2013年浙江省绍兴市中考数学试卷及答案(解析版)
2013年绍兴中考数学试卷及答案(解析版)
A.7:20
B.7:30
C.7:45
二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)
11.(5 分)(2013•绍兴)分解因式:x2﹣y2= .
12.(5 分)(2013•绍兴)分式方程 =3 的解是 .
D.7:50
13.(5 分)(2013•绍兴)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼, 上有 35 头,下有 94 足,问鸡兔各几何?此题的答案是:鸡有 23 只,兔有 12 只,现在小敏 将此题改编为:今有鸡兔同笼,上有 33 头,下有 88 足,问鸡兔各几何?则此时的答案是: 鸡有 只,兔有 只. 14.(5 分)(2013•绍兴)在平面直角坐标系中,O 是原点,A 是 x 轴上的点,将射线 OA
第 4 页 共 23 页
(1)这次被调查的共有多少名同学?并补全条形统计图. (2)若全校有 1200 名同学,估计全校最喜欢篮球和排球的共有多少名同学?
第 1 页 共 23 页
A.4m
B.5m
C.6m
D.8m
7.(4 分)(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥
的侧面展开图的圆心角是( )
A.90°
B.120°
C.150°
D.180°
8.(4 分)(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水 从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用 x 表示时间,y 表 示壶底到水面的高度,则 y 与 x 的函数关系式的图象是( )
19.(8 分)(2013•绍兴)如图,矩形 ABCD 中,AB=6,第 1 次平移将矩形 ABCD 沿 AB 的方向向右平移 5 个单位,得到矩形 A1B1C1D1,第 2 次平移将矩形 A1B1C1D1 沿 A1B1 的方 向向右平移 5 个单位,得到矩形 A2B2C2D2…,第 n 次平移将矩形 An﹣1Bn﹣1Cn﹣1Dn﹣1 沿 An﹣ 1Bn﹣1 的方向平移 5 个单位,得到矩形 AnBnCnDn(n>2).
【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析 专题04 图形的变换
绍兴市2002-2013年中考数学试题分类解析 专题04 图形的变换一、选择题1. (2002年浙江绍兴3分)如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为【 】(A )30π (B )76π (C )20π (D )74π2. (2003年浙江绍兴4分)圆锥的母线长为13cm ,底面半径为5cm ,则此圆锥的高线长为【 】A .6 cmB .8 cmC .10 cmD .12 cm()22135=12cm -。
故选D 。
3. (2003年浙江绍兴4分)如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF的面积为【】A.4 B.6 C.8 D.104. (2004年浙江绍兴4分)一个圆锥的底面半径为52,母线长为6,则此圆锥侧面展开图的圆心角是【】A.180° B.150° C.120°D.90°5. (2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】A.108°B.144°C.126°D.129°【答案】C。
【考点】矩形的性质,折叠对称的性质。
【分析】展开如图:五角星的每个角的度数是:0 180365=。
∵∠COD=3600÷10=360,∠ODC=360÷2=180,∴∠OCD=1800-360-180=1260。
故选C。
6. (2005年浙江绍兴4分)已知圆柱的侧面积为10π,则它的轴截面面积为【】(A) 5 (B)10 (C)12 (D)207. (2005年浙江绍兴4分)将一张正方形纸片,沿图的虚线对折,得图,然后剪去一个角,展开铺平后的图形如下图所示,则图中沿虚线的剪法是【】(A)(B)(C)(D)8. (2006年浙江绍兴4分)下图中几何体的正视图是【】A. B. C.D.9. (2006年浙江绍兴4分)如图,设M,N分别是直角梯形ABCD两腰AD,CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于【】A.2:1 B.1:2 C.3:2 D.2:3【答案】A。
绍兴02-13年中考数学试题分类解析专题07统计与概率.
