材料性能学复习重点

合集下载

材料性能学复习资料.

材料性能学复习资料.

d g
o
f h
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
bt
o
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)拉伸的唯一强度指标。
值记作 ,称b为材料的抗拉强度(或强度极限),
它是衡量材料强度的又一个重要指标。
(4)缩颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的, 曲线到达e点,在试件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上
升,说明要使应变增加,必须增加应力,材料 又恢复了抵抗变形的能力,这种现象称作强化, ce段称为强化阶段。曲线最高点所对应的应力
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
工程应用:冷作硬化
e
d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:

材料物理性能总复习

材料物理性能总复习

材料性能学总复习
3)铁磁性:即使在较弱的磁场内也可以得到极高的磁化强度,而 且当外磁场移去后,仍可保留极强的磁性
铁磁体的磁化率为正值,而且很大,但当外场增大时,由于磁化 强度迅速达到饱和,其磁化率变小 铁磁性物质很强的磁性来自于其很强的内部交换场,自发磁化是 铁磁物质的基本特征 铁磁性物质的铁磁性只在某一温度以下才表现出来,超过这一温 度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发 磁化强度变为0,铁磁性消失,这一温度称为居里点Te 4)反铁磁性:
材料的热学性能
材料的热学性能是表征材料与热相互 作用行为的一种宏观特性。
热容:在没有相变或化学反应的条件 下,材料温度升高1K所吸收的热量Q。 热膨胀:物体的体积或长度随温度的 升高而增大的现象。 热传导:当固体材料的两端存在温差 时,热量会从热端自动地传向冷端的现象。 材料性能学总复习
2、导电性本质因素
i ni qi i
i i
决定材料导电性好坏的本质因素有两个:
载流子浓度 载流子迁移率
温度、压力等外界条件,以及键合、成分等材料 因素都对载流子数目和载流子迁移率有影响。任何提 高载流子浓度或载流子迁移率的因素,都能提高电导 率,降低电阻率。
材料性能学总复习

磁畴:磁性材料中磁化方向一致的小区域
• 磁畴结构:各个磁畴之间彼此取向不同,首尾相接,形成闭 合的磁路,使磁体在空气中的自由静磁能下降为0,对外不显现磁性, 磁畴之间被畴壁隔开,畴壁实质上是相邻磁畴间的过渡层
• 磁畴成因:大量实验证明,磁畴结构的形成是由于这种磁体 为了保持自发磁化的稳定性,必须使强磁体的能量达到最低值,因而 就分裂成无数微小的磁畴 • 磁畴影响因素:畴壁的厚度取决于交换能和磁结晶各向异性 能平衡的结果,实际材料中的畴结构,受到材料的尺寸、晶界、第二 相、应力、掺杂、缺陷等的显著影响,使畴结构复杂化

新版材料性能学重点(完整版)-新版.pdf

新版材料性能学重点(完整版)-新版.pdf

7、 努氏硬度适用于测定表面渗层、镀层及淬硬层的硬度,渗层截面上的硬度分布
8、 维氏硬度
维氏硬度的试验原理与布氏硬度基本相似, 是根据压痕单位面积所承受的载荷来计算硬
度值。维氏硬度试验所用的压头是两相对面夹角 α 为 136°的金刚石四棱锥体。在载荷 F 作
用下,试样表面被压出一个四方锥形压痕,测量压痕的对角线长度,计算压痕表面积
10、 包申格效应 :材料经预先加载产生少量塑性变形(残余应变小于
4%),而后同向
加载,规定残余伸长应力,反向加载,规定残余伸长应力降低的象。
原因:预塑性变形,位错增殖、运动、缠结;
同相加载,位错运动受阻,残余伸长应
力增加;反向加载,位错被迫作反向运动,运动容易残余伸长应力降低。
可以通过热处理加以消除。 对材料进行较大的塑性变形或对微量塑变形的材料进行再结
时突然下降, 随后, 在外力不增加或上下波动的情况下试样可以继续伸长变形,
这种现象称
为材料在拉伸实验时的屈服现象
14、 屈服强度 材料屈服时所对应的应力值也就是材料抵抗起始塑性变形或产生微量的塑性变形的能 力,这一应力值称为材料的屈服强度(屈服点)
15、 影响金属材料屈服强度的因素 (1) 晶体结构 (2) 晶界与亚结构 (3) 溶质元素 (4) 第二相 (5) 温度 (6) 应变速率与应力状态
比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比
刚度
3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③
化学成分
(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不
大)
4、 比例极限和弹性极限
比例极限 σ p 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-

