热分析谱图综合解析(精品课件)
DSC-TGA谱图综合解析
稳定化PP的 等温TG结果
Oligomer content, % wt
0.8
无稳定剂
0.7
加稳定剂
0.6
0.5
0.4
0.3
0.2 160 180 200 220 240 260 280
T(isothermal), C
稳定剂有时间限制,超过1000min失效。
Weight (wt%)
100.0
99.5
PP sample
250C
加稳定剂
等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
Time (min)
气氛的影响1.00空气 加稳定剂Stabilizaztion system: 0.08 %wt Ionol 0.08 %wt Irganox 1010
a. 使起始降解温度升高到240C b. 保证稳定时间为1000小时 c. 仅在惰性气氛中有效
案例3 ASB的热稳定性
背景:非极性聚合物如PP作印刷材料时需要极 性 化 。 用 ASB ( 三 -azidosulfonylbenzoic acid )羧基化是途径之一。 目的:查明ASB本身及在PP上接枝后的热稳定 性。
1.6
1.5
编辑课件
15
TGA曲线综合解析
案例1 环氧树脂热降解机理
O CH2 CH CH2 O
O O CH2 CH CH2
O O CH2 CH CH2
CH2 CH3 C CH3 CH3 C CH3
CH3 C CH3 CH2
谱图综合解析课件
4)核磁共振碳谱 13C NMR
q
t
d
s
δ
偏共振多重性
归属
推断
22
q
CH3
CH3-CH
30
t
CH2
-CH2-C=O
68
d
CH
O-CH-CH3
172
s
C
C=O碳
*
5)推断结构
6)质谱( MS)验证
101
143
119
74
59
43
116据如下谱图确定结构,并说明依据。
*
例7.化合物C11H14O2 ,根据如下谱图确定结构,并说明依据。
q
t
t
t
d
d
s
s
178(M)
133
104
91
77
65
51
*
3H(t)
2H(q)
2H(t)
2H(t)
2H(m)
3H(m)
3028
2982
1736
1601
1497
1455
1373
1242
1040
699
751
*
例7解:
1)分子式: C11H14O2
λmax
εmax
λmax
εmax
268
101
252
153
264
158
248
109
262
147
243
78
257
194
*
3)红外光谱(IR)
3030 cm-1, 1500cm-1, 1500cm-1 芳环特征吸收
01
1225 cm-1, 1100 cm-1,C-O-C伸缩振动
DSC-TGA谱图综合解析
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
TGA Kinetics - Heating Rate vs. Temperature
a. 使起始降解温度升高到240C b. 保证稳定时间为1000小时 c. 仅在惰性气氛中有效
案例3 ASB的热稳定性
背景:非极性聚合物如PP作印刷材料时需要极 性 化 。 用 ASB ( 三 -azidosulfonylbenzoic
COOH
acid )羧基化是途径之一。
目的:查明ASB本身及在PP上接枝后的热稳定性。
d Aexp( Ek )(1 )n
dt
RT
对等式两边进行微分,取T=TP,这时,
d dt
d dt
0
得到下式:
dT
Ek dt RTP2
A n(1
P
) n1
exp(
E RTP
)
n(1p )n1 与 无关,其值近似等于1,则上式简化为:
Ek
dt dT
k(T ) Aexp( E ) RT
Kissinger方程
固化模型:n级反应和自催化反应类型
n级反应:
d k(T )(1 )n
dt
自催化反应:
f ( ) (k1 k2 m )(1 )n
m和n为反应级数,k1和k2是具有不同活化能和指前因子的反应速率常数。
热分析技术PPT课件
从熔融热焓法得到的结晶度定义为
c
Ha H H a Hc
9/18/2019
20
热重(TG)
在程序控温下测量试样质量对温度 的变化。
9/18/2019
21
TG仪器
热重分析仪的基本部件是热天平。根据结 构的不同,热天平可分为水平型、托盘型 和吊盘型三种。
9/18/2019
22
