解读数学王子高斯正十七边形的作法-上
正十七边形作图
1. 如圖, 以 O 為圓心作圓,過 O 作直徑 AC; 2. 過 O 作 AC 的垂線,交圓於 B; 3. 在 OB、OC 上 分別 截 取 I、D 使 得 OI = 1 1 OA, OD= OA; 4 16 4. 以 D 為 圓 心, DI 為 半 徑 作 圓,分 別 交 OA、OC 於 W1 , W2 ; 5. 以 W1 為 圓 心, W1 I 為 半 徑 作 弧,交 W1 A 於 E1 ; 6. 以 W2 為 圓 心, W2 I 為 半 徑 作 弧,交 W1 A 於 E3 ; P5
m
4. 在邊數不超過 100 的正多邊形中,僅用尺規 作 圖 的 有 24 個 。 它 們 分別 是: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96 邊形。 1
4.3
+
B P4
+ +
P3 P2
+
P7
+
P1 K P8 C P9
+ + + + + + + P11 + P12 + + +
I
+
N5 F
+
O E
N3
+
A
P16
P10
P15
+
P14
P13
3
4.5
正 十 七 邊 形 作 圖 :方法(三 )
1. 如圖, 以 O 為圓心作圓,作兩條彼此正交的直徑 AB 和 CD; 2. 過 A 與 D 分別作切線交於 S; 1 3. 在 AS 上取點 E 使得 AE = AS ; 4 4. 以 E 為圓心, OE 為半徑,作弧交 AS 於 F, F’; 5. 以 F 為圓心, OF 為半徑,作弧交 AS 於 H; 6. 以 F’ 為圓心, OF’ 為半徑,作弧交 AS 於 H’; 7. 過 H 作 AH 的垂線交 OC 的延線於 T; 8. 延長 HT 至 Q, 使得 TQ = AH’; 9. 以 BQ 為直徑,作圓交 CT 於 M; 10. 作 OM 的中垂線, 交圓於 P; 11. 以 P 為圓心, PC 為半徑,在圓周上靠 B 的一邊截取 P1 點; 12. 從 P1 出發在圓周上以 P P1 為半徑截取 P2 , P3 , · · · , P15 作為正十七邊形的各頂點。 B
高斯解正十七边形的故事
高斯解正十七边形的故事嘿,你知道吗?在数学的世界里呀,有一个超级厉害的故事,那就是高斯解正十七边形的事儿。
这高斯啊,那可是个天才!就像咱生活中突然冒出来的超级英雄一样。
当时,人们都觉得解正十七边形那简直就是不可能完成的任务,就好比让你去摘天上的星星一样难。
可高斯这小伙子,硬是不信邪。
你想想看,正十七边形,那得多复杂呀!边边角角的,一般人看着脑袋都大了。
但高斯呢,他就像一个勇敢的探险家,一头扎进了这个难题里。
他坐在那里,不停地思考,不停地计算。
这场景就好像他在跟这个正十七边形进行一场激烈的战斗。
别人都觉得他是在做白日梦,可他却坚信自己能行。
这不就跟咱平时遇到困难一样嘛。
有时候,大家都觉得这事没法办了,太难了,可就是有那么一些人,他们不放弃,非要去试试。
就像高斯,他就是要去挑战那个看似不可能的任务。
你说这得多有毅力呀!要是换了咱,说不定早就打退堂鼓了。
可高斯没有,他就那么一点点地琢磨,一点点地尝试。
然后呢,奇迹发生了!他真的解出了正十七边形。
哇塞,这消息一出来,那可真是轰动了整个数学界呀!大家都惊呆了,这怎么可能呢?但高斯就是做到了。
这就好像咱平时觉得不可能做到的事情,突然有人做到了,那得多震撼呀!这高斯的故事不就告诉咱,只要有决心,有毅力,没啥事儿是办不到的。
你再想想,要是咱遇到难题的时候,都能像高斯那样,不轻易放弃,那咱是不是也能创造奇迹呢?也许咱不能像他那样解出正十七边形这么难的东西,但咱肯定能在自己的领域里做出点成绩来呀。
所以呀,咱得向高斯学习,别遇到点困难就退缩。
要勇敢地去挑战,去尝试。
说不定哪天,咱也能成为自己领域里的“高斯”呢!反正我是这么觉得的,你呢?。
高斯与正十七边形
高斯与正十七边形数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。
许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。
被誉为“数学王子”的伟大数学家高斯就是其中之一。
高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。
其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。
小学毕业后,高斯考了文科学校。
由于他古典文学成绩突出,入学后直接上了二年级。
两年以后高斯又升入了高中哲学班。