材料性能学复习重点

材料性能学复习重点

第一章证明题 显然,真应力总是大于工程应力,真应变总是小于工程应变。

缩颈的条件: 产生缩颈的载荷为 影响材料弹性模数的因素: 1、键合方式和原子结构:a 、以共价健、离子键、金属键结合的材料有较高的弹性模量。

b 、以分子键结合的材料,弹性模量较低。

()εσσσ+=∆+==⋅===10000000LLL L LA A A F A F S AL L A ()ε+====⎰⎰1ln ln 00l ll dl de e ll en endede A dA l dl de endeA dA de e F n dA A F e denKAe A dAKe A de KAne dA Ke dF KAe F Ke S SA F n nn n nn ==+--===+=⋅+=+⋅=+====-00001()()nnn b ne b b b bnb bn b b b b n n b b e n K e Kn e e A A A A e A A KnA Kn A S A F Kn Ke S b ⎪⎭⎫⎝⎛===========---σσσ00lnc、原子结构:a)非过渡金属(b)过渡族金属:原子半径较小,且d层电子引起较大的原子间结合力,弹性模数较高。

且当d层电子等于6时,E有最大值2、晶体结构:a、单晶体材料,由于在不同的方向上原子排列的密度不同,故呈各向异性。

b、多晶体材料,E为各晶粒的统计平均值,伪各向同性。

c、非晶态材料弹性模量各向同性。

3、化学成分:(引起原子间距或键合方式的变化)(1)纯金属主要取决于原子间的相互作用力。

(2)固溶体合金:主要取决于溶剂元素的性质和晶体结构,弹性模量变化不大(3)两相合金:与第二相的性质、数量、尺寸及分布状态有关。

(4)高分子:填料对E影响很大。

4.微观组织:金属:微观组织对弹性模量的影响较小晶粒大小对E无影响;陶瓷:工程陶瓷弹性模数与相的种类、粒度、分布、比例、气孔率等有关。

材料物理性能复习重点

材料物理性能复习重点

1.热容:热容是使材料温度升高1K所需的热量。

公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。

在加热过程中过程不同分为定容热容和定压热容。

2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。

3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。

5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。

2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。

3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。

因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。

6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。

爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。

爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。

温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。

材料物理性能期末复习考点

材料物理性能期末复习考点

材料物理性能期末复习考点
1.力学性能
-弹性模量:描述材料在受力后能恢复原状的能力。

-抗拉强度和屈服强度:材料在受拉力作用下能够承受的最大应力。

-强度和硬度:表示材料对外界力量的抵抗能力。

-延展性和韧性:描述材料在受力下发生塑性变形时的能力。

-蠕变:材料在长期静态载荷下发生塑性变形的现象。

2.电学性能
-电导率:描述材料导电的能力。

-电阻率:描述材料导电困难程度的量。

-介电常数和介电损耗:材料在电场中储存和散失电能的能力。

-铁电性和压电性:描述材料在外加电场或机械压力下产生极化效应的能力。

-半导体性能:半导体材料的导电性能受温度、光照等因素的影响。

3.热学性能
-热导率:描述材料传热能力的指标。

-线热膨胀系数:描述材料在温度变化下线膨胀或收缩的程度。

-热膨胀系数:描述材料在温度变化下体积膨胀或收缩的程度。

-比热容:描述单位质量材料在温度变化下吸收或释放热能的能力。

-崩裂温度:材料在受热时失去结构稳定性的温度。

4.光学性能
-折射率:描述光在材料中传播速度的比值。

-透射率和反射率:描述光在材料中透过或反射的比例。

-吸收率:光在材料中被吸收而转化为热能的比例。

-发光性能:描述材料能否发光以及发光的颜色和亮度。

-线性和非线性光学效应:描述材料在光场中的响应特性。

以上是材料物理性能期末复习的一些考点,希望能帮助到你。

但需要注意的是,这只是一部分重点,你还需要结合教材和课堂笔记,全面复习和理解这些概念和原理。

祝你考试顺利!。

材料性能学全部复习资料

材料性能学全部复习资料

第一章材料单向静拉伸的力学性能1、各种材料的拉伸曲线:曲线1:淬火、高温回火后的高碳钢曲线2:低碳钢、低合金钢曲线3:黄铜曲线4:陶瓷、玻璃等脆性材料曲线5:橡胶类高弹性材料曲线6:工程塑性2、拉伸曲线的变形过程:拉伸开始后试样的伸长随力的增加而增大。

