
X ( s) e e dt e e dt
t st 2t st 0 0
1 e u (t ) , Re[s] 1 s 1
t
j
2
1 e u (t ) , Re[s] 2 s2
2 t
1 1 2s 3 X ( s) 2 , s 1 s 2 s 3s 2
j 时,就是连续时间傅里叶变换。
一.双边拉氏变换的定义:
X ( s) x(t )e st dt
称为 x(t ) 的双边拉氏变换,其中 s j 。
s 若 0,
j 则有: X ( j ) x(t )e jt dt
这就是 x(t )的傅里叶变换。 表明:连续时间傅里叶变换是双边拉普拉斯变换 在 0 或是在 j 轴上的特例。
条件的信号在引入 e t 后满足该条件。即有些信 号的傅氏变换不收敛而它的拉氏变换存在。这表 明拉氏变换比傅里叶变换有更广泛的适用性。
信号与系统4.3拉氏变换的性质
T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E
…
0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
第四章拉普拉斯变换与S域分析
第二种情况:极点为共轭复数
共轭极点出现在
求f(t)
例题
另一种方法
求下示函数F(s) 的逆变换f(t): 解:F(s)具有共轭极点,不必用部分分式展开法
求得
部分分式展开法
(3)极点包含多重根的情况 (k重根p1 )
A( s ) F ( s) k ( s p1 ) D( s )
其中D(s)为分母除去多重根剩余 部分
证明:
推广:
电感元件的s域模型
设 应用原函数微分性质
三.原函数的积分
证明:
① ②
① ②
电容元件的s域模型
四.延时(时域平移)
证明:
例题 4-3-1
已知
证明:
例4-6
求 e α t cosω0 t的拉氏变换
s 已知 : Lcosω0 t u( t ) 2 s ω02
所以 e
其中k1 sF ( s ) s 0 10( s 2)( s 5) ( s 1)( s 3) 100 3
s 0
举例4.1:
解:k2 ( s 1) F ( s ) s 1 10( s 2)( s 5) ( s 3) 20
s 1
k3 ( s 3) F ( s ) s 3 10( s 2)( s 5) s( s 1) 10 3
部分分式展开法
A( s ) 设F ( s ) 1 D( s )
F1 ( s ) 则F ( s ) ( s p1 ) k
分解
K1i K11 k ( s p1 ) ( s p1 ) k i 1 K1k s p1
部分分式展开法
1 d i 1 其中K1i i 1 F1 ( s) s p 1 (i 1)! ds
第四章拉普拉斯变换
1 1 [tu (t )] [u (t )] 2 s s 2 2 [t u (t )] 3 s
n! [t u (t )] n 1 s
n
[ (t t0 )] (t t0 )e dt e
st 0
[ (t )] (t )e dt e
1 2 1 1 FB (s) s 2 s 1 (s 1)(s 2 )
1
2
f (t )
j
2 1 0
1
e 2t u (t )
e1t u (t )
1
2
0
f (t )
t
j
1 2 0
e 2t u (t )
e dt
e
( s ) t
s
0
1 , ( ) s
(二)阶跃信号 u (t )
[u (t )] e dt
st 0
e
st
(三)tnu(t) (n为正整数) u (t )]
n
0
t st t e dt e s
F ( )
f (t )e
jt
dt
1 f (t ) 2
t j t
F ( )e j t d
e t得 引入衰减因子
令s j
F ( s)
F1 ( ) [ f (t )e ]e
d t f (t )e
n 1 d f (t ) n n r 1 ( r ) [ n ] s F ( s) s f (0) dt r 0 n
第4章 拉氏变换--1
15
例4-1:求 f (t ) = sin (ωt ) 的拉氏变换 F(s) 解: 由欧拉公式,有:
1 f (t ) = sin (ωt ) = e jωt − e − jωt ) ( 2j
∵
L
e
± jω t
1 = s jω
(σ
> 0)
故由线性叠加性质,得:
L
1 1 1 ω sin ω t = = − ( ) 2 j s − jω s + jω s 2 + ω 2
17
补充例题:
求三角脉冲的拉氏变换。
E
0
f (t )
E f ' ' ( t ) = [δ ( t ) − δ ( t − T )] − Eδ ' ( t − T ) T
两边同时进行拉氏变换,得:
f ′(t )
E T
T
t
E F2 ( s ) = (1 − e − sT ) − Ese − sT T
由时域微分性质,有:
at
− σt
(σ > a )
e −σt u( t ). cos ω1 t
5
拉氏正变换*
F1 (ω ) = F f ( t )u( t ) ⋅ e
因果
[
−σ t
] = [ f (t )u(t ) e ]⋅ e
+∞ −σ t −∞
− jω t
dt
=
+∞
0
f ( t ) ⋅ e − (σ + jω ) t d t = F (σ + jω )
∞
若L[ f ( t )] = F ( s ),则
拉普拉斯变换.