15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。
在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。
语言学和数学是他最喜爱的两门课程。
18岁时,高斯进入了哥廷根大学深造。
这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。
后来,一次数学研究上的突破改变了两个引力场的均衡。
高斯终于下定决心,飞向了数学之星。
事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问题。
到高斯的时代,人们已经解决了边数是n 23•、n 24•、n 25•、n 253••(=n 0,1,2,3……)的正多边形的尺规作图问题。
但是,还没有人能作出正7边形、正11边形、正17边形等等。
很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。
高斯一直对正多边形尺规作图问题非常着迷。
经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。
并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。
他证明了一切边数形如122+t(=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。
《高斯的正17边形》读后感
《高斯的正17边形》读后感困难,似乎是一个仿佛永远也跨越不了的桥梁。
每当你跨越一个的时候,你会发现,还有一个更大更长的桥梁在等着你。
你越害怕困难、畏惧困难,它便会更加强大;但你如果相信自己、拥有坚定不移的信念,你便可以轻而易举地跨越困难。
《高斯的正17边形》这篇文章,便告诉了我们这个道理。
1796年的一天,德国哥廷根大学中,一个有数学天分的青年正在做导师单独布置给他的三道数学题。
前两道很快就完成了。
第三道在另一张纸上:只用圆规和一把没有刻度的直尺,画一个17边形。
青年绞尽脑汁,可依旧是毫无进展。
困难激起了他的斗志,当窗口露出曙光的时候,他终于完成了第三道题。
再见到导师的时候,青年心里充满了内疚和自责。
导师一接过青年的作业时却惊呆了,他让青年当着自己的面再做一个17边形。
青年很快做出了一个正17边形,导师激动地对青年说:“你知不知道?你解开了一桩有两千年多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,可你一个晚上就解出来了。
你是个真正的天才!”原来,导师想解决它,却因为失误才将这张纸条给了青年。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。
”这个青年就是数学王子高斯。
就算别人不曾成功,你也不能气馁;就算别人说“不行”,你也不能失去信心。
有些事情,在不清楚它到底有多难时,我们往往能够做得更好!由此看来,真正的困难并不是困难本身,而是我们对困难的畏惧。
做任何事的时候,都要充满信心。
不管旁人的看法如何,我们都不能放弃。
有志者事竟成。
只要你努力了就一定会有收获!投诉。
高斯仅用没有刻度的尺子与圆规便构造出了正17边形
高斯仅用没有刻度的尺子与圆规便构造出了正17边形解法一:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R)正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
1、先画一个R半径的圆;2、用圆规支脚支在圆周的一个点上,取d为半径,交圆周于一点,然后把这两点连起来,就是17边形的一条边了;3、如此类推,把17条边画完就是一个正17边形了解法二:在与圆O的直径AB垂直的半径OC上,作出OC的中点D,在OB上作一点E,使OE等于半径的1/8;以E为圆心,ED长为半径作弧,与OA、OB分别交于F、G;以F为圆心,FD 长为半径作弧,交OA延长线于H,以G为圆心,GD长为半径作弧,交OA于I;作OB中点J,以线段IJ为直径作圆,交OC于K;过K作AB的平行线,与以线段OH为直径的圆交于远端L,过L作OC的平行线,与圆O交于M。
弧AM就是圆O的1/17,依次连结各点就行了解法三:将你要画的正17边形的边长为d,它的外接圆的半径为R。