在P点以下拉伸力F合伸长量ΔL呈直线关系。

当拉伸力超过F p后,曲线开始偏离直线。

拉伸力小于F e时,试样的变形在卸除拉力后可以完全恢复,因此e点以内的变形为弹性变形。

当拉伸力达到F A后,试样便产生不可恢复的永久变形,即出现塑性变形。

在这一阶段的变形过程中,最初试样局部区域产生不均匀的屈服塑性变形,曲线上出现平台式锯齿,直至C点结束。

接着进入均匀塑性变形阶段。

达到最大拉伸力F b时,试样再次出现不均匀塑性变形,并在局部区域产生缩颈。

最后在拉伸力Fk处,试样断裂。

在整个拉伸过程中变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀塑性变形四个阶段。

3、金属、陶瓷及高分子材料性能的差异及机制1)、弹性变形:a、金属、陶瓷或结晶态的高分子聚合物:在弹性变形范围内,应力和应变之间可以看成具有单值线性关系,且弹性变性量都较小。

橡胶态的高分子聚合物:在弹性变形范围内,应力和应变之间不呈线性关系,且变性量较大。

b、材料产生弹性变性的本质:构成材料的原子(离子)或分子自平衡位置产生可逆位移的反映。

金属、陶瓷类晶体材料:处于晶格结点的离子在力的作用下在其平衡位置附近产生的微小位移。

橡胶类材料:呈卷曲状的分子链在力的作用下通过链段的运动沿受力方向产生的伸展。

2)、塑性变形:a、金属材料的塑性变形机理:晶体的滑移和孪生i、滑移:金属晶体在切应力作用下,沿滑移面和滑移方向进行的切变过程。

滑移面和滑移反向的组成成为滑移系。

滑移系越多,金属的塑性越好,但滑移系的多少不是决定塑性好坏的唯一因素。

金属晶体的滑移面除原子最密排面外,还受到温度、成分和预先变形程度等的影响。

塑变宏观特征:单晶体的滑移塑变微观特征: 原子面在滑移面上滑移,并非某原子面的整体运动,而是借助位移运动来实现,结果出现滑移台阶。

材料性能学课程复习材料

材料性能学课程复习材料

材料性能学课程复习材料材料性能学第⼀章材料单向静拉伸的⼒学性能1.应⼒-应变曲线σp:⽐例极限σe:弹性极限σs:屈服点σb:抗拉强度2.弹性变形的本质?材料产⽣弹性变形的本质,概括来说,都是构成材料的原⼦(离⼦)或分⼦⾃平衡位置产⽣可逆位移的反映。

⑴⾦属、陶瓷类晶体材料的弹性变形是处于晶格结点的离⼦在⼒的作⽤下在其平衡位置附近产⽣的微⼩位移。

⑵橡胶类材料则是呈卷曲状的分⼦链在⼒的作⽤下通过链段的运动沿受⼒⽅向产⽣的伸展。

3.影响弹性模数(E)的因素?⑴键合⽅式和原⼦结构:共价键、离⼦键和⾦属键都有较⾼的E值,⽽分⼦键E值较低。

对于⾦属元素,原⼦半径越⼤,E值越⼩,反之亦然。

⑵晶体结构:①单晶材料:E呈各向异性,沿密排⾯E值较⼤,反之较⼩;②多晶材料:E为各晶粒的统计平均值,表现为各向同性,但为伪各向同性;③⾮晶态材料:E是各项同性的。

⑶化学成分:材料化学成分的变化将引起原⼦间距或键合⽅式的变化,因此也将影响材料的弹性模数。

⑷微观组织:①对⾦属材料来说,E是⼀个组织不敏感的⼒学性能指标;②对⾼分⼦和陶瓷材料,E对结构和组织敏感;⑸温度:温度升⾼,原⼦结合⼒下降,E值降低。

⑹加载⽅式和负荷持续时间:①加载⽅式、加载速率和负荷持续时间对⾦属、陶瓷类材料的E⼏乎没有影响;②⾼分⼦聚合物的E随负载时间延长⽽降低,发⽣松弛。

4.⾮理想弹性⾏为可分为⼏种类型?⑴滞弹性(弹性后效):材料在快速加载或卸载后,随时间的延长⽽产⽣的附加弹性应变的性能。

⑵粘弹性:材料在外⼒作⽤下,弹性和粘性两种变形机理同时存在的⼒学⾏为。

⑶伪弹性:在⼀定的温度条件下,当应⼒达到⼀定⽔平后,⾦属或合⾦将产⽣应⼒诱发马⽒体相变,伴随应⼒诱发相变产⽣⼤幅度的弹性变形的现象。

⑷包申格效应:⾦属材料经预先加载产⽣少量塑性变形,⽽后再同向加载,规定残余伸长应⼒增加,反向加载,规定残余伸长应⼒降低的现象。

5.材料产⽣内耗的原因?材料产⽣内耗与材料中微观组织结构和物理性能的变化有关。

材料性能学重点

材料性能学重点

第一章材料单向静拉伸的力学性能1、名词解释:银纹:银纹是高分子材料在变形过程中产生的一种缺陷,由于它的密度低,对光线的反射能力很高,看起来呈银色,因而得名。

银纹产生于高分子材料的弱结构或缺陷部位。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象,称为超塑性。