2002-2013年浙江绍兴中考数学试题分类解析汇编(12专题)专题二统计与概率已知y=x a,当x=—1, 0, 1, 2, 3时对应的y值的平均数1.(2002年浙江绍兴3分)、选择题为5,则a的值是【】(A)18 (B)19 (C)4 (D)215 5 5【答案】C.【苦点】平均数.【分析】把只=—1,0? b 2*文分别代入厂区+ &得-1+a、a、3+a, 由题意琨土二匕二土土= h解之得:a=4.故选G52.(2003年浙江绍兴4分)小明测得一周的体温并登记在下表(单位:C )其中星期四的体温被墨迹污染,根据表中数据,可得此日的体温是【】A. 36.7CB. 36.8CC. 36.9CD. 37.0C【答案】A,【考点】平均数.L分析】平均数是指在一组数据中所有数据之和再除収数据的个数。
因此,设星期四的即温根据题意,得;叱竺込空空竺竺拦2亠箭9解鬲^36.7.7故选A-3.(2004年浙江绍兴4分)设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取1只,是二等品的概率等于【】A. 1B. 1C. 1D. 712 6 4 121答案】G【考点】概率口【分析】根据概率的求法,找准两点匕①全部等可能情况的总数;②符合条件的情况数目;二者■的比值就是其发生的概率.因此,e 一亠〜 (31)从12只型号相同册杯子中任取1只,是二等品的擬率等于一"一-1、故选0 7+3+2 44.(2006年浙江绍兴4分)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是【】A. iB. i8 3C 38D.35【答案】G【若点】概率"【分析】根据概率的求法,找准两点;①全部等可能惜况的总数,②符合条件的情况数目,二者的比值就是其发生的概率.因此,从E个球中龍机摸出一个,摸到黄球的概率是二故选C・ 85. (2007年浙江绍兴4分)甲、乙两人各射击6次,甲所中的环数是8,5,5,a, b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4•根据以上数据,对甲、乙射击成绩的正确判断是【】A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较【答案】B。
【精校】2013年浙江省绍兴市毕业生学业考试试卷数学(含答案)
浙江省2013年初中毕业生学业考试绍兴市试卷 数学试题卷 满分150分一、选择题(本大题有10小题,每小题4分,共40分) 1. -2的相反数是A. 2B. -2C. 0D. 2. 计算b a 23 的结果是A. ab 3B. a 6C. ab 6D. ab 5 3. 地球半径约为6 400 000米,这个数用科学计数法表示为A. 0.64×107B. 6.4×106C. 6.4×105D. 64×105 4. 由5个相同的立方体搭成的几何体如图所示,则它的主视图是5. 一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其它完全相同,则从袋子中随机摸出一个球是黄球的概率是 A. B. C. D.6. 绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为A. 4mB. 5mC. 6mD. 8m7. 若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是A. 90°B. 120°C. 150°D. 180°8. 如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计时。
用表示时间,表示壶底到水面的高度,则与的函数关系的图象是9. 小敏在作⊙O 的内接正五边形时,先做了如下几个步骤:(1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1; (2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D ,连结BD ,如图2.若⊙O 的半径为1,则由以上作图得到的关于正五边形边长BD 的等式是A.OD BD 2152-=B.OD BD 2152+= C. OD BD 52= D.OD BD 252=10. 教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10℃,加热到100℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机。
2013年浙江绍兴市中考数学(含解析)试卷真题
2013年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.0D.【考点】15:绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选:C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(4分)地球半径约为6400000米,则此数用科学记数法表示为()A.0.64×109B.6.4×106C.6.4×104D.64×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 400 000=6.4×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解答】解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,从袋子中随机摸出一个球,它是黄球的概率2÷6=.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选:D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.(4分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°【考点】MP:圆锥的计算.【分析】设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选:D.【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(4分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【考点】E6:函数的图象.【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.(4分)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=OD B.BD2=OD C.BD2=OD D.BD2=OD 【考点】MM:正多边形和圆.【分析】首先连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,然后由勾股定理可求得BM与OD的长,继而求得BD2的值.【解答】解:如图2,连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM﹣OM=﹣=,∴BD2=OD2+OB2===OD.故选:C.【点评】此题考查了勾股定理、线段垂直平分线的性质以及分母有理化的知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(4分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:50【考点】GA:反比例函数的应用.【专题】16:压轴题.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30∴y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x ≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选:A.【点评】本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣y2=(x+y)(x﹣y).【考点】54:因式分解﹣运用公式法.【分析】因为是两个数的平方差,所以利用平方差公式分解即可.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反,是解题的关键.12.(5分)分式方程=3的解是x=3.【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.【考点】9A:二元一次方程组的应用.【分析】设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.【解答】解:设鸡有x只,兔有y只,由题意,得:,解得:,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.14.(5分)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.【考点】G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】根据反比例函数的性质得出B点坐标,进而得出A点坐标.【解答】解:如图所示:∵点A与双曲线y=上的点B重合,点B的纵坐标是1,∴点B的横坐标是,∴OB==2,∵A点可能在x轴的正半轴也可能在负半轴,∴A点坐标为:(2,0),(﹣2,0).故答案为:2或﹣2.【点评】此题主要考查了勾股定理以及反比例函数的性质等知识,根据已知得出BO的长是解题关键.15.(5分)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】KH:等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.(5分)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.【考点】RB:几何变换综合题.【专题】16:压轴题.【分析】如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AOP为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.【解答】解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.【点评】本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)17.