中科大完全版的试卷94-05量子力学

合集下载

中国科学技术大学量子力学考研真题2011年

中国科学技术大学量子力学考研真题2011年

专业课资料研发中心《跨考考研专业课通关宝典·历年真题》中国科学技术大学量子力学考研真题2011年共两页中国科学技术大学2011年硕士学位研究生入学考试试题——跨考教育量子力学所有试题答案写在答题纸上,答案写在试卷上无效☐需要使用计算器☑不使用计算器1、(20分)电子在稀有气体中散射时,会发现有完全穿透的现象,它可以用下面的模型描写。

质量为μ的粒子在势阱()⎩⎨⎧-=a 0a 000<<>,<χχχχV V 中散射,完全穿透。

试求此时入射粒子的能量E。

2、(20分)一量子系统,其哈密顿量可写为++++=a ˆa ˆa ˆa ˆˆβαH其中βα,为数,而算符aˆ及其厄米共轭+a ˆ满足下面的对易关系[]1a ˆa ˆ=+,试求此系统的能量本征值。

3、(30分)质量为μ粒子在势()χV 中作一维运动,()χμV H +=2p ˆˆ2,定态波函数为...321n n n ˆn n,,,,,==E H (a)证明:m ˆn a m pˆn nm χ=,并求系数nm a ;(b)推导求和公式()m pˆm m ˆn 22222n m n μχ =∑-E E 。

4、(20分)现有一个电子限制在平面上一半径为R 的圆环上运动,θ为其角位置。

已知开始时刻该电子的的波函数为()θθψ2sin 0=,。

试求(a)粒子在任意t≥0时刻的波函数;(b)试求任意t≥0时刻的电子能量期望值。

5、(30分)已知氢原子初始时刻(t=0)处于由如下波函数描述的状态()()()()()⎪⎪⎭⎫ ⎝⎛-=ϕθϕθχψ,,2011311021Y r R Y r R , ,其中3121R R 、分别为归一化的径向波函数(量子数分别为n=2, =1和n=3, =1)。

试求t 时刻(a )电子自旋朝上的概率;(b )总角动量z 分量的期望值。

6、(30分)某双态体系的哈氏量可表示为H H H '+=0,而0H 的两个归一化本征态分别为a 、b 。

中科院-中科大2006年量子力学甲A2

中科院-中科大2006年量子力学甲A2
。 ˆ * * H n n dr n n dr En ˆ E * H 所以 n n n dr 。 2 2 ˆ ˆ 2 e 。由上题定理,取 ,易证 2 T H E 。 2) H 2 r 4 4 4 e 1 2 e e 对于氢原子: En 2 2 ,所以 T 3 2 ,即 T 2 2 En 。 n 2 n 2 n (还要取 e 来求解此题。 )
故 x Ae
i 2 m x
,
f t Be
t i t V t dt 0

。 。
若取 V (t ) V0 cos t ,那么 f t Be 于是得到 x, t Ne i
2 m x
V i t 0 sin t
e
V i t 0 sin t
Nei k t (t ) 。
外场 V (t ) 的作用仅是给平面波提供一个受时间调制的相角: 1 t t V t dt 。 0
中国科学院研究生院 2006 年招收攻读硕士学位研究生入学统一考试试题 试题名称:量子力学(甲)A 卷
考生须知:
1. 2. 本试卷满分为 150 分,全部考试时间总计 180 分钟。 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
ˆA ˆ ˆ2 和 B ˆ ˆ A ˆA ˆ 1 ,B ˆ 2 0 , AA ˆA ˆ 满足下列关系: A 一、(共 30 分)两个线性算符 A 2 ˆ B ˆ; 1) 求证 B ˆ 和B ˆ 表象中 A ˆ 的表达式。 2) 求在 B
0, 0 x a, 0 y a 。加上 四、(共 30 分)粒子在二维无限深方势阱中运动, V 其它 , 微扰 H xy 后,求基态和第一激发态能级的一级微扰修正。

中科院量子力学考研真题及答案详解(19902010共40套真题)

中科院量子力学考研真题及答案详解(19902010共40套真题)

1990年招收攻读硕士学位研究生入学试卷试题名称: 量子力学(理论型),00分。

、在,氢原子波函数为说明:共五道大题无选择题,计分在题尾标出,满分10t =100210211211一(,0)2r ψψψ=+⎣⎦ 其中右方函数下标表示量子数。

忽略自旋和辐射跃迁。

投影-⎡⎤(1) 此系统的平均能量是多少?nlm 0z L =(2) 这系统在任意时刻处于角动量的几率是多少? 、利用坐标与动量算符之间的对易投影关系,证明二()2∞00n nE E n x -=∑常数这里是哈密顿量n E 2ˆˆ()2p H V m=+x 的本征能量,相应的本征态为n 。