晶界滑动产生的应变εg在总应变εt中所占比例一般在50%~70%之间,这表明晶界滑动在超塑性变形中起了主要作用。

脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形,没有明显的预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。

韧性断裂:材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

韧性断裂时一般裂纹扩展过程较慢,而且消耗大量塑性变形能。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂称为解理断裂。

(解理台阶、河流花样和舌状花样是解理断口的基本微观特征。

) 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

(微孔聚集型断裂是材料韧性断裂的普通方式。

其断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样则是断口上分布大量“韧窝”。

)4、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?应力类型,塑性变形程度、有无预兆、裂纹扩展快慢。

5、断裂强度σc与抗拉强度σb有何区别?若断裂前不发生塑性变形或塑性变形很小,没有缩颈产生,材料发生脆性断裂,则σc=σb。

若断裂前产生缩颈现象,则σc与σb不相等。

6、格里菲斯公式适用哪些范围及在什么情况下需要修正?格里菲斯公式只适用于含有微裂纹的脆性固体,如玻璃、无机晶体材料、超高强钢等。

对于许多工程结构材料,如结构钢、高分子材料等,裂纹尖端会产生较大塑性变形,要消耗大量塑性变形功。

因此,必须对格里菲斯公式进行修正。

第二章材料单向静拉伸的力学性能1、应力状态软性系数;τmax和σmax的比值称为,用α表示。

α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。

材料性能学复习资料

材料性能学复习资料

第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。

P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。

P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。

P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。

P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。

P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。

P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。

P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。

P2三、选择题1、表示金属材料刚度的性能指标是(B )。

P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。

A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。

A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。

弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。

因为它是原子间结合力的反映和度量。

P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。

P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。

P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。

材料性能学复习

材料性能学复习

《材料性能学》复习第一章 材料单向静拉伸的力学性能一、力-伸长曲线(拉伸图) 1、曲线上变形三阶段 (1)、弹性变形(2)、塑性变形 (屈服现象)(3)、不均匀变形(颈缩阶段)及断裂阶段(会画) 2、拉伸图的种类曲线1 为淬火、高温回火后的高碳钢 曲线2 为低合金结构钢 曲线3 为黄铜 曲线4 为陶瓷、玻璃 曲线5 为橡胶类(会画)二、应力一应变曲线(σ-ε曲线)1、应力: 应变:2、 应力-应变曲线(工程应力-应变曲线)0A F =σ0L L ∆=ε3、各种性能指标(1)、强度指标①弹性极限:σe=Fe / S0②比例极限:σp=Fp / S0③屈服极限:σs=Fs / S0 ;屈服强度σ0。

2=F0.2 / S0④强度极限:σb=Fb / S0⑤断裂强度:Sk=Fk / Sk(2)、塑性指标①延伸率:δk=(Lk-L0) / L0 X 100 %②断面收缩率:ψk=(S0-Sk)/ S0 X 100 % 4、真应力-真应变曲线(S-e曲线)真应力:其中, F -瞬时载荷,A-瞬时面积真应变:则:两曲线比较0 0ln)LLLdLdee e LL⎰⎰===)1(ψσ-=SAFS=三、弹性变形及其实质(一)、弹性变形的特点•1、可逆性;•2、单值线性关系;•3、弹性变形量较小(ε<0。

5~1%)(二)、双原子模型解释弹性变形引力四、弹性的不完整性与内耗(一)、滞弹性(弹性后效)1.正弹性后效2.反弹性后效3.产生原因4、危害(二)、包申格效应包申格(Bauschinger)效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载规定残余伸长应力(或弹性极限)增加,反向加载,规定残余伸长应力(或弹性极限)降低的现象.原因:包申格(Bauschinger)效应可能与第二类内应力有关;危害: 包申格(Bauschinger)效应可弱化材料,因而应予以消除;消除办法五、断裂1、断裂概念2、断裂的类型及断口特征3、韧性断裂与脆性断裂概念韧性断裂的特点;脆性断裂的特点4、穿晶断裂与沿晶断裂剪切断裂;解理断裂;准解理断裂5、断裂强度(1).理论断裂强度(会推导)理论断裂强度和实际强度说(2).断裂强度的裂纹理论(Griffith强度理论)Griffith强度理论此公式说明的问题金属材料γs=γe+γp Griffith强度理论212⎪⎭⎫⎝⎛=aEscπγσ22σγπscEa=21(2⎪⎪⎭⎫⎝⎛+=aEpecπγγσ2)(2σγγπpecEa+=第二章材料在其他静载下的力学性能主要讲了硬度试验一、布氏硬度(HB)(1) 测定原理(2)、优缺点•优点:压痕面积较大,其硬度值能反映材料在较大区域内各组成相的平均性能,试验数据稳定,重复性强。