(8分)(1)化简:(a﹣1)2+2(a+1)(2)解不等式:+≤1.【考点】4I:整式的混合运算;C6:解一元一次不等式.【专题】11:计算题.【分析】(1)原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=a2﹣2a+1+2a+2=a2+3;(2)去分母得:3(x+1)+2(x﹣1)≤6,去括号得:3x+3+2x﹣2≤6,解得:x≤1.【点评】此题考查了整式的混合运算,以及解一元一次不等式,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.【解答】解:(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【点评】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.19.(8分)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n∁n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.【考点】8A:一元一次方程的应用;LB:矩形的性质;Q2:平移的性质.【专题】2A:规律型.【分析】(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长;(2)根据(1)中所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.20.(8分)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用条形统计图可得喜欢羽毛球的人数有30人,根据扇形统计图可得喜欢羽毛球的人数有15%,利用30÷15%即可得到被调查的总人数;用总人数﹣喜欢乒乓球的人数﹣喜欢篮球的人数﹣喜欢羽毛球的人数﹣喜欢排球的人数可得喜欢跳绳的人数,再补图即可;(2)计算出调查的人数中喜欢篮球和排球的人数所占百分比,再乘以1200即可.【解答】解:(1)这次被调查的学生总数:30÷15%=200(人),跳绳人数:200﹣70﹣40﹣30﹣12=48,如图所示:(2)1200××100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.【考点】T8:解直角三角形的应用.【分析】(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.【解答】解:(1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AD平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.【点评】本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.22.(12分)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.【考点】LO:四边形综合题.【专题】16:压轴题;23:新定义.【分析】(1)答案不唯一,根据已知举出即可;(2)①求出△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,推出==,==,==,==,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,B1Q=B2O=B3Z=B4K=4,根据已知判断即可;②设AM=h,根据△ABC∽△AB3C3,得出==,求出MN=GN=GH=HE =h,分为两种情况:当B3C3=2×h时,当B3C3=×h时,代入求出即可.【解答】解:(1)答案不唯一,如a=2,b=4;(2)①以B1C1为一边的矩形不是方形.理由是:过A作AM⊥BC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,则AM⊥B4C4,AM⊥B3C3,AM⊥B2C2,AM⊥B1C1,∵由矩形的性质得:BC∥B1C1∥B2C2∥B3C3∥B4C4,∴△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,∴==,==,==,==,∵AM=20,BC=25,∴B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,∴MN=GN=GH=HE=4,∴B1Q=B2O=B3Z=B4K=4,即B1C1≠2B1Q,B1Q≠2B1C1,∴以B1C1为一边的矩形不是方形;②∵以B3C3为一边的矩形为方形,设AM=h,∴△ABC∽△AB3C3,∴==,则AG=h,∴MN=GN=GH=HE=h,当B3C3=2×h时,==;当B3C3=×h时,==.综合上述:BC与BC边上的高之比是或.【点评】本题考查了相似三角形的性质和判定和矩形的性质的应用,注意:相似三角形的对应高的比等于相似比.23.(12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD 交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.【考点】KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB 的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.24.(14分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)配方,写成顶点式为y=x2﹣2x﹣3=(x﹣1)2﹣4,即可确定顶点D的坐标;(2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标;②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,所以点M不存在.【解答】解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,∴CG=FG+FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=5,∴M(5,12);(Ⅱ)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).【点评】本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.。
历年浙江省绍兴市中考数学试题(含答案)
2016年绍兴市初中毕业生学业考试数 学卷I (选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选.均不给分) 1.-8的绝对值是A .8B .-8C D 2了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 窗框一部分如图2,它是一个轴对称图形,其对称轴有 A .1条 B .2条 C .3条 D .4条4.如图是一个正方体,则它的表面展开图可以是5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6.投掷一次,朝上一A B C D 6是⊙O 的直径,点A ,C 在⊙O 上,⌒AB =⌒BC ,∠AOB =60º,则∠BDC 的 A .60º B .45º C .35º D .30º7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③8.如图,在Rt△ABC中,∠B=90º,∠A=30º.以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A,D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠A B9.抛物线)过点A(2y=O (l≤x≤3)有交点,则c的值不可能是A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是A.84 B.336C.510 D.1326卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11=_____________.12+ 2的解是___________ .13.如图12是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为l0cm,则该脸盆的半径为_____ cm.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠}②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_______ 元.15.如图,已知直线l:y=-x,双曲线y.在l上取一点A(a,-a)(a>0),过A 作x轴的垂线交双曲线于点B,过B作轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD.若原点O在正方形ABCD的对角线上且分这条对角线为1∶2的两条线段,则a的值为__________ .16.如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 __________ .三、解答题(本大题有8小题.第17 -ZO 小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤17.(1)5-(2-)º+-2.(2)=4. 18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A 市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A 市七年级部分学生参加社会 A 市七年级部分学生参加社会 实践活动天数的频数分布表 实践活动天数的条形统计图根据以上信息,解答下列问题:(l)求出频数分布表中a 的值,并补全条形统计图.(2)A 市有七年级学生20 000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:OO打开排水孑L开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东450方向,然后向西走60m到达C点,测得点B在点C的北偏东60。