则d和R的关系是Sin(360度/(17*2))=d/(2R) 正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R) 最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值。
数学家高斯正17边形的故事
数学家高斯正17边形的故事“嘿,你们知道吗,那个伟大的数学家高斯啊,他可真是个传奇人物!”记得那是一个阳光明媚的午后,我和几个朋友聚在一块儿闲聊。
我们正讨论着那些历史上赫赫有名的人物,不知怎么的就说到了高斯。
“哎呀,高斯那可是数学天才啊!”一个朋友感叹道。
“没错没错,我听说他最厉害的就是画那个正 17 边形!”另一个朋友接着说。
我好奇地追问:“正 17 边形?那有啥特别的呀?”朋友兴致勃勃地开始给我讲解:“你想啊,要徒手画出一个正 17 边形可不容易啊,但高斯就做到了!这得需要多厉害的数学头脑啊!”我想象着高斯在纸上专注地画着正 17 边形的样子,心中涌起一股敬佩之情。
据说啊,高斯在很年轻的时候就对这个问题产生了浓厚的兴趣。
他整日整夜地思考,不断尝试各种方法。
那时候的他,就像一个在数学海洋中奋力探索的勇士,丝毫不畏惧困难。
“他难道就不会觉得累,不会想放弃吗?”我忍不住问。
“哎呀,人家那是对数学的热爱呀,这种热爱能让他克服一切!”朋友回答道。
是啊,热爱,这是多么强大的力量啊!高斯因为热爱,所以能坚持不懈地去攻克这个难题。
就好像我们每个人在生活中,如果有了热爱,是不是也能创造出属于自己的奇迹呢?我仿佛看到高斯在无数个夜晚,在昏暗的灯光下,一笔一划地勾勒着正17 边形,那专注的神情,那执着的态度,真的太让人钦佩了。
我们生活中也会遇到各种各样的挑战,有时候可能觉得很难,就想要退缩。
可是想想高斯,他面对那么难的问题都没有放弃,我们又有什么理由轻易放弃呢?高斯的正 17 边形,不仅仅是一个数学成就,更是一种精神的象征,一种告诉我们要勇往直前、永不放弃的象征!我们难道不应该向他学习吗?。
著名数学家高斯与正十七边形
著名数学家高斯与正十七边形著名数学家高斯与正十七边形用直尺和圆规作出圆内接正七、正九、正十一、正十三、正十七边形,是从古希腊以来两千多年悬而未决的著名数学难题;它困扰了许多著名的数学家,有的甚至为之付出一生的努力,却毫无所获。
但是,此难题却被18岁的高斯在1796年3月30日功克。
高斯是18—19世纪最伟大的数学家,近代数学的奠基人之一。
他被称为“数学王子”,“数学巨人”。
如果说世界上有神童的话,那么高斯就是其中的一位。
据说他三岁就发现了他父亲算帐时出现的错误,10岁时已表现出超群的数学思维能力。
有一次,老师出了一道题:把1到100的整数全部加起来。
其他同学都拿起笔来一个一个地加,高斯却坐在那一动也不动。
老师走到跟前问他为什么不做,他却立即报出了答案:5050。
他的做法是:把1和100相加得101,2和99相加也是101,3和97相加还是101;如此下去,共有50个101。
因此,得数为101×50=5050。
老师感慨地说“他已经超过我了,我没有什么可以教他的了。
”15岁时,高斯进入了卡罗琳学院,学习了牛顿,拉格郎日,欧拉等人的著作,很快掌握了微积分理论。
18岁时,高斯进入哥廷根大学。
在一次偶然的阅读中,他知道了用直尺和圆规作出圆内接正七边形的难题。
这使他非常着迷,并决心要功克它。
他首先查找出前人的作图方法,仔细研究他们失败的原因,通过半年多的努力,他终于作出了正七边形;接着,正九、正十一、正十三边形都被他一一克服。
没多久,正十七边形也被他功克。
面对第一次取得的成功,高斯异常兴奋,决心把自己的一生献给数学。
1801年,他发表了《算术研究》,论述了数论和高等代数的一些问题。
高斯对数学的研究涉及很多方面,除了在复变函数\统计数学\椭圆函数论上有突出贡献外,他在向量分析\正态分布的正规曲线\质数定理的验算研究上也取得了成绩。
在高斯去世后,哥廷根大学为他建造了一个以正十七边形棱柱为底座的纪念像,以纪念他一生中的第一个重大发现。
一个漂亮的证明与作图:高斯的正十七边形
⼀个漂亮的证明与作图:⾼斯的正⼗七边形⼀天晚上,19岁正读博的⾼斯的导师由于疏忽将两千多年未解决的⼀个问题——尺规做正⼗七边形留给了⾼斯,⾼斯优哉游哉得咬着笔头写着作业,然后表情严肃起来,妈的这题有点BT啊!想啊想,通宵⼀晚,伴着拂晓的晨光,⾼斯铅笔⼀扔,胸⼝长舒⼀⼝⽓。
⼼说,唉,最近智商⼜下降了,想我9岁算1+2+3……+100也没⽤这么长时间啊,这么个破题居然花了⼀晚上时间!第⼆天拿给博导,博导惊了,对他说,这可是阿基⽶德⽜顿都没做出来的题啊!你真是个天才啊!下⾯附上作图步骤和证明。