性能学总复习

性能学总复习

材料性能学总复习资料第一章 作业11.掌握以下物理概念:强度、屈服强度、抗拉强度、塑性、弹性、延伸率、断面收缩率、弹性模量、比例极限、弹性极限、弹性比功、包申格效应、弹性后效、弹性滞后环强度:指的是构件抵抗破坏的能力。

屈服强度:材料屈服时对应的应力值也就是材料抵抗起始塑性变形或产生微量塑性变形的能力,这一应力值称为材料的屈服强度。

抗拉强度:材料最大均匀塑性变形的抗力。

塑性:是指在外力作用下,材料能稳定地发生永久变形而不破坏其完整性的能力。

弹性:材料受载后产生一定的变形,而卸载后这部分变形消逝,材料恢复到原来的状态的性质称为材料的弹性。

延伸率:材料拉伸后的截面面积变化量与原始截面面积的比值。

断面收缩率:材料拉断后,缩颈处横截面积的最大减缩量与原始截面面积的百分比。

弹性模量:弹性模数是产生100%弹性变形所需的应力。

比例极限:是保证材料的弹性变形按正比关系变化的最大应力。

弹性极限:是材料由弹性变形过渡到弹-塑性变形时的应力。

弹性比功:又称为弹性必能,是材料在弹性变形过程中吸收变形功的能力。

包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

弹性后效:又称滞弹性,是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

弹性滞后环:在非理想弹性的情况下,由于应力和应变不同步,是加载线与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。

2、衡量弹性的高低用什么指标,为什么提高材料的弹性极限能够改善弹性? 衡量弹性的高低通常用弹性比功来衡量E a e e 22σ=,所以提高弹性极限可以提高弹性比功。

3、材料的弹性模数主要取决哪些因素?凡是影响键合强度的因素均能影响材料的弹性模数。

主要有:键合方式、晶体结构、化学成分、微观组织、温度及加载方式和速度。

4、一直径2.5mm ,长度为200.0mm 的杆,在2000N 的载荷作用下,直径缩至2.2mm ,试求(1)杆的最终长度;(2)在该载荷作用下的真实应力和真实应变;(3)在该载荷作用下的工程应力和工程应变。

材料性能学课程复习材料

材料性能学课程复习材料

材料性能学第一章材料单向静拉伸的力学性能1.应力-应变曲线σp:比例极限σe:弹性极限σs:屈服点σb:抗拉强度2.弹性变形的本质?材料产生弹性变形的本质,概括来说,都是构成材料的原子(离子)或分子自平衡位置产生可逆位移的反映。

⑴金属、陶瓷类晶体材料的弹性变形是处于晶格结点的离子在力的作用下在其平衡位置附近产生的微小位移。

⑵橡胶类材料则是呈卷曲状的分子链在力的作用下通过链段的运动沿受力方向产生的伸展。

3.影响弹性模数(E)的因素?⑴键合方式和原子结构:共价键、离子键和金属键都有较高的E值,而分子键E值较低。

对于金属元素,原子半径越大,E值越小,反之亦然。

⑵晶体结构:①单晶材料:E呈各向异性,沿密排面E值较大,反之较小;②多晶材料:E为各晶粒的统计平均值,表现为各向同性,但为伪各向同性;③非晶态材料:E是各项同性的。

⑶化学成分:材料化学成分的变化将引起原子间距或键合方式的变化,因此也将影响材料的弹性模数。

⑷微观组织:①对金属材料来说,E是一个组织不敏感的力学性能指标;②对高分子和陶瓷材料,E对结构和组织敏感;⑸温度:温度升高,原子结合力下降,E值降低。

⑹加载方式和负荷持续时间:①加载方式、加载速率和负荷持续时间对金属、陶瓷类材料的E几乎没有影响;②高分子聚合物的E随负载时间延长而降低,发生松弛。

4.非理想弹性行为可分为几种类型?⑴滞弹性(弹性后效):材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

⑵粘弹性:材料在外力作用下,弹性和粘性两种变形机理同时存在的力学行为。

⑶伪弹性:在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,伴随应力诱发相变产生大幅度的弹性变形的现象。

⑷包申格效应:金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

5.材料产生内耗的原因?材料产生内耗与材料中微观组织结构和物理性能的变化有关。

材料性能学重点(完整版)

材料性能学重点(完整版)

