2.1 认识无理数

合集下载

2.1认识无理数第一课时 教案

2.1认识无理数第一课时 教案

第一环节:情境引入导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?第二环节:新知构建探究活动[过渡语]我们研究一下下面的问题.1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方 ,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的正方形是什么样的呢?问题2:拼成后的大正方形面积是多少?问题3:若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.[过渡语]前面的问题中,我们都不能用有理数来表示,再看下面的问题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[过渡语]我们所学的有理数已经不够用了,需要再扩大数的范围,先在数轴中感受一下.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P 表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.第三环节:课堂小结通过生活中的实例,证实了确实存在不是有理数的数.第四环节:检测反馈1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略)。

北师大版八年级数学上册:2.1《认识无理数》教学设计

北师大版八年级数学上册:2.1《认识无理数》教学设计

北师大版八年级数学上册:2.1《认识无理数》教学设计一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。

本节内容是在学生学习了实数、有理数的基础上,引入无理数的概念,使学生了解无理数在生活中的应用和实际意义,培养学生运用数学解决实际问题的能力。

教材通过丰富的实例和探究活动,让学生感受无理数的存在,体验数的概念的扩展,培养学生的数感。

二. 学情分析八年级的学生已经学习了实数和有理数,对数的概念有一定的了解。

但是,学生对无理数的理解可能还比较模糊,需要通过具体的实例和实践活动来加深对无理数概念的理解。

此外,学生可能对无理数的存在感到困惑,需要教师通过讲解和引导,让学生逐渐接受无理数的存在。

三. 教学目标1.了解无理数的概念,理解无理数的存在和实际意义。

2.能够识别常见的无理数,如π、√2等。

3.能够运用无理数解决实际问题,提高运用数学解决实际问题的能力。

4.培养学生的数感,提高学生的数学思维能力。

四. 教学重难点1.重点:无理数的概念和实际意义的理解。

2.难点:无理数的识别和运用。

五. 教学方法1.实例教学法:通过具体的实例,让学生感受无理数的存在和实际意义。

2.实践活动法:通过实践活动,让学生加深对无理数概念的理解。

3.问题驱动法:通过提问和引导,让学生主动探索无理数的性质和运用。

六. 教学准备1.教材和教案。

2.投影仪和教学课件。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)利用投影仪展示生活中的实例,如圆的周长和面积的关系,引出无理数的概念。

2.呈现(10分钟)讲解无理数的定义,通过具体的实例,让学生感受无理数的存在。

如π、√2等。

3.操练(10分钟)让学生进行练习,识别常见的无理数,加深对无理数概念的理解。

4.巩固(10分钟)讲解无理数的性质和运用,让学生通过实践活动,加深对无理数概念的理解。

5.拓展(10分钟)引导学生思考无理数在生活中的应用和实际意义,培养学生的数感。

北师大版八年级上册 2.1 认识无理数 第一课时 教案

北师大版八年级上册 2.1 认识无理数 第一课时 教案

2.1认识无理数〔第一课时〕一、教学目的叙写1.学生通过预习教材21页,并考虑情景引入中的问题1.2.学生通过合作探究局部,初步感知数不够用了,让学生充分感受“新数〞〔无理数〕的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳才能和有条理的表达才能.4.学生通过完成“五、当堂评价〞,能正确地进展判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程〔一〕、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩大到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、考虑:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数〔或分数〕吗?〔二〕、自主探究[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常快乐地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给教师.[师]如今我们一齐把大家的做法总结一下:下面再请大家共同考虑一个问题,假设拼成大正方形的边长为a,那么a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后答复.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个一样因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】:22a =,请问:①a 可能是整数吗?②a 可能是分数吗? 【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回忆“有理数〞概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这说明:有理数不够用了,为“新数〞〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段〔三〕、合学应用例:在数轴上表示满足()220x x =>的x .解:〔四〕、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?〔五〕、当堂评价1、如图,答复以下问题:〔1〕以直角三角形的斜边为边的正方形的面积是多少?〔2〕设正方形的边长为b,b 满足什么条件?〔3〕b 是有理数吗?2、如图,等边三角形ABC 的边长为2,高为h,h 可能是整数吗?可能是分数吗? 〔六〕、变练拓展1.请你在方格纸上按照如下要求设计直角三角形:〔1〕使它的三边中有一边边长不是有理数;〔2〕使它的三边中有两边边长不是有理数;〔3〕使它的三边边长都不是有理数.2. 以下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的假设干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB =2,BE =1,AB 、BE 是有理数.AD 2=AB 2+BD 2=22+32=13,AC 2=1+1=2.AE 2=AB 2+BE 2=22+12=5.AC 、AD 、AE 既不是整数,也不是分数,所以不是有理数.。