二、拉普拉斯变换的优点
利用拉普拉斯变换可以将系统在时域内的 微分与积分的运算转换为乘法与除法的运算, 将微分积分方程转换为代数方程,从而使计算 量大大减少。利用拉氏变换还可以将时域中两 个信号的卷积运算转换为s域中的乘法运算。 在此基础上建立了线性时不变电路s域分析的 运算法,为线性系统的分析提供了便利。同时 还引出了系统函数的概念。
• 难点:拉普拉斯变换在求解微分方程的优点
一、拉普拉斯的产生和发展
傅里叶变换分析法在信号分析和处理等方面 (如分析谐波成分、系统的频率响应、波形失真、 抽样、滤波等)是十分有效的。但在应用这一方法 时,信号f(t)必须满足狄里赫勒条件。而实际中会 遇 到 许 多 信 号 , 例 如 阶 跃 信 号 (t) 、 斜 坡 信 号 t(t) 、单边正弦信号 sint(t) 等,它们并不满足 绝对可积条件,从而不能直接从定义而导出它们的 傅里叶变换。虽然通过求极限的方法可以求得它们 的傅里叶变换,但其变换式中常常含有冲激函数, 使分析计算较为麻烦。
十九世纪末,英国工程师亥维赛德(O.Heaviside, 1850~1925)发明了算子法,很好地解决了电力工 程计算中遇到的一些基本问题,但缺乏严密的数 学论证。后来,法国数学家拉普拉斯(P. S. Laplace,1749~1825)在著作中对这种方法给予严 密的数学定义。于是这种方法便被取名为拉普拉 斯变换,简称拉氏变换。----因为是“拉普拉斯” 这个人定义的。
三、本章内容简介
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频
域分析。
最后介绍系统函数以及H(s)零极点概念,并根据他
们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。
第4章-4.3拉普拉斯变换的性质
t s 0
举例
x1 (t ) * x2 (t )
卷积定理
X 1 ( s) X 2 ( s)
1 X 1 ( s) * X 2 ( s) 2j
x1 (t ) x2 (t )
第4章 4.3 拉普拉斯变换的性质
单边拉氏变换中要求a>0
dX (s) tx(t ) ds
dX ( s ) d ds ds
x(t )e
0
st
dt dt
0
d st x(t ) e dt ds
0
[tx (t )]e
st
L[tx (t )]
重复运用上述结果,还可得
(t ) x(t )
n
d X (s) ds
L[
d n x(t ) dt n
第4章 4.3 拉普拉斯变换的性质 例4-14 应用微分性质求 x(t ) (t ) 的变换。 解
d (t ) L[ (t )] L[ ] s L[ (t )] (0 ) s dt
应用微分性质求x(t ) cos(0t )的单边拉氏变换。
第一周期的拉氏变换 第n周期的拉氏变换
x1 (t nT ) e
snT
X 1 (s)
X1 ( s ) X (s) e sT 1
2 1 e e sT ) s (1 s
利用时移特性 利用无穷技术求和
第4章 4.3 拉普拉斯变换的性质 例 求周期信号的拉氏变换 x(t )
2 ( s a) 3
2
类似得
t e
2 at
t e
第4章 拉氏变换
f (t )
A T
0
T A ( t T )
17
t
拉普拉斯变换的性质
例 10
f (t ) t e
(t 2)
(t 1)