材料性能学重点(完整版)第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为: 00ln 0L L L dL de e L e L ===⎰⎰2、3、比例极限和弹性极限是保证材料的弹性变形按正比比例极限σp关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

试样加载后再卸载,以不出现弹性极限σe残留的永久变形为标准,材料能够完全弹性恢复的最高应力值4、弹性比功又称为弹性比能或应变比能,表示,是材料在弹性变形过程中吸收变形用ae功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

5、根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

对于理想弹性材料,在外载荷作用下,应力和应变服从虎克定律σ=Mε,并同时满足3个条件,即:应变对于应力的响应是线性的;应力和应变同相位;应变是应力的单值函数。

材料的非理想弹性行为大致可以分为滞弹性、粘弹性、伪弹性及包申格效应等类型。

6、滞弹性(弹性后效)是指材料在快速加载或卸料后,随时间的延长而产生的附加弹性应变的性能。

7、粘弹性:指材料在外力作用下,弹性和粘性两种变形机理同是存在的力学行为,其特征是应变对应力的响应不是瞬时完成的,需要通过一个弛豫过程,但卸载后,应变恢复到初始值,不留下残余变形。

材料性能学重点(完整版)说课材料

材料性能学重点(完整版)说课材料

材料性能学重点(完整版)第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为:式中的e 为真应变。

于是,工程应变和真应变之间的关系为2、 弹性模数在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。

在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。

比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大)4、 比例极限和弹性极限比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

材料性能学复习资料--王从曾 北京工业大学

材料性能学复习资料--王从曾 北京工业大学

第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。

2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。

3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。

二、名词解释1.弹性变形:去除外力,物体恢复原形状。

弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。

4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。

三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。

答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。

对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。

2.非理想弹性的概念及种类。

答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。

表现为应力应变不同步,应力和应变的关系不是单值关系。

种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。

3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。

加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。

时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。

四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P£50 %。

材料性能学重点(完整版)

材料性能学重点(完整版)

第一章1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。

同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为:式中的e 为真应变。

于是,工程应变和真应变之间的关系为2、 弹性模数在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。

在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。

比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大)4、 比例极限和弹性极限比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。

弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功的能力。

一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。

6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹性)和非理想弹性(弹性不完整性)两类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料性能学复习(1)低碳钢拉伸曲线特点(p1)典型力——伸长曲线分析:OP:弹性变形,F∝△LPe:过量弹性变形Pe :偏离OPeC:屈服变形,不均匀塑性变形CB:均匀塑性变形Bk:不均匀集中塑性变形k:断裂(2)影响弹性模数的因素(p5)一)键合方式和原子半径二)晶体结构单晶体材料的弹性模数在不同的晶体学方向上各向异性,即沿原子排列最密的晶向上弹性模数较大多晶体和非晶体材料表现为各向同性。

三)化学成分固溶体合金中,溶解度较小时,E变化不大;两相合金中, E与合金成分、第二相性质、数量、大小及分布有关。

四)微观组织气孔率对陶瓷的E的影响:高分子聚合物的弹性模数可以通过添加增强性填料而提高复合材料:其弹性模数随增强相体积分数的增高而增大五)温度影响原子间距而使弹性模数变化六)加载条件和载荷持续时间对金属、陶瓷类材料的弹性模数几乎没有影响高分子聚合物材料的弹性模数一般随负荷时间的延长而逐渐下降。

(3)高分子材料的塑性变形机理(p15)结晶态高分子材料的塑性变形由薄晶转变为沿应力方向排列的微纤维束。

非晶态高分子材料变形有两种方式:在正应力作用下形成银纹或在切应力作用下无取向分子链局部转变为排列的纤维束。

4、金属材料的塑性变形机理(p14)单晶体塑性变形的主要方式:滑移和孪生滑移是金属晶体在切应力的作用下,沿滑移面和滑移方向进行的切变过程滑移面和滑移方向的组合成为滑移系;滑移系越多,金属的塑性越好;滑移还受到晶体结构和温度的影响;滑移的机制——位错运动;为使晶体中上下两部份相对移动,滑移是“最省力”的一种方式孪生:晶体一部分相对于另一部分的均匀切变。