9/18/2019
9/18/2019
2
热分析技术
热分析(Thermal Analysis, TA)是指在程序控 温下测量物质的物化性质与温度关系的一类技术。
根据所测物性的不同,广义的热分析方法可分为9 类17种,但狭义的热分析技术只限于差热分析 (Differential thermal analysis, DTA)、差示扫 描量热(Differential scanning calorimetry, DSC)、热重分析(Thermogravimetry, TG)、 热机械分析(Thermomechanical analysis, TMA) 和动态热机械分析(Dynamic mechanical analysis, DMA)等。
9/18/2019
E'(elastic)
E(" viscous) 48
动态模量
E’ 为弹性模量,又称为储能模量,代表材 料的弹性; E” 为黏性模量,又称为损耗模量,代表材 料的黏性。 损耗模量对储能模量的比值称为损耗因子 或损耗角正切,即
tan E"/ E' DMA测试通常记录的是动态(储能、损耗) 模量对温度、频率等的变化。
9/18/2019
31
2019/9/18
热分析谱图综合解析
稳定剂有时间限制,超过1000min失效。
Weight (wt%)
100.0
99.5
PP sample
250C
加稳定剂
等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
热分解反应
一般化学反应的速度v与浓度、温度等有关,速度与浓 度的关系即质量作用定律:
v = k(1- )n
为失重率,1-为未失重率
某固态聚合物A热分解后生 成固态产物B和气态产物C W0: A起始重量 W∞:B的重量
样品的失重率可表示为:
W0 W W
W0 W W
(1)
由质量作用定律得到
d k(1- )n (2)
Weight (%)
100
90
80
70
12.5C/min
60
10C/min
7.5C/min
50
5C/min
2.5C/min
40
30
Nitrogen
47%
100 200 300 400 500 600 700
Temperature C
氮气中失重也分两个阶段。第一阶段也到430C,失重47% 第二阶段失重慢于第一阶段,至700C重量保持>30%
1.氧气促进降解 2.稳定剂仅在惰性环境中有效
结论
1. 聚丙烯热失重有两种主要机理:脱低聚物与降解 2. 纯PP的起始降解温度为190C 3. 恒温条件下线性降解,升温条件下降解加速 4. 氧气促进降解 5. 稳定剂的作用:
综合热分析PPT课件
应;注意防止爆炸和中毒。
a
37
五、坩埚类型的选择
常用: Al Al2O3 PtRh
a
38
1、PtRh 坩埚
优点:传热性最好,灵敏度最高,热阻小,峰分 离能力佳,温度范围宽广(对PtRh支架一般可 用到1400℃)。
• 慢速升温:有利于DTA、DSC、DTG相邻峰的分 离;TG相邻失重平台的分离;DSC 基线漂移较小, 但灵敏度下降。
对于 TG 测试,过快的升温速率有时会导致丢失某 些中间产物的信息。一般以较慢的升温速率为宜。
对于 DSC 测试,在传感器灵敏度足够的情况下,
一般也以较慢的升温速率a 为佳。
32
2、样品用量
• 对于TG测试(气固反应,或有气体产物逸出的热分解反
应),若样品量较大堆积较高,则根据实际情况适当选
择堆积紧密程度。
a
35
5、 气氛
• 根据实际需要选择动态气氛、静态气氛或真空气氛。
• 静态、动态与真空比较:静态下气体产物扩散不易,分压升高,反应 移向高温;且易污染传感器。真空下加热源(炉体)与样品之间唯有通 过辐射传热,温度差较大。一般非特殊需要,推荐使用动态吹扫气氛。
(a)快速升温 (b)慢速升温
(c)慢速升温a快记录纸速
17
(2)试验气氛
空气、O2:氧化 H2:还原 N2、He:惰性
a
18
3、影响TG曲线的试样因素
(1)试样量 一般来讲,试样用量增加会使TG曲 线向高温方向偏移。当试样用量在热天平灵敏度范 围内的话,试样用量尽量少为好。
(2)试样粒度 一般来讲,粒度小的比粒度大的热 分解温度低。
热分析谱图综合解析(精品课件)
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
TGA Kinetics - Heating Rate vs. Temperature