dF ( s ) 1 s 方法一:因为 (t 1) e 用频域微分性质 tf ( t ) ds s 1 s s t (t 1) 2 e 应用频移性质 f ( t )e at F( s a ) s 2 s s 1 e 2 e t t ( t 1 ) e 2 ( s 1) 1 方法二: f (t ) e t e (t 1) (t 1) e t (t ) s 1 1 s ( t 1 ) ( t 1) e 应用时移性质: e 应用频域微分性质: s 1 d 1 s 1 1 s s t e ( t 1 ) ( t 1 ) ( e ) e e 2 ds s 1 ( s 1) s 1
终值 定理
f1 (t ) * f 2 (t )
卷积 定理
F1 ( s).F2 ( s)
1 F1 ( s ) * F2 ( s) 2j
12
f1 (t ). f 2 (t )
拉普拉斯变换的性质
例 1 余弦函数 f (t)=cost· (t)
1 j t 应用线性性质: cos t (e e j t ) 2 1 1 1 s cos t ( t ) 2 2 s j s j s 2
应用频域微分性质
1 (t ) t(t),因为: s
2 t (t ) 3 s
2
dF ( s ) tf ( t ) ds
1 1 t ( t ) ( ) 2 s s
信号与系统第4章拉氏变换
为“象函数”。
拉普拉斯变换是t域函数f(t)与s域函数F(s)之间的变换。 f(t)与F(s)的拉普拉斯变换关系常用以下符号表示:
f (t) F(s)
机械工业出版社
7
三、定义说明
1、为什么正、反变换的原函数相差一个u(t)? 在单边拉普拉斯正变换中,原函数可以是非因
果信号,所以在拉氏正变换中用 f(t) 表示。由于正 变换是对原函数从 t = 0−开始的积分,丢掉了原函 数中t < 0的信息,反变换只能还原t > 0的函数值, 所以在拉氏反变换式中原函数用因果函数f(t)u(t)表 示。 推论:两个t ≥0的波形相同,t < 0波形不同的原函 数,它们单边拉普拉斯变换的象函数完全相同。
0
0
令s = j,代入上式得
F1( j)
∞ -∞
f1 (t )
e- jt dt
∞ f (t) e-stdt F (s)
0
含义:求e- tf(t)u(t)的谱函数等于求f(t)u(t)的复变函数。
F1(j)的傅里叶反变换为
f1 (t )
e- t
f
(t )u(t )
1 2π
∞
-∞ F1(
j )e j t d
等式两边同乘e t,把F1(j) =F(s),s = j,ds =jd
代入式中,得
et
f1(t)
f (t)u(t)
1 2π
∞ -∞
F1
(
j
)e(
j)t d
1 2πj
j∞ - j∞
F
(
s)est
面上的一个点。
机械工业出版社
第4章拉普拉斯变换
j
收
敛
轴
0 收 敛 域
0收
敛
坐
标
《 信号与系统》
10
第四章 连续系统的复频域分析
例:求下列各单边函数拉氏变换的收敛域(即求收敛坐标 0)
1 f t t ;
2 f t ut;
3 f t e2tu t ; 4 f t e2tu t ;
5 f t cos0tu t
《 信号与系统》
11
f t
1
2 j
j
j
F (s)est ds
LT
1
F
s
原函数
《 信号与系统》
3
第四章 连续系统的复频域分析
傅氏变换建立了信号在时域和频域间的关系,而拉氏变换 则建立了在时域和复频域间的关系。同时我们发现,在拉氏变
换中,当变量s中的实部σ=0时,拉氏变换就变成了傅氏变换,
也就是说,傅氏变换是拉氏变换的一个特例。
由于s=σ+jω,因此上式中括号内第二项可写为
lim e-(s- )t lim e e -( - )t -jt
t
t