滑移难以发生时才会出现孪生;孪生变形可以调整;滑移面的方向使新的滑移系动,间接对塑性变形有贡献。

多晶体金属材料塑性变形的特征(4)塑性变形的非同时性和非均匀性:材料表面优先与切应力取向最佳的滑移系优先(5)各晶粒塑性变形的相互制约与协调晶粒间塑性变形的相互制约晶粒间塑性变形的相互协调晶粒内不同滑移系滑移的相互协调5、几种常见的硬度测试方法及机理(p48)常用:布氏硬度法、洛氏硬度法和维氏硬度HBS:以淬火钢球为压头测出的硬度值,主要用于450HBS以下的灰铸铁、软钢和非铁合金HBW:以硬质合金球为压头测出的硬度值,可测试650HBW以下的淬火钢材(6)火钢球或硬质合金球D(mm) ②加载F(kgf);③压入;④定时;⑤卸载→圆形压痕;⑥测量圆形压痕d;⑧布氏硬度HB:⑦圆形压痕表面积(3)压痕几何相似原理(载荷F与压头直径D):①d= D sinφ/2HB=2F/[πD(D-√D2-d2)]→HB=F/D2·2/[π(1-√1-sin2φ)]②两个条件:一是φ为常数;二是保证F/D2为常数。

③F/D2为常数→φ一定为常数;④F/D2为常数→HB恒定。

布氏硬度试验优缺点:①优点:压痕面积大→反映较大区域内各组成相的平均性能→适合灰铸铁、轴承合金等测量→试验数据稳定,重复性高②缺点:压痕直径大→不宜在成品件上直接进行检验→更换压头直径D和载荷F →压痕直径的测量也比较麻烦洛氏硬度一般用于HB>450根据试验材料硬度的不同,分三种不同的标度来表示HRA:采用60kg载荷和钻石锥求得的硬度,用于硬度极高的材料HRB:采用100kg载荷和淬硬钢球求得的硬度,用于硬度较低的材料HRC:采用150kg载荷和钻石锥求得的硬度,用于硬度很高的材料(1)测定原理:①圆锥角α=120°的金刚石圆锥或直径为1.588mm、3.175mm 的淬火钢球②载荷分先后两次施加,先加初载荷F1再加主载荷F2总载荷为F(F=F1+ F2) ;③实际压入的深度为h。

h值越大,硬度愈低;反之则愈高。

(3)洛氏硬度试验优缺点:①优点:操作简便迅速;压痕小,可对工件直接进行检验;采用不同标尺,可测定各种软硬不同和薄厚不一试样的硬度。

②缺点:压痕较小,代表性差;尤其是材料中的偏析及组织不均匀等情况使所测硬度值的重复性差、分散度大;用不同标尺测得的硬度值既不能直接进行比较,又不能彼此互换(3)维氏硬度(HV)维氏硬度也是以单位压痕面积的力作为硬度值计量。

试验力较小,压头是锥面夹角为136°的金刚石正四棱锥体维氏硬度试验的优缺点:优点:测软、硬金属,特别是极薄零件和渗碳层、渗氮层的硬度,测得的数值较准确,并且不存在布氏硬度试验那种载荷与压头直径比例关系的约束氏硬度也不存在洛氏硬度那样不同标尺的硬度无法统一的问题洛氏硬度能更好地测定薄件或薄层的硬度。

缺点:硬度值的测定较为麻烦,工作效率不如洛氏硬度,因此不太适合成批生产的常规检验。

6、如何理解塑性材料的“缺口强化”现象?在有缺口条件下,由于出现了三向应力,试样的屈服应力比单向拉伸时要高,即产生了所谓缺口“强化”现象。

我们不能把“缺口强化”看作是强化材料的一种手段,因缺口“强化”纯粹是由于三向应力约束了材料塑性变形所致。

此时材料本身的ζs 值并未发生变化。

7、低温脆性的物理本质及其影响因素低温脆性的物理本质:材料的屈服强度随温度下降而急剧增加。

当温度低于某一温度时,材料由韧性状态转变为脆性状态,冲击值或断面收缩率急剧下降,断口特征由纤维状转变为结晶状,断裂机理由微孔聚集性转变为穿晶解理型。

这种现象被称为低温脆性。

影响材料脆韧转变的因素有:1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。

细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。

5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。

6.试样形状以及尺寸的影响9、高分子材料化学老化的分类(p286)化学老化和物理老化1 化学老化是一种不可逆的化学反应,是高分子材料分子结构变化的结果化学的老化有降解和交联两种类型(1)降解分子链发生断裂从而引发自由基连锁反应的结果特征:相对分子量下降,材料变软发粘,抗拉强度和模量下降(2)交联断裂的自由基再相互作用产生交联结构的结果特征:交联使材料变硬、变脆,延伸率下降2 物理老化处于非平衡态的不稳定结构,在玻璃化转变温度以下存放过程中会逐渐趋向稳定的平衡态,从而引起材料物理、力学性能变化10、高分子材料的磨损有何特征(P111)(1)跑合(磨合)阶段:OA实际接触面积不断增大表层应变硬化磨损速率下降。