1000/T (K-1)
1.6 1.4
1.92
1.94
1.96 1.98 2.00 2.02
1000/T (K-1)
2.04
2.06
Kissinger法和Ozawa法求反应活化能的线性回归图
表观动力学参数计算结果EK 52.46 kJ/mol,E0 57.05 kJ/mol,反应级数 0.991。
Heat Flow(W/g)
d dH 1
dt dt H
ΔH代表整个固化反应的放热量,dH/dt为热流速率,dα/dt为固化反应 速率。
(3)反应速率方程可用下式表示,其中α为固化反应程度,f(α)为α的 函数,其形式由固化机理决定,k (T)为反应速率常数,形式由
Arrhenius方程决定。
d d k(T ) f ()
ln
AR Ek
Ek RTP
式中,β ——升温速率,K/min; Tp——峰顶温度,K; A——Arrhenius指前因子,1/s; Ek——表观活化能,J/mol; R——理想气体常数,8.314 J·mol-1·K-1; f(α)——转化率α(或称作固化度)的函数。
Kissinger方法是利用微分法对热分析曲线进行动力
热分析图谱
热分析图谱在无机材料的研究过程中, 经常会遇到一些与热量的吸收和释放、质量的增减以及几何尺寸的伸缩等有关的化学或物理变化,如分解反应、相转变、熔融、结晶和热膨胀等。
为了探索合理的制备工艺和深入了解材料的化学物理性质, 有必要对这些过程进行较为精细的研究, 这些研究离不开热分析技术。
热分析技术为材料的研究提供了一种动态的分析手段, 它简明实用, 目的性强, 因此广为研究人员使用。
热分析技术已经成为材料研究中不可缺少的一种分析手段。
材料研究过程中, 经常需要判断某些特定过程的转化温度, 如化学反应温度、相转变温度、熔融温度、玻璃化转变温度、吸脱附温度, 以及由非晶态向晶态转变的结晶温度等。
这些变化过程往往伴随着热量的释放或吸收, 有些过程还可能伴随着质量的变化, 因此为得到较为全面的分析会将几种热分析技术结合起来。
下面是热分析技术在无机方面应用的一些例子。
差热分析技术在玻璃工业中的应用差热分析对于非晶态玻璃的研究,主要用于测定玻璃的转变温度Tg 、析晶温度Tx 和熔化温Tm ,因为在这些特征温度点有明显的热效应发生。
1)用溶胶-凝胶法分别制备了含有P 2O 5和不含P 2O 5的两种CaO-P 2O 5-SiO 2系统生物活性玻璃,对凝胶采用TG-DTA 技术研究了从凝胶到玻璃转变的热行为。
如图,80S1和 80S2玻璃的组成如下表所示:上图所示凝胶的热反应机理为:凝胶在热处理过程中,首先是残余的水分和乙醇的挥发;接着TEOS(正硅酸四乙酯)中的酯类基团开始氧化分解,对80S2,300-420℃之间还持续着TEP(磷酸三乙酯)中乙氧基基团的氧化挥发;到470℃硝酸盐和磷酸盐分解,随着残余物的挥发排除,内部粒子逐步烧结熔成一体,内部宏观孔隙相继消失而致密化,最终形成连续的玻璃体结构,以H2O和ROH物质形式存在的残留OH,OR基团的排除过程伴随着一个附加的聚合反应。
图中(a)与(b)相比主要的不同点在于:300-420℃之间,b除了与a有一样的TEOS氧化分解外,还有TEP中乙基基团的氧化分解;在570℃b中出现吸热效应是由于磷离子脱去残余羟基并聚合形成了磷氧四面体,残余羟基以HOH形式逸出。
热分析ppt课件
我们可选择不同的温度,得到其等温结晶曲线,分别 求出其n、Z和K(结晶速率常数)值。利用阿累尼乌
斯公式: K Aexp(E / RT) 1
从K与 T 的关系还可以求出该物质的结晶活化能E。式
中A为频率因子,E为结晶活化能。
30
1 2
问题:非晶和结晶的全同立构 聚苯乙烯的动态力学模量曲 线有何区别,为什么?
图4-31 全同立构聚苯乙烯的动态力学性
能.1.非晶的;2.结晶的
25
三、应用题
1. TG法研究高聚物裂解反应动力学和测定活化能
反应动力学方程: v d kf ( )
失重率 w0 wtdt
w0
阿累尼乌斯公式:
17
7’.热固性树脂(如环氧树脂)的交 联固化过程的研究 除了DSC外,动态力学方法也是 研究环氧树脂固化反 应过程、 固化动力学的一种重要手段。
0.5
1.5
0
-0.5
1 LOG p2 -1.0
-1.5
-2.0
................................................................