⾸先基于这样⼀个简单的定理,⼀直线段a、b,则对于线段c满⾜c^2 + ac + b = 0(c是实根,线段长肯定是实数),我们是能够做出c的。
这个定理采⽤的⼀个基本思路就是利⽤代数⽅法去建⽴起线段之间的联系,⽽这也是求得cos(2π/17)的核⼼思想。
令: a = 2(cos(2π/17) + cos(4π/17) + cos(8π/17) + cos(16π/17)) ①a1 = 2(cos(6π/17) + cos(10π/17) + cos(12π/17) + cos(14π/17)) ②通过和差化积、诱导公式,我们会得到a + a1 = -1 , a*a1 = -4,可通过还原建⽴⼀元⼆次等式,利⽤上述定理,可做长度为a、a1的线段。
令: b = 2(cos(2π/17) + cos(8π/17)) ③b1 = 2(cos(4π/17) + cos(16π/17)) ④通过和差化积、诱导公式,我们会得到b + b1 = a , b*b1 = -1,可做长度为b、b1的线段。
令: c = 2(cos(6π/17) + cos(10π/17)) ⑤c1 = 2(cos(12π/17) + cos(14π/17)) ⑥通过和差化积、诱导公式,我们会得到c + c1 = a1 , c*c1 = -1,可做长度为c、c1的线段。
正十七边形做法及证明
故有x1+x2=(-1+根号17)/4
y1+y2=(-1-根号17)/4
最后,由cosa+cos4a=x1,cosacos4a=(y1)/2
可求cosa之表达式,它是数的加减乘除平方根的组合,故正17边形可用尺规作出
有:
x+y=-
又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)
=(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)
经计算知xy=-1
又有
x=(-1+根号17)/4,y=(-1-根号17)/4
其次再设:
x1=cosa+cos4a,x2=cos2a+cos8a
则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。
以弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。正十七边形的尺规作图存在之证明:
设正17边形中心角为a,则17a=360度,即16a=360度-a
故sin16a=-sina,而
sin16a=2sin8acos8a=22sin4acos8a=2 4 sinacos2acos4acos8a因sina不等于0,两边除之有:
步骤一:
给一圆O,作两垂直的直径O
A、OB,
作C点使OC=OB,点使得∠DCE=45度
步骤二:
作AE中点M,并以M为圆心作一圆过A点,
此圆交OB于F点,再以D为圆心,作一圆
数学家高斯
数学家高斯——正十七边形尺规作图之理论与方法【简介】德国著名数学家、物理学家、天文学家、大地测量学家。
高斯被认为是最重要的数学家,并拥有数学王子的美誉。
【研究领域】高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
【高斯与正十七边形尺规作图之理论与方法的故事】1976年的一天,德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的数学题。
正常情况下,青年总是在两个小时内完成这项特殊作业。
像往常一样,前两道题目在两个小时内顺利地完成了。
第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。
青年没有在意,像做前两道题一样开始做起来。
然而,做着做着,青年感到越来越吃力。
困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题。
当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题。
作业交给导师后,导师当即惊呆了。
他用颤抖的声音对青年说:“这真是你自己做出来的?你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!我最近正在研究这道难题,昨天给你布置题目时,不小心把写有这个题目的小纸条夹在了给你的题目里。
”多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。
”这个青年就是数学王子高斯。
【给我的启发】当天那纸条是导师不小心交给高斯的,当青年回忆这一幕时,总是说:如果我知道那是一道两千多年的历史数学难题,我可能永远没有信心把它解开。