(2)稳定磨损阶段:AB磨损速率稳定。

磨合越好,磨损速率就越低(3)剧烈磨损阶段:BC磨损速率增加机件表面质量恶化润滑膜被破坏,磨损重新加剧机件快速失效11、高分子材料的蠕变特性(p125)与金属、陶瓷材料不同的蠕变特性(粘弹性)蠕变曲线分为3个阶段:(1)AB段,为可逆形变阶段(2)BC段,为推迟的弹性变形阶段(3)CD段,为不可逆变形阶段到后期会产生颈缩,发生蠕变断裂弹性变形引起的蠕变,当载荷去除后,可以发生回复,称为蠕变回复12、固体材料的热膨胀的影响因素(p148)1 化学成分成分相同的材料,结构不同,热膨胀系数也不同。

2 键强度键强度高的材料,有低的热膨胀系数3 晶体结构结构紧密的晶体热膨胀系数都较大,而非晶态结构比较松散的材料,有较小的热膨胀系数。

非等轴晶系的晶体,各晶铀方向的膨胀系数不等,因为层内有牢固的联系,而层间的联系要弱得多。

层间膨胀系数为小,层内的膨胀系数大。

结构上高度各向异性的材料,体膨胀系数都很小,是一种优良的抗热震材料。

4 影响金属材料热膨胀系数的其他因素相变、合金成分和组织、晶体结构及钢中组成相纯金属同素异构转变时,点阵结构重排伴随着金属比容突变,导致线膨胀系数发生不连续变化有序—无序转变时无体积突变,膨胀系数在相变温区仅出现拐折组成合金的溶质元素对合金热膨胀有明显影响多相合金的膨胀系数仅取决于组成相性质和数量钢的热膨胀特性取决于组成相特性13、热分析方法主要有哪几种以及有那些应用(1)差热分析(DTA):在程序温度控制下,测量试样和参照物的温度差随温度(T)或时间(t)的变化关系.(2) 差示扫描量热法(DSC):在程序温度控制下用差动方法测量加热或冷却过程中,在试样和标样的温度差保持为零时,所要补充的热量与温度和时间的关系的分析技术(3) 热重法(简称TG):在程序控制温度下测量材料的质量与温度关系的一种分析技术。

14、超导电性的3个重要性能指标(1)临界转变温度Tc正常状态转变为超导状态的温度临界转变温度越高越好,越有利于应用(2)临界磁场Hc能破坏超导态的最小磁场 Hc值随温度降低而增加中间态第一类超导体,第二类超导体(3) 临界电流密度Jc材料保持超导态状态的最大输入电流密度15、根据材料被磁化后对磁场所产生的影响,材料可分为哪几类?(p162)1抗磁性材料:使磁场减弱的物质磁化矢量与外加磁场方向相反的1顺磁性材料:使磁场略有增强的物质磁化矢量与外加磁场方向相同的1铁磁性材料:使磁场强烈增强的物质16、影响材料及机件疲劳强度的因素。

(p103一、环境及加载规范(7)过载将降低材料的疲劳强度或寿命(8)次载锻炼:可提高材料的疲劳强度(9)间歇:不过载可提高σ-1(10)温度:温度t降低,σ-1也减小(11)腐蚀性介质:腐蚀疲劳(12)二、表面状态及尺寸因素1、应力集中2、表面状态:粗糙度Ra越小越好3、尺寸效应:越大,缺陷机率大,表面应力大三、表面强化及残余应力的影响1、提高σr的原因面强度高,使表层总应力降低至强化层疲劳强度下,裂纹扩展难余压应力降低表面的实际拉应力,对缺口机件的有利影响更为显著表面强化改善机械零件和构件表面性能,提高疲劳强度和耐磨性能的工艺方法。

(13)表面强化有时还能提高耐腐蚀性能。

(14)承受载荷的零件表面常处于最大应力状态,并在不同的介质环境中工作。

(15)零件的失效和破坏也大多发生在表面或从表面开始(16)如在零件表层引入一定的残余压应力,增加表面硬度,改善表层组织结构等,就能显著地提高零件的疲劳强度和耐磨性。

表面强化方法面机械处理、表面热处理和表面化学处理四、材料成分及组织的影响(17)合金成分(18)结构钢中,碳是影响疲劳强度的重要因素,即可形成间隙固溶体强化基体,也可形成弥散强化(19)非金属夹杂物及冶金缺陷(20)脆性夹杂易萌生疲劳裂纹(21)冶金疲劳源都可能是裂纹源(22)显微组织(23)晶粒大小对疲劳强度的影响,Hall-Petch关系:17、防止金属材料腐蚀的措施1.金属的电化学保护法(1)阴极保护法将被保护金属进行外加阴极极化,以减小或防止金属腐蚀。

相关文档
最新文档