求出该常数。

、设一质量为μ的粒子在球对称势()(0)V r kr k =>三中运动。

利用测不准关系估算其(束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非基态的能量。

四、电子偶素e e +-种接触型自旋交换作用相对论极限下,其能量和波函数与氢原子类似。

今设在电子偶素的基态里,存在一8e p ˆˆˆ3H M M π和ˆpM '=-⋅其中ˆe M 是电子和正电子的自旋磁矩ˆˆ(,q )MS q ==e mc±量差,决定哪一个能量更低。

对普通的氢原子,基态波函数: 。

利用一级微扰论,计算此基态中自旋单态与三重态之间的能221137e c 1002,,r a a me ψ-==一质量为= μ的粒子被势场00()(0)r aV r V e V a -=>>所散射,用一级玻恩近似计算微分散射截面。

五、1990年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)分。

光电效应实验指出:当光照射到金属上,说明:共五道大题,无选择题,计分在题尾标出,满分100一、(1) a) 只有当光频率大于一定值0ν时,才有光电子发射出;b) 光电子的能量只与光的频率有关,而与光的强度无关;c) 只要光的频率大于0ν,光子立即产生。

试述:a) 经典理论为何不能解释上述现象,或者说这些实验现象与经典理论矛盾何斯坦假说正确解释上述实验结果。

量子力学答案完全版

量子力学答案完全版

⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。

求人体热辐射的峰值波长(设体温为)。

解:,由题意,人体辐射峰值波长为:。

⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。

⒊波长为的X 射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。

解:电子速度远小于光速,故:;则:。

5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。

解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。

解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。

中科院量子力学真题

中科院量子力学真题
ˆ = 四、设系统哈密顿算符为 H ˆ2 p � + V (r ) ,粒子处于归一化的束缚定态 ψ n 中, 2m ⎧V0δ ( x ), ⎪ ⎩ ∞,
x <a 势场中运动 (V0 > 0 ) 。试求系统能级或能级方 x >a
-6-
putiansong 3@
试证明位力定理:
ψn
ˆ2 p 1 � � ψ n = ψ n r ⋅∇V (r ) ψ n 2m 2 ˆ2 1 p 4 ˆ ' = −λ p ˆx + mω 2 x 2 ,设受到微扰 H 的作 2m 2
-1-
putiansong 3@
(1)求其能级和本征函数;
⎧V1 , −α < ϕ < 0 ˆ ' = V (ϕ ) = ⎪ (2)加 H ⎨V2 , 0 < ϕ < α 微扰, ⎪ 0, 其他 ⎩
求对最低的两能级的一级微扰修正。 注:在坐标系中 ∇ 2 =
1 ∂ ∂ 1 ∂2 ∂2 。 (r ) + 2 + r ∂r ∂r r ∂ϕ 2 ∂z 2 ⎧ 0, 0 < x < a 中运动, t = 0 时刻处于基态, 此 ⎩∞, a < x, x < 0
ˆ = 五、一维谐振子系统哈密顿量为 H 0
用,试求对第 n 个谐振子能级的一级微扰修正。
ˆ n = (已知矩阵元 n ' x ℏ ( n + 1δ n ', n+1 + nδ n ', n−1 ) ) 2mω
� � 1⎛r � � r⎞ ˆ ˆ ˆ r = ⎜ ⋅ p + p ⋅ ⎟ ,则: 二、 (30') 在三维体系中粒子的径向动量算符 p 2⎝ r r⎠ ˆ r 是否为厄密算符,为什么? (1) p ˆ r 的表示; (2)写出在球坐标系中 p ˆr ] = ? (3)求 [ r, p

中科院量子力学历年详解(phileas)

中科院量子力学历年详解(phileas)

v v vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 详解 2.1 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2005中科院量子力学试题