12
DSC /(mW/mg) 放热
0.9
4.计算样品结晶度
0.8
面积: 45.05 J/g
0.7
面积: -29.13 J/g
0.6
0.5
[4.1]
0.4
0.3
结晶度: 11.37 %
0.2
0.1
50
100
150
200
250
温度 /℃
14
5.什么叫过冷度?它的大小表征什么? 过冷度:Td=Tm-Tc 采用的热分析方法及吸放热方向
谱图综合解析实例 PPT
查贝农表: C8H19N
u=1+8+1/2(1-19)=0
❖ ~2900 cm-1,2800cm-1,饱合碳氢伸缩振动
❖ 1450cm-1, CH2,CH3变形振动 ❖ 1380cm-1,双峰,CH3变形振动 ❖ ~1200 cm-1, C-N伸缩振动
3)核磁共振碳谱解析
分子中有8个碳, 13C NMR中只有4个峰,分子有对称性。
• 3、 活泼氢的识别 • OH,NH2,COOH,CHO可由IR,1N NMR谱识别。 • 4、 13C NMR提供的信息 • 碳的种类,数目,碳原子上氢原子的数目; • 5、 1H NMR提供的信息 • 氢原子种类,氢原子数目之简比,从氢的偶合裂分的
情况,得到有关结构的进一步信息。 • 6、 综合分析
• ②氢核磁共振波谱观测化学位移在6、 6-9、 0附近的芳烃质子的 谱峰,烷基单取代一般产生一个单峰(宽);对位取代一般产生四个谱 峰;其他取代类型峰形都较复杂。
• ③碳核磁共振波谱观测化学位移在110-165ppm 附近的芳烃碳的 谱峰,一般取代碳原子的化学位移都明显移向低场且偏共振去藕时 为单峰。
92
m/z 2
2
5
10
9
8
7
6
5
4
3
2
1
0
化学位移 δppm
例2解:
1)确定分子式 无分子离子峰,只能算出最简式。
C:70、13×1/12=5、8
H:7、14
Cl:22、74×1/35、5=0、 64
5.8 9
0.64 7.14
11
C9H11Cl
0.64 0.64 1
最简式:M=154
0.64
DSC-TGA谱图综合解析ppt课件
k(T ) Aexp( E ) RT
Kissinger方程
固化模型:n级反应和自催化反应类型
n级反应:
d k(T )(1 )n
dt
自催化反应:
f ( ) (k1 k2 m )(1 )n
m和n为反应级数,k1和k2是具有不同活化能和指前因子的反应速率常
lnβ/Tp2
lnβ
3.2 -9.4
3.0
-9.6
2.8
-9.8
2.6
-10.0
2.4
-10.2
2.2
-10.4 -10.6
y=13.797-12.009x R=0.99834
2.0
1.8
y=28.235-13.01357x
R=0.99862
-10.8
1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06
d(ln )
d(1/Tp )
Ea,k nR
2Tp
利用了DSC曲线的峰值温度TP与升温速率β的关系,当E/(nR)>>2Tp, 作lnβ-1/Tp线性回归,得斜率为-E/(nR),从而可以计算出反应级数。
固化体系动态DSC曲线分析
exo
Heat Flow(W/g)
0.2
案例2 PP的低聚物含量与热稳定性
研究目的: 1. PP热失重过程与机理 2. 稳定剂的作用
等温TG。160 C:降0.3wt%后稳定。 190C ,线性发展。外推得低聚
物含量:w1, w2, …随温度升高。表明失重有两种机理: (1)低聚物,快 降;(2)高聚物,线性
Weight (wt%)
《谱图综合解析》PPT课件
第六章 谱图综合解析
精选ppt
1
§6.1 综合解析四种谱图的步骤
一、各种图谱解析的主要着眼点 1. 质谱(MS) (1)从M.+--分子量 (2)从(M+2)/M、(M+1)/M查贝农表,估计C数 (3)从M、M+2、M+4--Cl、Br、S (4)氮律 (5)主要碎片离子峰--官能团
4
125.5
1
9
10.0
1
5
36.0
1
精选ppt
6
精选ppt
7
精选ppt
8
解:
1. 从分子式为 C11H16 ,计算 Ω=4; 2. 结构式推导 UV : 240~275 nm 吸收带具有精细结构,表明化合物为芳烃; IR : 695、740 cm-1 表明分子中含有单取代苯环; MS : m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91 的苄基离子; 13C-NMR :在(40~10)ppm 的高场区有5个 sp3 杂化碳原子; 1H-NMR: 积分高度比表明分子中有 1 个 CH3 和 4 个 -CH2-,其中 (1.4~1.2)ppm 为 2 个 CH2 的重叠峰; 因此,此化合物应含有一个苯环和一个 C5H11 的烷基。 1H-NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:
2. 初步查看、分析四种谱图,从而判断化合物是脂肪族还是芳香族、是 否含不饱和键等等一些明显的结论。
3. 仔细辨认四种谱图,通常利用一种谱图的明显特征来印证另一谱图的 更精细的内容,从而了解样品分子中的官能团及其取代关系。
4. 利用已确定的结构单元,组成该化合物的几种可能结构。