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)一. 教材分析八年级数学上册2.1认识无理数是北师大版初中数学的一个重要内容。

这一节主要让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握无理数的估算方法。

教材通过丰富的例子,引导学生探索无理数的特点,培养学生的抽象思维能力。

二. 学情分析八年级的学生已经学习了有理数的概念,对数的运算有一定的了解。

但是,他们对无理数的概念可能感到陌生,理解起来有一定的困难。

因此,在教学过程中,我需要关注学生的认知水平,通过生动的例子和实际操作,帮助学生理解和掌握无理数的概念。

三. 说教学目标1.知识与技能:让学生了解无理数的概念,理解无理数与有理数的关系,掌握无理数的估算方法。

2.过程与方法:通过观察、操作、探索等活动,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.重点:无理数的概念和性质。

2.难点:无理数与有理数的关系,无理数的估算方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:多媒体课件、实物模型、几何画板等。

六. 说教学过程1.导入:通过一个故事引入无理数的概念,激发学生的兴趣。

2.新课导入:讲解无理数的概念,通过例子让学生理解无理数的特点。

3.案例分析:分析一些实际问题,让学生了解无理数在生活中的应用。

4.小组讨论:让学生分组讨论无理数与有理数的关系,分享各自的观点。

5.课堂练习:让学生做一些相关的练习题,巩固所学知识。

6.总结:对本节课的内容进行总结,强调无理数的概念和性质。

7.拓展:介绍一些无理数的应用领域,激发学生的学习兴趣。

七. 说板书设计板书设计要清晰、简洁,能够突出无理数的概念和性质。

主要包括以下几个部分:1.无理数的概念2.无理数的特点3.无理数与有理数的关系4.无理数的估算方法八. 说教学评价通过课堂表现、练习题和小组讨论等方式对学生的学习情况进行评价。