2005中科院量子力学试题



1
试求该体系的能级。 五、(20 分)已知氢原子基态波函数为 r 1 100 exp , 1 2 a0 a03 试对坐标 x 及动量 px ,求:
x
x 2 x , p
2
2 px px
2
. 由此验证不确定关系。
试题名称:2005 量子力学
试题名称:2005 量子力学
第2页
共2页
第1页
共2页
ˆ 六、(20 分)考虑自旋 s 与角动量 L 的耦合,体系的哈密顿量为 2 ˆ ˆ ˆ 2 V (r ) L H S , 2 ˆ ˆ ˆ L S 守恒。 是耦合常数,试证该体系的总角动量 J (公式提示:在球坐标系内, 2 1 L r 2 2 f (r ), t n e t dt n ! ) 2 r 2 , f ( r ) 0 r r r r r
试题名称:
量子力学
ˆ (r ) 1 m 2 r 2 中运 二、(20 分)质量为 m 、电荷为 q 的粒子在三维各向同性谐振子势 V 2 动,同时受到一个沿 x 方向的均匀常电场 E E0 i 作用。求粒子的能量本征值和第一
激发态的简并度。此时轨道角动量是否守恒?如回答是,则请写出此守恒力学量的 表达式。 三、(40 分)一个质量为 m 的粒子在下面的无限深方势阱中运动, x 0, x a V ( x) 0 a x 0 开始时( t 0 ) ,系统处于状态 x x ,其中 A 为常数。请求出 t 时刻系统: ( x) A sin cos3 2a 2a a. 处于基态的几率; b. 能量平均值; c. 动量平均值; d. 动量均方差根(不确定度) 。 四、 (30 分)两个具有相同质量 m 和频率 的谐振子,哈密顿量为 1 1 2 2 2 m 2 x1 a x2 a , H0 p12 p2,受到微扰作用 H1 m 2 x1 x2 ,

硕士学位研究生入学量子力学试卷

硕士学位研究生入学量子力学试卷

附件中国科学院-中国科技大学2000年招收攻读硕士学位研究生入学试卷 试卷名称:量子力学(理论型) 选做五题,毎题20分1、 一个质量为m 的粒子被限制在一维区域0x a ≤≤运动,0t =的波函数为(),012cos sin x x x t A a a ππψ⎡⎤⎛⎫⎛⎫==+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ A 为常数。

(1) 后来某一时刻0t t =时波函数是什么?(2) 体系在0t t =和0t =时平均能量是多少? (3) 在0t t =时于势阱右半部(即2ax a ≤≤)发现粒子的几率是多少? 2、3、设粒子处于(),lm Y θϕ状态,计算角动量的x 分量和y 分量的方均差22,x y l l ∆∆4、记123,,σσσ为Pauli 矩阵,定义12,i σσσ±=±(1) 计算[][][]()233,,,,,,σσσσσσσ+-+-+和()2σ-, (2) 证明(ξ为常数 )332e e e ξσξσξσσ±±±=,证:[]3,2σσσ±±=± ()33322σσσσσσσ±±±±∴=±=±()()2233333322σσσσσσσσσσ±±±±==±=±反复利用即得()332nn σσσσ±±=± 两边同乘实数nξ得 ()332nn n nξσσσξσ±±=± 即()33322e ee e ξσξσξσξσσσ±±±±±==(3) 化简下面二式331112,e e e e ξσξσξσξσσσ--。

5、设0H 为一量子系统的能量算符,其本征态为0,1,2,⋅⋅⋅若体系受到微扰作用,微扰算符为ˆˆˆ,(H i A B λλ⎡⎤'=⎣⎦为实数),ˆA为厄密算符,ˆˆ,B C 为另外的厄密算符,且ˆˆˆ,.C i A B ⎡⎤=⎣⎦如在微扰作用前的基态0中,ˆˆˆ,,A B C 的平均值已知为000,,A B C ,试对微扰后的基态(非简并)计算厄密算符ˆB的平均值B ,精确到量级λ。

中国科学院-中国科技大学2002年招收攻读硕士学位研究生入学试卷(量子力学)

中国科学院-中国科技大学2002年招收攻读硕士学位研究生入学试卷(量子力学)

中国科学院——中国科技大学2002年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)(3小时,闭卷,每题20分)一、对于氢原子的结构,采用电子绕核做圆周运动的半径典模型:(1)从德布罗意(驻)波的观点导出玻尔关于定态轨道的量子化条件。

(2)从牛顿定律和(1)的量子化条件导出氢原子量子化的轨道半径和能量。

二、一个质量为μ的粒子,处于势阱()⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x X V ,0,00,中t=0时,其归一化波函为()X aX a a t x ππψs i n c o s 41520,⎪⎭⎫ ⎝⎛-==,求: (1)在后来其某一时刻t=t O 时的波函数(2)在t=0和t=t 0时体系的平均能量。