只要选择σ>α,随着时间t的增大,e-(σ-α)t将会衰减。故有
lim e-(s- )t 0
t
从而使f(t)的象函数为
F(s) 1
s
若σ<α,e-(σ-α)t将随着时间t的增大而增大。当t→∞时, 结果 将趋于无穷大, 从而使积分不收敛, f(t)的象函数不存在。
LT tn
tn est dt0ຫໍສະໝຸດ n! s n 1n
1时,
f
t
t,
LT
t
1 s2
7.单边衰减正弦信号e-t sin 0t u t
第四章拉普拉斯变换
拉氏变换定义
如有界非周期信号 ; 有稳定幅度的周期信号 0;
随时间成正比增长的信号 0; 按指数eat 增长的信号 a。
0系统:若某些信号在0点有跳变且已知f (0 ) 则 F (s)
def
0
f (t )e st dt
2. 基本信号的单边拉氏变换 (1)阶跃函数
时间微分性质(续)
t 0 时, f t 0 ,且无原始储能, 若 f t 为有起因信号,即
即 f ( 0 ) f ( 0 ) 0 2 f ( t ) sF ( s ) f ( t ) s F ( s ), 则 ,
常用函数的拉氏变换表可查用。
3. 常用信号的拉氏变换(f(t), t>0)
1 阶跃函数 u (t ) , 0 1 s
L
L 2 冲激函数 (t )
1,
3 指数函数 e
at
1 , -a sa
L
常用信号的拉氏变换(f(t), t>0)
单边周期信号的拉氏变换(续)
(2)周期性脉冲的拉氏变换
f T ( t ) f 1 ( t ) f 1 ( t T ) f 1 ( t 2T )
FT ( s ) F1 ( s ) F1 ( s )e sT F1 ( s )e 2 sT F1 ( s )(1 e
S T 2
1 0
t
T 2
2 T
2 T sin t[u (t ) u (t )] T 2
信号加窗 第一周期
(1 e ) 2 2 S
LT
sT 2
第四章 拉普拉斯变换.
法,最后介绍拉普拉斯变换的应用.
4.1 拉普拉斯变换的概念
本节介绍拉普拉斯变换的定义、拉普拉斯变换的存在定理、 常用函数的拉普拉斯变换,以及拉普拉斯变换的性质.
4.1.1 拉普拉斯变换的定义
傅里叶变换要求进行变换的函数在无穷区间 有定义,在任一有限区间上满足狄利克雷条件,并要求
存在.这是一个比较苛刻的要求,一些常用的
定义4.1.1 设 实函数
在
上有定义,且积分
(
为复参变量) 对复平面
上某一范围
收敛,则由这个积分所确定的函数 (4.1.1)
称为函数
的拉普拉斯变换,简称拉氏变换(或称为
像函数),记为
(说明:有的书籍记:
=
为函数
的拉氏变换)
,即
综合傅氏变换和拉氏变换可见,傅氏变换的像函数是一个 实自变量为 的复值函数,而拉氏变换的像函数则是一个复 变数 的复值函数,由式(4.1.1)式可以看出,
函数,如阶跃函数
,以及
等均不满足这
些要求.另外,在物理、线性控制等实际应用中,许多以时间
为自变量的函数,往往当
时没有意义,或者不需要知道
的情况.因此傅里叶变换要求的函数条件比较强,这
就限制了傅里叶变换应用的范围.
(t )
为了解决上述问题而拓宽应用范围,人们发现对于任意一 个实函数 ,可以经过适当地改造以满足傅氏变换的基本
第四章 拉普拉斯变换
拉普拉斯变换理论(又称为运算微积分,或称为算子微积分) 是在19世纪末发展起来的.首先是英国工程师亥维赛德(O.Heaviside) 发明了用运算法解决当时电工计算中出现的一些问题,但是缺乏严 密的数学论证.后来由法国数学家拉普拉斯(place)给出了严密 的数学定义,称之为拉普拉斯变换方法.