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

2.1 认识无理数 教案 2021-2022学年北师大版数学八年级上册

2.1 认识无理数 教案 2021-2022学年北师大版数学八年级上册

2.1 认识无理数【教学目标】掌握无理数的概念,会判断一个数是有理数还是无理数;会利用计算器探索无理数是无限不循环小数.【重点难点】●重点:会辨别有理数与无理数.●难点:无理数概念的推导过程.【教法与学法】●教法:创设结果为无理数的问题,通过师生合作探究,一问一答、讲练结合的形式,启发、引导学生逐步思考问题、解决问题.●学法:经历小组合作探究,探索问题,讨论解决问题的不同思路、方法,通过与有理数概念、分类进行对比,总结无理数的特征.【教学过程】一、情境引入古希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理.也正是这个学派认为世界万物都可以用整数或整数的比来表示.你认为这个论断正确吗?下面,让我们通过活动来揭开这个谜底:如教材图2-1是两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大的正方形.教材图2-1学生活动:实验、合作、交流.教师总结:通过剪拼,得到一个大正方形的方法有多种.如下图所示:【设计意图】利用图片的剪拼,调动学生的学习积极性,激发学生对潜在无理数探索的兴趣.二、互动新授【问题1】上题所示剪拼后的几个正方形,你知道它们的边长分别是多少吗: 学生活动:小组合作探究.师生合作探究:容易知道第一个图形中大正方形的边长是 ,小正方形面积是 ;第二个图形中的正方形面积是 ;第三个图形中大正方形的面积是 .那么对于面积是2的大正方形有如下几个问题:(1)设大正方形的边长为a,a 满足什么条件?(2)a 可能是整数吗?说说你的理由.(3)a 可能是分数吗?说说你的理由,教师总结:第一个图形中大正方形边长是2;小正方形以及后面两个图形中的正方形我们可以知道它们的面积都是2.则可以知道:(1)根据正方形面积等于边长的平方,有a 2=2;(2)因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数;(3)12×12=14,23×23=49,13×13=19,…两个相同因数的乘积都为分数,所以a 不可能是分数.事实上,我们可以证明在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数.【问题2】(1)如教材图2-2所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b 满足什么条件?(3)b 是有理数吗?学生活动:先独立完成,再小组交流结果.教师总结:(1)因为三个正方形的面积分别等于直角三角形各边长的平方,再根据勾股定理可得到,以直角三角形的斜边为边的正方形面积等于直角边的平方和,即等于5.(2)b2=5.(3)没有一个整数或分数的平方等于5,即没有一个有理数的平方等于5,所以b不是有理数.【问题3】面积为2的正方形的边长a究竟是多少呢?学生活动:小组合作探究.师生合作探究:(1)教材如图2-3,三个正方形的边长之间有怎样的大小关系?说说你的理由.教材图2-3(2)边长a的整数部分是几?十分位是几?百分位呢?千分位?……借助计算器进行探索.(3)小明将他的探索过程整理出如下,你的结果呢?边长a 面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9 881<S<2.016 41.414<a<1.411.999 396<S<2.002 22551.4141.999 961 64<S<2.000 244 492<a<1.414 3教师总结:如教材图2-3,因为正方形面积分别是1、2、4,根据正方形面积等于边长的平方,则面积为2的正方形边长应该是大于1而小于2.借助计算器我们逐步精确a的数位,发现a不是有限小数,且它是一个无限不循环小数.【问题4】(1)估计面积为5的正方形的边长b 的值(结果精确到十分位),并用计算器验证你的估计.(2)如果结果精确到百分位呢?(3)b 是无限不循环小数吗?学生活动:小组合作探究.师生合作探究:我们知道b 2=5,先估计b 的整数部分是多少.容易知道22=4,32=9,因此b 的整数部分应该是大于 且 3,而b 的平方数5接近2的平方数4,因此可以估计其十分位是多少.算出十分位后,再估计百分位,并用计算器验证.教师总结:(1)b≈2.2.(2)b≈2.24.(3)事实上,b=2.236 067 978…,它是一个无限不循环小数.同样,对于体积为2的正方体,借助计算器:可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.【问题5】把下列各数表示成小数,你发现了什么?3,45,59,-845,211.学生活动:小组合作探究.师生合作探究:上面这几个数分别是什么类型的数?它们都是有理数吗?看看写成的小数是不是无限不循环.教师总结:3=3.0;45=0.8;59=0.5·;-845=0.17·;211=0.1·8·.从中我们发现前面两个数可以写成有限小数,后面三个数可以写成无限循环小数,因此有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数称为无理数.除了像b 2=5,a 2=2上面的数a,b,c 是无理数外,我们十分熟悉的圆周率π=3.141 592 65…也是一个无限不循环小数,因此它也是一个无理数.再如0.585 885 888 5…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,也是无理数.【设计意图】从学生熟悉的正方形面积计算公式,以及勾股定理,引导学生推导得出边长,猜测并用计算器探索边长的精确值,进而引出无限不循环小数——无理数,这样经历实验、探索知识的过程,能充分调动学生学习的积极性,培养学生分析问题、概括问题的能力.三、例题讲解【例1】下列各数:3.14,π,0,237,-3.1·4·,π2,-3.141 441 444 1…(相邻两个1之间逐次多1个4).(1)将上述各数填入相应的集合圈内;(2)请把以上各数用“<”连接起来.解析:(1)3.14是有限小数,0是整数,237是分数,-3.1·4·是无限循环小数,都属于有理数;π及π组成的数均是无理数,-3.141 441 444 1…是排列有规律的数,不属于循环小数,故为无理数;(2)数的大小关系类似于有理数比较大小规律.【例2】下列关于无理数的说法正确的是( ) A.有理数都是有限小数B.不是有限的小数不是有理数C.无限小数都是无理数D.无理数都是无限小数解析:根据有理数的定义,无限循环小数是有理数,A 错;同理B 错;根据无理数满足的条件知,无限小数不一定是无理数,C 错;不是无限小数就一定不是无理数,所以D 正确.四、巩固练习1.下列数中是无理数的是( ) A.0.122· 3· B.π2C.0D.2272.下列说法正确的是( ) A.0.121 221 222…是有理数B.无限小数都是无理数C.半径为3的圆周长是有理数D.无理数是无限小数3.若a是一个无理数,则1-a是( )A.正数B.负数C.无理数D.有理数五、课堂小结通过本节课的学习,你有什么收获?本节课主要学习了:1.有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.2.无限不循环小数称为无理数,除了像b2=5,a2=2中的a,b是无理数外,我们十分熟悉的圆周率π=3.141 592 65…也是一个无限不循环小数,因此它也是一个无理数.再如0.585 885 888 5…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,也是无理数.【布置作业】教材习题2.1和习题2.2.【板书设计】1.认识无理数1.剪拼正方形——等积变形思想方法2.面积对比,利用计算器探索平方数——无限逼近思想方法3.任何有限小数或无限循环小数都是有理数4.无限不循环小数称为无理数【教学反思】本节课主要内容是探索、发现无理数;会区别无理数与有理数.为了让学生意识到“数”的扩充是实际生活的需要,是数学发展的必然趋势,培养学生的创新思维,教学过程着重安排实例教学,让学生经历“新数”的探索过程,在生生合作、师生合作渠道中引发学生对问题的思考、讨论与解决.学生在练习中,由于对无理数概念理解不清,常常会混淆有理数与无理数,因此教师除了要引导学生概括出无理数的特征外,还需要多提出针对性的问题,让学生在练习中巩固无理数概念.。

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版数学八年级上册第二章《认识无理数》教案2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。