这件事告诉我们有些事情,在不清楚有多难时,我们往往能够做得更好!真正的困难不是困难本身,而是我们对困难的畏惧。
从另一方面来看,要有伟大的成就,除了克服对困难的畏惧,还要提高自身的知识素养,只有坚实的理论知识作为基础,我们才有可能在某方面领域做出显著的成绩。
高斯画正17边形是如何思考的高斯作出正17边形的依据是什么
高斯画正17边形是如何思考的高斯作出正17边形的依据是什么又来黑我们大高斯问:看过一个用尺规作出正17边形的视频,不过步骤太快,难懂。
能否具体解释一下各个步骤的意义?高斯当年并没有亲自去画正十七边形...大概是他觉得这个太Trivial了……毕竟难度90%都在于到底有哪些正多边形可尺规作图而不是怎么尺规作图。
尺规作图的过程全部蕴含在代数式里了。
我们一起来看看怎么把这个代数公式翻译成作图过程。
==========================================首先随便画一条直线,这条直线的作用是记录,记录你作出过的所有长度。
当然动态图里没有这个,事实上也没有人画这个,因为这是打擦边球...尺规作图的公理里明确指出禁止在尺上做标记,所以这么画条直线变相做标记也是君子所不齿的。
不过另一方面又规定了圆规能够量取已经存在(做出)的所有长度...在哪量不是量...这条直线不管怎么样都是隐式存在的.......==========================================引理:记录器你有了一条线,然后随便点一个点A,于是你有了个零元。
接下来再随便点一个其它点B,于是你有了个幺元,AB定为单位长度。
根据尺规作图公理,圆规可以量取任意已存在的长度,将量取的长度转移到这条直线上。
因此这条直线就能记录已存在长度的集合。
引理:加法器引理:除法器虽然N等分点相当于除以个整数,但是要获得更强大的除法计算能力就要构建除法器了。
引理:开根器虽然勾股定理能开根,但是勾股定理有个局限性就是要求两条线段直角。
对于单一的线段就只能使用开根器了。
===============================================反复使用记录器,加法器,除法器,开根器就能计算出一条长度正好为的线段。
然后找出圆心角和所对弦的关系:所以所对的圆心角就是,于是只要这么一个圆一个圆的接下去就能得到正17边形的所有点了。
高斯的作业:如何用尺规画十七边形?
⾼斯的作业:如何⽤尺规画⼗七边形?⼏⽇前天纵君(SKYLABS)和孩⼦曾经讲过伽利略著名的⽐萨斜塔⼩球落体试验,因此特别整理了《逻辑的胜利:⽐萨斜塔的⼩球落体试验》这篇⽂章给⼤家。
今天这篇关于“⾼斯”的⽂章,其实也来⾃与我给孩⼦讲的另外⼀个故事。
关于少年学霸⾼斯,有⼀个著名的段⼦是说他在读书时,有⼀次⽼师例⾏给他布置了三道课后作业题。
前两道题在两个⼩时内就边形。
19岁的⾼斯感到⾮常吃要求只⽤圆规和⼀把没有刻度的直尺,画出⼀个正17边形顺利完成了。
第三道题写在另⼀张⼩纸条上:要求只⽤圆规和⼀把没有刻度的直尺,画出⼀个正⼒。
时间⼀分⼀秒的过去了,第三道题竟毫⽆进展。
这位青年绞尽脑汁,但他发现,⾃⼰学过的所有数学知识似乎对解开这道题都没有任何帮助。
但困难激起了他的⽃志终于当窗⼝露出曙光时,青年长舒了⼀⼝⽓,他终于结完了这道难题。
当⾼斯见到⽼师时,他有些内疚和⾃责的对⽼师说:“您给我布置的第三道题,我竟然做了整整⼀个通宵,我辜负了您对我的栽培……”。
⽼师接过学⽣的作业⼀看,当即惊呆了。
导师激动地对他说:“你知不知道?你解开了⼀桩有两千多年历史的数学悬案!阿基⽶德没有解决,⽜顿也没有解决,你竟然⼀个晚上就解出来了。
你是⼀个真正的天才!”原来⽼师也⼀直想解开这道难题。
那天,他是因为失误,才将写有这道题⽬的纸条交给了学⽣。
据说⾼斯也视此为⽣平得意之作,还交待了要把正⼗七边形刻在他的墓碑上,但后来负责刻碑的⼈认为正⼗七边形实在和圆太像了,不容易分辨。
因此其⽤了多⾓形加以代替,以⽰纪念⾼斯的成就。
天纵君这⾥也特别找到了⾼斯墓地的照⽚,传说是否如此?⼤家可以仔细找找看看。
最后让我们⼀起⽤动图的⽅式,去欣赏⼀下这个经典⽽优美的尺规作图。
这样的尺规作图是如此经典⽽美丽,以⾄于它让我们深切的感受到了⼈的智慧所能达到的极限,体会到了⽤孩童都能看懂的⽅法和技巧去实现⼀个绚烂⽽复杂的架构。
由衷的向⾼斯、以及所有伟⼤的科学前辈们致敬!。
正十七边形尺规作图与详解.docx
实用标准文档解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯 (Carl Friedrich Gauss1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工的父算工人的周薪。