信号分析第四章:拉普拉斯变换、连续时间系统的s域分析
A ( 1 esT ) AesT sF ( s ) Ts
F( s )
A/T s2
( 1 e sT
)
A e sT s
f (t)
A T
0
f (0 ) 0
Tt A ( t T )
20
拉普拉斯变换的性质
例 10 f (t) t e(t2) (t 1)
方法一:因为 (t 1) 1 es
中:a >0
解:
F ( s ) 0 e( sa ) tdt 0 e( a ) te j tdt 1
sa
为保证收敛,有 a+<0,故收敛域为 <-a
j
收 敛 a 0 域
9
拉普拉斯变换的收敛区
例3
求双边信号 f (t)= -e – t (-t)+ e -2t (t)的拉普拉斯变 换及其收敛域。
s s0
令 s0 = 实数, 则
et( t ) s
1
令 s0 = j 虚数, 则 e j t ( t ) s
1 j
12
常用函数的拉普拉斯变换 三个基本函数的拉普拉斯变换
• 单位阶跃函数 (t)
已知 es0 t ( t ) 1
s s0
令上例中s0=0。则
(
t
)
1 s
• 单位冲激函数 (t)
s 1
t
e(
t1 )
(
t
1)
d ds
(
s
1 es 1
)
(
s
1 1 )2
es
s
1 es 1
F(
s
)
(
2 s s 1 )2
e s1
信号与系统4.3拉氏变换的性质
信号f(t)·u(t)既延时,又展缩时
若
f (t)u(t) F(s)
且有实常数a>0,b≥0,则
证明:
f
(at
b)u(at
b)
1
bs
e a F(
s
)
a
a
先由延时定理得:
L f (t b)u(t b) F (s)ebs
再由尺度定理得:
L
f
(at
b)u(at
b)
1 a
F
s a
第4章 拉普拉斯变换、连续时间系统的S域分析
4.3 单边拉普拉斯变换的性质
第4章 拉普拉斯变换、连续时间系统的S域分析
1.线性特性
若 f1(t) F1(s); f2 (t) F2 (s) 则 af1(t) bf2 (t) aF1(s) bF2 (s)
式中,a和b为任意常数。
证明:
Laf1(t) bf2 (t)
T
T
E L[tu(t)] E L[(t T )u(t T )] E L(Tu(t T )]
T
T
T
E T
1 (s2
1 s2
e sT
T s
e sT
)
E [1 (1 sT )esT ]
T
s2
第4章 拉普拉斯变换、连续时间系统的S域分析
例4―3 试求图4.3(a)所示单个正弦半波信号f(t)的拉氏变换。
拉氏变换为零,导致此展缩特性(尺度变换)失效。
证明:
L f (at) f (at)estdt 0
令τ=at,则上式变为
L f (at)
f
( s )
( )e a d
1
( s )
信号与系统第四章知识点
第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。
二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。
下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。
(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。
2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。
数字信号处理 第4章 信号与系统的复频域分析
极点的分布反映了系统的各种特征。
系统函数往往用零点和极点在S平面上的分 布图来表示,以”○”表示零点,以”×” 表示极点,以“⊙”表示重零点,以”*” 表示重极点。
jω
×
1
○
*
-2
-1
○
01
○
2
σ
×
-1
H
(s)
s(s (s2 2s
求上式的拉氏反变换,就可以得到系统的
冲激响应为:
n
h(t) bm kie pit i 1
每一极点对应一分量 epit ,(有r重极点时对 应 t e r1 pit ),极点位置就决定了该分量 的时域性质。
在H(s)的系数都为实数时,如果有一极点
为复数,必有另一极点是该极点的共轭复 数,同时系数k也将为共轭复数,一对共轭 极点组成的响应分量仍然为实数。
系统稳定性:对于任何一个有界的激励, 稳定系统产生的响应在任何时候都是有界 的。也就是要求系统的冲激响应有界(随 着t→∞,|h(t)|将逐渐衰减到零)。系统的 冲激响应的时域性质可由系统函数的极点 位置确定,因此,系统的稳定性可由系统 函数的极点位置来判断。
1、系统函数的极点全部位于左半S平面时, 随着t→∞将逐渐衰减到零,系统稳定。因
1
F (s)estds F (s)estds
2 j C0 Ci
Ci
0
k
Re
s(sk
)
1
2
j
Ci
F
(s)e st ds
F (s)estds 0 t 0
C1
F (s)estds 0 t 0
C2