北师大版七年级数学上册教案:2.1认识无理数

北师大版七年级数学上册教案:2.1认识无理数
-无理数的近似值求解:指导学生如何利用计算器等工具求无理数的近似值,并理解近似值与精确值之间的关系。
-无理数在实际问题中的应用:培养学生将无理数应用于解决实际问题的能力,如计算圆形面积、周长等。
举例:在讲解无理数与有理数的区别时,可以通过比较√2和1.414(√2的近似值)的关系,让学生明白无理数是无限不循环的,而有理数是有限或循环的。此外,通过实际例子,如计算圆的面积,让学生体会无理数在实际问题中的应用,并学会如何处理无理数的近似值。
直接输出以下内容:
四、教学流程
1.导入新课:以提问方式引导学生思考日常生活中遇到的与无理数相关的问题,激发学生的兴趣和好的定义、特点及其与有理数的区别。
-案例分析:通过具体实例,展示无理数在实际问题中的应用。
3.重点难点解析:
-强调无理数与有理数的本质区别,通过对比分析,帮助学生理解难点。
-掌握无理数的表示方法:介绍根号表示、无限不循环小数等,让学生熟练掌握无理数的表达方式。
-常见无理数的性质:分析π、e、√2等无理数的性质,强调它们的特点和应用。
举例:讲解√2是无理数时,可以通过实际计算说明它不能表示为两个整数之比,从而加深学生对无理数定义的理解。
2.教学难点
-无理数与有理数的区别:解释无理数与有理数的本质区别,如无限不循环小数与有限小数、循环小数的区别,这是学生容易混淆的地方。
2.学会无理数的表示方法,提高学生数学表达和符号意识。
3.通过探索无理数的性质和应用,发展学生的逻辑推理和数学建模能力。
4.培养学生勇于探索、积极思考的学习态度,提高数学素养和解决问题的能力。
5.激发学生对数学学科的兴趣,增强学生的数学情感,为后续学习奠定基础。
三、教学难点与重点
1.教学重点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积为25的正方形
面积为16的正方形
请点击
面积为7的正方形
面积为1.44的正方形
当堂训练
3、(1)若长方形的长、宽分别是3、4, 那么它的对角线的长是有理数吗?为什 么?
(2)若长方形的长、宽分别是1、3,那 么它的对角线的长是有理数吗?为什么?
A C B
想一想
4、下图中阴影部分是正方形,求出此正 方形的面积。此正方形的边长是有理数吗? 为什么?
传最好的! (1) 如图,以直角三角形的斜边为边的正方形的面积 是多少? (2) 设该正方形的边长为 b,b满足什么条件?
2 1
(3) b是有理数吗?
答案请参照例题
当堂训练
1、如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?
A 2 h B C
当堂训练
2、下面各正方形的边长不是有理数的是( )
如图:已知正方形ABCD的边长为1,其对角线AC的长 为a,试问:a是有理数吗? 析:据勾股定理有: a2=2 a a 1 1 探索1: a可能是整数吗?说说你的理由。
C B 探索2: a可能是分数吗?说说你的理由。 首先把问题转化为勾 1 既然a不是整数,又不是分数, 1 因为12=1,22=4 而a2=2 股定理的应用题,如 因为分数的平方还是分数,2不是分数,因 它当然不是有理数了,那么它究 所以1 右图 此a也不是分数2<a2 <22 竟是什么数呢?看来数 真的又 即1<a<2,故a不是整数 不够用了 A D
8
a
17
5、下图是由36个边长为1的小正方形拼成的,连 接小正方形中的点A、B、C、D、E、F得线段AB、 BC、CD、DE、EF、FA,请说出这些线段中长度是 有理数的是哪些?长度不是有理数的是哪些?
A E
B F D
C

动 手 操 作
活 动

1 1
1 1
有两个边长为1的小正方形,通过剪、拼,设 法得到一个大正方形。
还有别的拼法吗?拼出的正方形的面积是多少? 边长又是多少呢?
请点击看答案
1 1 1 1
1 1
1 1 1
1 1
1/2 1/2
1
1/2 1 /2
1
1
1
1
1
1
1
1
欣赏有趣的图形:
1
1
毕达哥拉斯树螺形图!2.1认识无理数(一)
8月30日 星期五
学习目标:
1.理解并掌握无理数的概念. 2.能利用概念辨别无理数.
献身科学,执着追求
公元前500年,古希腊的毕达哥拉斯 ( Pythagoras) 学派认为“宇宙间的一切现象 都能归结为整数或整数之比,即都可用有理数 来描述。 这学派的成员希伯索斯(Hippasus) 发现边 长为1的正方形的对角线的长不能用有理数来表 示,这就动摇了毕达哥拉斯学派的信条,引起了 信徒们的恐慌,他在逃回家的路上,遭到毕氏成 员的追捕,被投入大海。
相关文档
最新文档