父算了好一会儿,于将果算出来了。
可是万万没想到,他身来幼嫩的童音:“爸爸,你算了,数是⋯⋯”父感到很惊异,赶忙再算一遍,果高斯的答案是的。
的高斯只有 3 !高斯上小学了,教他数学的老布特勒(Buttner)是一个度劣的人,他从不考学生的接受能力,有用鞭子学生。
有一天,布德勒全班学生算1+2+3+4+5+⋯⋯+98+99+100=?的和,并且威:“ 算不出来,就不准回家吃!”布德勒完,就坐在一旁独自看起小来,因他,做一道目是需要些的。
小朋友开始算:“ 1 + 2=3,3+3=6,6+4=10,⋯⋯”数越来越大,算越来越困。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身。
高斯:“老,我做完了,你看不?“做完了?么快就做完了?肯定是胡乱做的!”布德勒都没抬,手:“ 了,了!回去再算!”高斯站着不走,把小石板往前伸了伸:“我个答案是的。
”布德勒抬一看,大吃一惊。
小石板上写着5050 ,一点也没有!高斯的算法是1+ 2 + 3+⋯⋯+ 98 +99 + 100100+99 +98+⋯⋯+3+ 2+1101+ 101 + 101 +⋯⋯+101 +101 + 101 =101 ×100 =1010010100 ÷2= 5050高斯并不知道,他用的种方法,其就是古代数学家期努力才找出来的求等差数列和的方法,那他才八!1796 年的一天,德国哥廷根大学。
高斯吃完晚,开始做他独布置的三道数学。
前两道他不吹灰之力就做了出来了。
第三道写在另一小条上:要求只用和没有刻度的直尺,作出一个正十七形。
道把他住了——所学的数学知竟然解出道没有任何帮助。
一分一秒的去了,第三道竟毫无展。
正十七边形的故事
正十七边形的故事你知道正十七边形吗?这可不是个普通的多边形,它背后可有一段超酷的故事呢。
话说在数学的世界里,一直有着各种各样的挑战。
就像游戏里的超级关卡一样,正多边形的尺规作图就是这样的挑战。
对于一些简单的正多边形,像正三角形、正方形之类的,很早以前人们就知道怎么用圆规和直尺画出来了。
但是正十七边形,那可就难多了。
这时候呢,有个超级天才叫高斯。
高斯啊,那可是数学界的大神级人物。
他年轻的时候就特别牛,就像游戏里开了挂一样。
他就盯上了正十七边形这个难题。
别人都觉得这太难了,可能根本就做不到用尺规作图把正十七边形画出来。
可是高斯不这么想啊,他一头扎进这个难题里,在草稿纸上写了一堆密密麻麻的数学公式和符号,估计那些纸要是堆起来都能当枕头了。
然后呢,在一个星光璀璨的夜晚(这是我想象的,也许就是一个普普通通的白天),高斯终于找到了办法!他发现了可以用圆规和直尺画出正十七边形的方法。
这可不得了啊,就像在一个神秘的宝库里发现了绝世珍宝一样。
这个发现一下子震惊了整个数学界。
你想啊,在那之前,正十七边形就像一个隐藏在迷雾中的神秘怪物,大家都知道它存在,但是不知道怎么把它揪出来。
高斯呢,就像一个英勇的骑士,拿着尺规这两把宝剑,一下子就把这个怪物给征服了。
这让大家对数学的力量又有了新的认识。
而且啊,正十七边形这个事情还特别励志呢。
它告诉我们,那些看起来超级难,甚至好像不可能做到的事情,只要有像高斯这样聪明的脑袋,再加上一股不服输的劲儿,就有可能被攻克。
现在呢,正十七边形虽然没有像圆形或者正方形那样被我们随处可见地应用,但是它就像一颗闪耀在数学星空中的独特星星,激励着一代又一代的数学爱好者去探索那些未知的、充满挑战的数学世界。
说不定哪一天,你要是对数学产生了兴趣,也能像高斯一样,在数学的神秘大陆上发现属于自己的宝藏呢!。
正十七边形尺规作图与详细讲解
解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。
高斯和他的正十七边形
导师接过学生的作业一看,当即惊呆了。他用颤抖的声音对 青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,
回答道:“是我做的。但是,我花了整整一个通宵。”导师请他
坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再
做出一个正17边形。青年很快做出了一个正17边形。
导师激动地对他说:“你知不知道?你解开了一桩有两千多 年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟 然一个晚上就解出来了。你是一个真正的天才!”