重庆大学《841信号与系统》第四章 拉普拉斯变换 2012年4月16日稿
0
f est0 es d
est0 F s
此性质表明:若波形延迟 t0 ,则它的拉普拉斯变换应乘以 est0 。
五、 s 域平移
若 f t F s
则 f t etu t F s
六、尺度变换
若 f t F s
则
f
at
1 a
F
s a
a0
七、初值定理
初值定理常用于由 F s 直接求 f 0 的值,而不必求出原函数 f t 。
1 s2
t
nu
t
n! s n 1
4、 es0tu t 1
s s0
( s0 为复常数)
特别地
etu t 1
s
etu t 1
s
5、 e jtu t 1
s j
0
e jtu t 1
s j
0
6、
sin
t
u
t
s
2
2
0
6
cos
t
u
t
s
2
s
2
7、 t sin t u t
F s L eatu t
e at e st dt e ast
0
as
0
1 , as
a
即 eatut 1 , a
as
3、复指数函数 es0tut ( s0 为复常数)
F s L es0tu t
e s0t e st dt e ss0 t dt e ss0 t
综述几种情况: (1)凡是有始有终,能量有限的信号,收敛坐标落于 ,全部 s 平面都属 于收敛区。例如:单个脉冲信号。
(2)信号的幅度既不增长也不衰减而等于稳定值,或随时间 t ,tn 成比例增 长的信号,则其收敛坐标落于原点, s 平面右半平面属于收敛区。例如:正弦信 号, t , tn 信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯反变换 ——部分分式展开法
Fc ( s ) K1 K2 K ( s j ) K 2 ( s j ) 1 s j s j (s )2 2 ( s )( K1 K 2 ) j ( K1 K 2 ) (s )2 2 ( s ) 2 A j 2 jB (s )2 2 (s ) 2A 2B 2 2 (s ) (s )2 2
t0 0
拉普拉斯变换的基本性质
4. 频移特性
L f ( t ) F ( s) 若
L at f ( t ) e F (s a) 则
拉普拉斯变换的基本性质
5. 时域微分特性
L f (t ) F (s)
Re(s) 0
df (t ) L sF ( s ) f (0 ) Re( s ) 0 dt
若 则
L f (t ) F ( s )
Re( s ) 0
a0
1 f (at ) F ( s / a ) a
L
拉普拉斯变换的基本性质
3. 时移特性
若 则
f (t ) F ( s)
L
L f (t t0 )u (t t0 ) e st0 F ( s )
0
4. t 的正幂函数 t n,n为正整数
常用信号的拉普拉斯变换
5.余弦信号 cos 0t
6.正弦信号 sin 0t
常用信号的拉普拉斯变换
at e cos 0t 7.衰减余弦信号
at e sin 0t 8.衰减正弦信号
拉普拉斯变换的基本性质
1. 线性特性
若
L f1 (t ) F1 ( s )
K1 K
1
* 2
( 且有K1 A jB )
若将与共轭复数有关的逆变换用 f c (t ) 表示,则:
K1 K2 f c (t ) L s j s j 2e t ( A cos t B sin t )
推导如下!!
拉普拉斯变换的基本性质
11. 乘积特性
f1 (t ) F1 ( s )
L L f 2 (t ) F2 ( s )
Re( s ) 1 Re( s ) 2
1 f 1 (t ) f 2 (t ) [ F1 ( s ) * F2 ( s )] 2πj
k 0
若计算出f1(t)的Laplace变换F1(s),利用Laplace变换的时 移特性和 周期信号的 移特性 线性特性,即可求得单边 线性特性 周期信号 Laplace变换为
L[ f (t )] e
k 0
skT
F1 ( s )
F1 ( s ) 1 e
sT
Re(s) > 0
F ( s) K1k K11 K12 E ( s) ( s p1 ) k ( s p1 ) k 1 ( s p1 ) D ( s )
t L
拉普拉斯变换的基本性质
7. 频域微分特性
L f ( t ) F ( s) 若
n dF ( s ) d F ( s) L L n n 则 tf (t ) , t f (t ) ( 1) ds ds n
思考:求解函数 tu(t ) 的拉氏变换。
1 提示:可以用两种方法来求,答案为 2 。 s
L
Re( s ) 1 2
例 试求如图所示周期信号的单边 Laplace变换。 周期信号
f (t) 2 t
0
1
2
3
4
5
分析:周期为T的单边周期信号f(t)可以表示为第一个周期
信号f1(t)及其时移f1(tkT)的线性组合,即
f (t ) f 1 (t kT )u (t kT )
t ( j ) t F [ f (t )e t ] f (t )e t e jt dt 0 e e dt
不存在!