热分析谱图综合解析(汇总).ppt
d dH 1
dt dt H
ΔH代表整个固化反应的放热量,dH/dt为热流速率,dα/dt为固化反应 速率。
(3)反应速率方程可用下式表示,其中α为固化反应程度,f(α)为α的 函数,其形式由固化机理决定,k (T)为反应速率常数,形式由
Arrhenius方程决定。
d d k(T ) f ()
Stability
100
0.5% 1.0
2.5%%
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
c
13
TGA Kinetics - Heating Rate vs. Temperature
1000/T (K-1)
1.6 1.4
1.92
1.94
1.96 1.98 2.00 2.02
1000/T (K-1)
2.04
2.06
Kissinger法和Ozawa法求反应活化能的线性回归图
表观动力学参数计算结果EK 52.46 kJ/mol,E0 57.05 kJ/mol,反应级数 0.991。
c
9
Heat Flow(W/g)
等温DSC曲线
0.2
d
0.0 c
b
-0.2
a
-0.4
a - 195 oC b - 200 oC c - 205 oC d - 210 oC
-0.6 0
20
DSC-TGA谱图综合解析
等温DSC曲线
0.2
d
0.0 c
b
-0.2
a
-0.4
a - 195 oC b - 200 oC c - 205 oC d - 210 oC
-0.6 0
20
40
60
80
T (min)
编辑课件
10
TGA Kinetics Example
Wire Insulation Thermal
Stability
100
PP sample
250C加稳定剂Fra bibliotek等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
Time (min)
气氛的影响
1.00
空气 加稳定剂
Stabilizaztion system: 0.08 %wt Ionol 0.08 %wt Irganox 1010
lnβ/Tp2
lnβ
3.2 -9.4
3.0
-9.6
2.8
-9.8
2.6
-10.0
2.4
-10.2
2.2
-10.4 -10.6
y=13.797-12.009x R=0.99834
2.0
1.8
y=28.235-13.01357x
R=0.99862
1.6 -10.8
1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06
TEMPERATURE (°C)
260 280 300 320
热分析谱图解析
PP sample
250C
加稳定剂
等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
Time (min)
气氛的影响
1.00
空气 加稳定剂
Stabilizaztion system: 0.08 %wt Ionol 0.08 %wt Irganox 1010
ln
AR Ek
Ek RTP
式中,β ——升温速率,K/min; Tp——峰顶温度,K; A——Arrhenius指前因子,1/s; Ek——表观活化能,J/mol; R——理想气体常数,8.314 J·mol-1·K-1; f(α)——转化率α(或称作固化度)的函数。
Kissinger方法是利用微分法对热分析曲线进行动力
1.6
1.5
TGA曲线综合解析
案例1 环氧树脂热降解机理
Weight (%)
100
80
60
12.5C/min
40
10C/min 7.5C/min
5C/min
20
2.5C/min
Static air
0 100 200
300 400 500 600
Temperature (C)
47%
700
空气中失重分两个阶段。第一阶段到430C,失重47% 第二阶段失重快于第一阶段,完全失重
结论
第一阶段为弱键的断裂,如–OH, –CH2–, –CH3, C–N, –S–与 C–O–C等, 脱除非碳原子,剩余碳骨架,该过程 与气氛无关。 第二阶段为碳的氧化,与氧气关系密切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat Flow(W/g)
等温DSC曲线
0.2
d
0.0 c
b
-0.2
a
-0.4
a - 195 oC b - 200 oC c - 205 oC d - 210 oC
-0.6 0
20
40
60
80
T (min)
精品 PPT 模板
TGA Kinetics Example
Wire Insulation Thermal
5 10 15 20
固化温度/℃
Ti
Tp Tf
126 164 200
外推温度/℃
Ti
Tp
Tf
140 183 215 118.5 153.5 192.5
149 195 224
155 204 230
按照Kissinger和Ozawa方程,分别以l-n( / TP2对) 1/Tp和lnβ对1/Tp作线性 回归,求得回归方程以及相关系数,由直线斜率求出表观活化能Ek和E0, 从截距求得指前因子A。通过Crane法,可以求得固化反应级数n。