原来,导师也一直想解开这道难题。那天,他是因为失误,才将写
有这道题目的纸条交给了学生。每当这位青年回忆起这一幕时,总是说:
“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远
也没有信心将它解出来”。这位青年就是数学王子高斯。
这个问题是高斯用代数的方法解决的,他也视此为生平
得意之作,还交待要把正十七边形刻在他的墓碑上,但后来
尺规作图对于学过几何的人来说都不陌生,它是指用没有 刻度的直尺和圆规作图。你也许可以用尺规作图作出正三
角形、正方形、正六边形等,但是你有没有想过用尺规作
图作正十七边形,甚至正十七边能不能用尺规作图作出来。
其实这一问题早在1796年就由德国著名的数学家高斯在他
19岁时解决,这其中还有一段趣闻:,一个很有数学天赋的 19岁青 年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。 前两道题在两个小时内就顺利完成了。第三道题写在另一张小纸条 上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。他 感到非常吃力。时间一分一秒的过去了,第三道题竟毫无进展。这 位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开 这道题都没有任何帮助。困难反而激起了他的斗志:我一定要把它 做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着 用一些超常规的思路去寻求答案。 当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难 题。见到导师时,青年有些内疚和自责。他对导师说:“您给我布 置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽 培……”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解读“数学王子”高斯正十七边形的作法(上)江苏省泰州市朱庄中学曹开清 225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。
有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。
父亲算了好一会儿,终于将结果算出来了。
可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。
这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。
有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。
小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。
但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。
高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。
”布德勒抬头一看,大吃一惊。
小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。
高斯吃完晚饭,开始做导师给他单独布置的三道数学题。
前两道题他不费吹灰之力就做了出来了。
第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。
这道题把他难住了——所学过的数学知识竟然对解出这道题没有任何帮助。
时间一分一秒的过去了,第三道题竟毫无进展。
他绞尽脑汁,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,他终于解决了这道难题。
当他把作业交给导师时,感到很惭愧。
他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,……”导师看完作业后,激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米得没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。
你是一个真正的天才!”原来,导师也一直想解开这道难题。
那天,他是因为拿错了,才将写有这道题目的纸条交给了学生。
在这件事情发生后,高斯曾回忆说:“如果有人告诉我,那是一道千古难题,我可能永远也没有信心将它解出来。
”1796年3月30日,当高斯差一个月满十九岁时,在期刊上发表《关于正十七边形作图的问题》。
他显然以此为自豪,还要求以后将正十七边形刻在他的墓碑上。
然而高斯的纪念碑上并没有刻上十七边形,而刻着一颗十七角星,原来是负责刻纪念碑的雕刻家认为:“正十七边形和圆太像了,刻出来之后,每个人都会误以为是一个圆。
”1877年布雷默尔奉汉诺威王之命为高斯做一个纪念奖章。
上面刻着:“汉诺威王乔治V. 献给数学王子高斯(Georgius V. rex Hannoverage Mathematicorum principi)”,自那之后,高斯就以“数学王子”着称于世。
二、高斯正十七边形尺规作图的思路(这里是纯三角法)作正十七边形的关键是作出cos172π,为此要建立求解cos 172π的方程。