令 s j
0 e ( s )t dt
若
1 s
拉氏变换的定义和收敛域
推广到一般情况:
F [ f (t )e
因为 所以
例 试求如图所示信号的单边Laplace变换。 解: 1)
d 2 f (t ) L 2 s F ( s ) sf ( 0 ) f ' ( 0 ) 2 dt
s 2 F (s)
1 2e s e 2 s
1 2e s e 2 s F (s) s2
关于积分下限的说明: 积分下限定义为零的左极限,目的在于分析和计 零的左极限 f(t) 算时可以直接利用起始给定的0-状态,并且可以把 状态 在t=0时刻出现的冲激包含到积分中去。 时刻出现的冲激
拉氏变换的定义和收敛域
二、拉普拉氏变换的收敛域
拉氏变换的定义和收敛域
j 收 左半平面 敛 右半平面 S平面
例 试求如图所示周期信号的单边 Laplace变换。 周期信号
f (t) 2 t
0
1
2
3
4
5
解:
f1 (t ) 2[u (t ) u (t 1)]
f (t ) f1 (t ) f1 (t 2) f1 (t 4)
2 F 1( s ) L{ f 1 (t )} (1 e s ) Re( s ) s F1 ( s ) 2s 4 s F ( s ) F1 ( s )(1 e e ) 2 s Re(s) > 0 1 e
1) F(s)为有理真分式( m < n),极点为一阶极点
A (s) A( s ) F (s) B( s ) ( s p1 )( s p 2 ) ( s p n )
kn k1 k2 F (s) s p1 s p 2 s pn
k i (s pi ) F (s)
s pi
i 1,2, , n
f (t ) (k1e
p1t
k2e
p2t
kne
pn t
)u (t )
拉普拉斯反变换 ——部分分式展开法
2) F(s)为有理真分式( m < n),包含共轭复数极点
拉普拉斯反变换 ——部分分式展开法
此时, K1 , K 2 呈共轭关系,即有:
u (t )
2. 阶跃函数 u(t)
st
1 ( 0) s ( 0 j 0 )
1 L[u (t )] - 1 e dt 0 s
( 0或 Re( s ) 0)
常用信号的拉普拉斯变换
3.单位冲激信号 ( t )
L[ (t )] (t )e st dt 1
Re( s )
例 试求如图所示信号的单边Laplace变换。 解: 2)
f (t ) f1 (t ) f1 (t )
1 e s 其中:F1 ( s ) s
1 e s 2 F ( s) F1 ( s) F1 ( s) ( ) s
Re( s )
拉普拉斯反变换
L f1 (t ) F1 ( s ) L f 2 (t ) F2 ( s ) L
Re( s ) 1 Re( s ) 2
f1 (t ) * f 2 (t ) F1 ( s ) F2 ( s )
Re( s ) max( 1 , 2 )
d n f (t ) n n 1 n2 s F ( s ) s f ( 0 ) s f ' ( 0 ) ... f n dt
n 1
(0 )
注意:若 f(t) = 0, t<0, 则有f r(0 ) = 0,r=0,1,2,...
d n f (t ) L n s F (s) n dt
t
]
f (t )e
t
e
jt
dt
f (t )e ( j )t dt
令s= +j
f (t )e st dt F ( s )
f (t )e st dt
拉普拉斯正变换
定义: F ( s )
对 f(t)e-t求傅里叶反变换可推出
1 j st f (t ) F ( s ) e ds j 2 πj
计算拉普拉斯反变换方法: 拉普拉斯反变换
1. 查表法 2. 利用常用信号拉氏变换与性质 3. 采用部分分式展开法 4. 利用复变函数中的留数定理
拉普拉斯反变换 ——部分分式展开法
A( s ) am s m am 1s m 1 a1s a0 F ( s) B( s ) bn s n bn 1s n 1 b1s b0
故:f c (t ) 2e t ( A cos t B sin t )
拉普拉斯反变换 ——部分分式展开法
拉普拉斯反变换 ——部分分式展开法
3) F(s)为有理真分式( m < n),极点为k重极点
A( s ) A( s ) F (s) B ( s ) ( s p1 ) k D ( s )
1 j st f (t ) F ( s ) e ds j 2 πj
拉普拉斯反变换
拉氏变换的定义和收敛域
拉普拉斯变换符号表示及物理含义 符号表示:
F ( s ) L [ f ( t )]
物理意义:
f ( t ) L 1 [ F ( s )]
L f (t ) F (s)
拉普拉斯变换的基本性质