Slope 精品 PPT 模板
1000000
TGA Kinetics - Estimated Lifetime
精品 PPT 模板
lnβ/Tp2
lnβ
3.2 -9.4
3.0
-9.6
2.8
-9.8
2.6
-10.0
2.4
-10.2
2.2
-10.4 -10.6
y=13.797-12.009x R=0.99834
2.0
1.8
y=28.235-13.01357x
R=0.99862
-10.8
1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06
数。
d Aexp( Ek )(1 )n
dt
RT
d dtBiblioteka d dt0对等式两边进行微分,ER取k TdTdP2T=t TP,An这(1时, P
)
n1
得到下式:
exp( E ) RTP
精品 PPT 模板
n(1p与)n1无关,其值近似等于1,则上式简化为:
Ek Aexp( E )
RTP2
RTP
TGA Kinetics - Heating Rate vs. Temperature
460
440
10
420
400
380
360
Ln (HEAT RATE) (°C/min)
5
20
10
5
2.5
Conversion
1.0
0.5
2
1
1.4
1.5
1.6
1000/T (K)
Activation
Energy
(Ea)
精品 PPT 模板
Ozawa方程:反应活化能
Ozawa法:避开了反应机理函数直接求出E值,避免了因反应机理函
数不同可能带来的误差。
Eo
R 1.052
d ln
d (1/ Tp )
根据Ozawa公式对lnβ对1/Tp作线性回归,从斜率可求出表观活化能
CraEon。e方程:固化反应级数
d(ln )
对该式两边取对数,得到最终的Kissinger方程:
ln TP2
ln
AR Ek
Ek RTP
式中,β ——升温速率,K/min; Tp——峰顶温度,K; A——Arrhenius指前因子,1/s; Ek——表观活化能,J/mol; R——理想气体常数,8.314 J·mol-1·K-1; f(α)——转化率α(或称作固化度)的函数。
精品 PPT 模板
Kissinger方法是利用微分法对热分析曲线进行动力
学分析的方法,利用热分析曲线的峰值温度Tp与升温 速率β的关系。 按Kissinger公式以不同升温速率β得到DSC曲线,找 出相应的峰值温度,然后对1/Tp作线性回归,可得到 一条直线,由直线斜率求出表观活化能Ek,从截距求 得指前因子A。 A也可以通过下式进行计算:
1000/T (K-1)
1.6 1.4
1.92
1.94
1.96 1.98 2.00 2.02
1000/T (K-1)
2.04
2.06
Kissinger法和Ozawa法求反应活化能的线性回归图
表观动力学参数计算结果EK 52.46 kJ/mol,E0 57.05 kJ/mol,反应级数 0.991。
精品 PPT 模板
0.0
b-10 ℃/min
c-15 ℃/min
-0.2
d-20 ℃/min
a
DGEBF/DDS
-0.4
b
-0.6
c
-0.8
d
-1.0
-1.2
-1.4
150
200
250
300
Temperature(℃)
不同升温速率下的DSC曲线
精品 PPT 模板
固化温度
固化体系
DGEBFPES/BAF
β/℃·min-1
热分析谱图综合解析及在高分子 材料研究中的应用
DSC TGA
精品 PPT 模板
固化工艺及固化反应动力学
固化(聚合)动力学基础
固化反应是否能够进行由固化反应的表观活化能来决定,表观活化能 的大小直观反映固化反应的难易程度。
用DSC曲线进行动力学分析,首先要遵循以下几点假设: (1)放热曲线总面积正比于固化反应总放热量。 (2)固化过程的反应速率与热流速率成正比。
dt dT
精品 PPT 模板
k(T ) Aexp( E ) RT
Kissinger方程
固化模型:n级反应和自催化反应类型
n级反应:
d k(T )(1 )n
dt
自催化反应:
f ( ) (k1 k2 m )(1 )n
m和n为反应级数,k1和k2是具有不同活化能和指前因子的反应速率常
d dH 1
dt dt H
ΔH代表整个固化反应的放热量,dH/dt为热流速率,dα/dt为固化反应 速率。
(3)反应速率方程可用下式表示,其中α为固化反应程度,f(α)为α的 函数,其形式由固化机理决定,k (T)为反应速率常数,形式由
Arrhenius方程决定。
d d k(T ) f ()
Stability
100
0.5% 1.0
2.5%%
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
精品 PPT 模板
d(1/Tp )
Ea,k nR
2Tp
利用了DSC曲线的峰值温度TP与升温速率β的关系,当E/(nR)>>2Tp, 作lnβ-1/Tp线性回归,得斜率为-E/(nR),从而可以计算出反应级数。
精品 PPT 模板
固化体系动态DSC曲线分析
exo
Heat Flow(W/g)
0.2
a- 5 ℃/min