设正17边形中心角为α,则17α=2π,即16α=2π-α 故sin16α=-sinα ,而sin16α=2sin8α cos8α =4sin4α cos4α cos8α =8 sin2α cos2α cos4α cos8α=16 sinα cosα cos2α cos4α cos8α 因sinα ≠0,两边除以sinα,有16cosα cos2α cos4α cos8α=-1 由积化和差公式,得4(cosα+cos3α)(cos4α+cos12α)=-1 展开,得4(cosα cos4α+cosα cos12α+cos3α cos4α+cos3α cos12α)=-1 再由积化和差公式,得2[(cos3α+cos5α)+(cos11+cos13α)+(cosα+cos7α)+(cos9α+cos15α)]=-1 注意到 cos11α=cos6α,cos13α=cos4α,cos9α=cos8α,cos15α=cos2α,有 2(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1设 a =2(cosα+ cos2α+cos4α+ cos8α),b =2(cos3α+ cos5α+cos6α+ cos7α),则 a +b =-1又ab =2(cosα+cos2α+cos4α+cos8α)·2(cos3α+cos5α+cos6α+co s7α)=4cosα(cos3α+cos5α+cos6α+cos7α)+4cos2α(cos3α+cos5α+cos6α+cos7α)+4cos4α(cos3α+cos5α+cos6α+cos7α)+4cos8α(cos3α+cos5α+cos6α+cos7α) 再展开之后共16项,对这16项的每一项应用积化和差公式,可得:ab =2 [(cos2α+cos4α)+(cos4α+cos6α)+(cos5α+cos7α)+(cos6α+cos8α)+(cosα+cos5α)+(co s3α+cos7α)+(cos4α+cos8α)+(cos5α+cos9α)+(cosα+cos7α)+(cosα+cos9α)+(cos2α+cos10α)+(cos3α+cos11α)+(cos5α+cos11α)+(cos3α+cos13α)+(cos2α+cos14α)+(cosα+cos15α)]注意到cos9α=cos8α,cos10α=cos7α, cos11α=cos6α,cos13α=cos4α,cos14α=cos3α,cos15α=cos2α,有ab =2×4(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-4 因为cosα+cos2α+cos8α=(cos172π+cos 174π)+cos 1716π=2cos17πcos 173π-cos 17π=2cos 17π(cos 173π-21)又 0 < 173π < 3π < 2π所以cos 173π> 21即cosα+cos2α+cos8α > 0 又因为 cos4α=cos178π> 0 所以 a =cosα+cos2α+cos4α+cos8α > 0 又 ab =-4< 0 所以有a > 0, b< 0 可解得 a =2171+-,b =2171-- 再设c =2(cosα+cos4α),d =2(cos2α+cos8α), 则c +d =acd =2(cosα+ cos4α)·2(cos2α+ cos8α)=4 (cosαcos2α+cosαcos8α+cos4αcos2α+cos4αcos8α)=2 [(cosα+cos3α)+(c os7α+cos9α)+(cos2α+cos6α)+(cos4α+cos12α)] 注意到cos9α=cos8α, cos12α=cos5α,有cd =2[(cosα+cos3α)+(cos7α+cos8α)+(cos2α+cos6α)+(cos4α+cos5α)] =2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α) =-1因为 0 < α < 2α < 4α < 8α < π 所以 cosα > cos2α,cos4α > cos8α 两式相加得 co sα+cos4α> cos2α+cos8α 或2(cosα+cos4α)> 2(cos2α+cos8α)即 c > d,又cd=-1 < 0 所以有c > 0,d < 0可解得c=24 2++aa,【d=24 2+-aa】类似地,设e=2(cos3α+cos5α),f=2(cos6α+cos7α)则e+f=bef=2(cos3α+cos5α)·2(cos6α+cos7α)=4(cos3αcos6α+cos3αcos7α+cos5αcos6α+cos5αcos7α)=2 [(cos3α+cos9α)+(cos4α+cos10α)+(cosα+cos11α)+(cos2α+cos12α)]注意到cos9α=cos8α,cos10α=cos7α,cos11α=cos6α,cos12α=cos5α,有ef=2[(cos3α+cos8α)+(cos4α+cos7α)+(cosα+cos6α)+(cos2α+cos5α)]=2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1因为0 < 3α < 5α < 6α < 7α < π所以有cos3α > cos6α,cos5α > cos7α两式相加得cos3α+cos5α> cos6α+cos7α2(cos3α+cos5α)> 2(cos6α+cos7α)即 e > f,又ef=-1 < 0所以有e > 0, f < 0可解得e=24 2++bb,【f=24 2+-bb】由c =2(cosα+cos4α),得cosα+cos4α=2c ,即cos 172π+cos 178π=2c e =2(cos3α+cos5α),应用积化和差公式,得cosαcos4α=4e ,即 cos 172πcos 178π=4e因为0<172π<178π<2π,所以cos 172π>cos 178π>0所以cos 172π=442e c c -+,【cos 178π=442ec c --】于是,我们得到一系列的等式:a =2171+-,b =2171--,c =242++a a ,e =242++b b ,cos 172π=442ec c -+有了这些等式,只要依次作出a 、b 、c 、e ,便可作出cos 172π。