三、设Fˆ为米算符,证明在能量表象中下式成立: ()k F H FK F E E nkn k n ]]ˆ,ˆ[,ˆ[212=-∑ 四、设钠原子(原子序数为11)处于沿Z 方向的强磁场B 中:(1)计入自旋(但不计旋轨耦合),写出其价电子的哈密顿量(只计入B 的一次项),并写出相应定态能量和波函数的通式(主要标志出对量子数和空间坐标的依赖性)。

(2)说明此情形下钠原子发射光谱中黄线的(正常)塞曼分裂现象。

五、设质量为m ,电荷为q 的粒子粒子被约束在谐振子势()221kx x V =内。

现沿X 方向加上一个恒定的常数电场E 。

试计算其基态|0〉和第一激发态¦1〉的能级移动,准确到E 2级。

(提示:已知如下的矩阵元通式: ⎥⎦⎤⎢⎣⎡++=+-1,1,212n m n m n n m h n x m δδω 其中ω是振动的圆频率)。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。

6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。

8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。

10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。

量子力学试卷 (14)

量子力学试卷 (14)

第2学期《量子力学》期末考试试卷(A 卷)年级 专业 姓名 学号 座位号(答案及评分标准)一、简答题(共10题,每小题5分,共50分)1. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在球壳()dr r r +,中被测到的几率。

解:()ϕϕθψθθππd r d dr r P ⎰⎰=2022,,sin 。

2. 一质量为μ 的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x ax x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。

解: ⎪⎩⎪⎨⎧≥≤<<=ax x a x axn a x n 2,0,0,20,2sin 1)(πψ,3,2,1,82222==n a n E n μπ3. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。

解: )0(2)0()0(2ψγψψ m -='-'-+4. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。

解:有两个条件:0],[,0==∂∂H Q tQ。

5. 写出电子自旋z s 的二本征态和本征值。

解:⎪⎪⎭⎫ ⎝⎛===01)(,221z z s s χα ;⎪⎪⎭⎫ ⎝⎛==-=-10)(,21z z s s χβ 。

6. 给出如下对易关系:[][][][][]?,?,?,?,?,2=====xyz zyz yL Lp L L y p x σσ解:[][][][][]zxyz xzyz yi L Lpi p L xi L y p x σσσ2,0,,,0,2-=====7. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?解:在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。

在弱磁场中,原子发出的每条光谱线都分裂为(21)j +条(偶数)的现象称为正常塞曼效应。

原子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。

1998中科院量子力学试题理论型

1998中科院量子力学试题理论型

三、一个质量为 m 的粒子在一维势场: , x 3a a x 3a 0, V ( x) x a V0 , 0, 3a x a 中运动。 (1) V0 0 时,求粒子的能谱;
(2) V0 0 时,用一级微扰法求基态能量。
四、设有算符 ai 和 ai† 满足如下对易关系( ai† 是 ai 的厄密共轭, i, j 1, 2 ) ;
中运动。
(2) 求存在且仅存在一个束缚态的条件。
二、自旋为
(1999 年(理论型)第三题)
的带电粒子(电荷为 q ,质量为 m )受到均匀磁场 B Be y 的作用( e y 为 y 2 ˆ eB s ˆy 为自旋算符的 y 分量) ˆy 。 方向的单位矢量) ,其哈密顿量为 H (s ,如果 mc t 0 时粒子的自旋指向正 x 轴方向,求粒子自旋平均值的时间演化。(1999 年(理论 型)第四题)
† † † ai a † ai a j a j ai 0, ai† a † j a j ai a † a i a † a a † a 的能谱。 试求哈密顿量 (0 1 0) H 2 2 0 1 1 1 2 2 1 1
† ˆ 化为二个不耦合的谐振子 (提示:仅利用 a1和a2 , a1†和 a2 之间的线性变换,可将 H
的哈密顿量之和。 ) 五、将上题哈密顿量 中与 有关的部分当作微扰,请用定态微扰论求出第一激发态的 修正。 (第一激发态的二度简并的。 )
试题名称:1998 量子力学(理论型)
第1页
共1页
中国科学院-中国科技大学 1998 年招收攻读硕士学位研究生入学试卷
试题名称: 量子力学(理论型)
说明:共六道大题,选作五题,每题 20 分。 一、质量为 m 的粒子在一维势场 0, x a (V0 0) V ( x) V0 , x a (1) 求基态能量 E0 满足的方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档