浙江省绍兴市中考数学试卷含答案解析版
2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 2.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达立方米,其中数字用科学记数法可表示为( )A .15×1010B .×1012C .×1011D .×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A .17B .37C .47D .575.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.米B.米C.米D.米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y= .12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=kk(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB 的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,共80分)17.(8分)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到,参考数据:tan20°≈,tan18°≈)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y 轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017绍兴)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达立方米,其中数字用科学记数法可表示为( )A .15×1010B .×1012C .×1011D .×1012【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:=×1011,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形, 故选:A .【点评】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A .17 B .37 C .47 D .57【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是37. 故选B .【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=k k .5.(4分)(2017绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W2:加权平均数.【分析】利用平均数和方差的意义进行判断.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.(4分)(2017绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.米B.米C.米D.米【考点】KU:勾股定理的应用.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=米,AC=米,∴AB2=+=.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=,∴BD2=,∵BD>0,∴BD=米,∴CD=BC+BD=+=米.故选C.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7.(4分)(2017绍兴)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.【考点】E6:函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.8.(4分)(2017绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°【考点】LB:矩形的性质;JA:平行线的性质.【分析】由矩形的性质得出∠D=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,在Rt△ACD中,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.【点评】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.9.(4分)(2017绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【考点】H6:二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.(2017绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,(4分)10.再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.【考点】R9:利用旋转设计图案.【分析】根据轴对称和旋转的性质即可得到结论.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选B.【点评】本题考查了轴对称和旋转的性质,正确的识别图形是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017绍兴)分解因式:x2y﹣y= y(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【专题】44 :因式分解.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(5分)(2017绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠A=45°,∴∠DOE=2∠A=90°.故答案为:90°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(5分)(2017绍兴)如图,Rt△ABC的两个锐角顶点A,B在函数y=kk (x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为(4,1).【考点】G6:反比例函数图象上点的坐标特征.【分析】根据点A的坐标可以求得反比例函数的解析式和点B的横坐标,进而求得点B的坐标,本题得以解决.【解答】解:∵点A(2,2)在函数y=kk(x>0)的图象上,∴2=k2,得k=4,∵在Rt△ABC中,AC∥x轴,AC=2,∴点B的横坐标是4,∴y=44=1,∴点B的坐标为(4,1),故答案为:(4,1).【点评】本题考查反比例函数图象上点的坐标特征,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.14.(5分)(2017绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600 m.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质.【专题】1 :常规题型.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,{kk=kk∠kkk=∠kkk kk=kk∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:4600【点评】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.15.(5分)(2017绍兴)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为2√3.【考点】N2:作图—基本作图;KF:角平分线的性质.【分析】如图,作DE⊥AC于E.首先证明BD=DE=2,在Rt△ABD中,解直角三角形即可解决问题.【解答】解:如图,作DE⊥AC于E.由题意AD平分∠BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在Rt△ADB中,∵∠B=90°,∠BDA=60°,BD=2,∴AB=BDtan60°=2√3,故答案为2√3【点评】本题考查作图﹣基本作图,角平分线的性质定理、锐角三角函数等知识,解题的关键是熟练掌握角平分线的性质定理,属于中考常考题型.16.(5分)(2017绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x 的值是x=0或x=4√2﹣4或4<x<4√2.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4√2,当M与D重合时,即x=OM﹣DM=4√2﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4√2时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4√2﹣4或4<k<4√2.故答案为:x=0或x=4√2﹣4或4<k<4√2.【点评】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.三、解答题(本大题共8小题,共80分)17.(8分)(2017绍兴)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)【考点】C6:解一元一次不等式;2C:实数的运算;6E:零指数幂.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果;(2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【解答】解:(1)原式=1+3√2−4−3√2=﹣3;(2)去括号,得4x+5≤2x+2移项合并同类项得,2x≤﹣3解得x≤−3 2.【点评】此题考查了实数的运算和一元一次不等式的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)(2017绍兴)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米【考点】FH:一次函数的应用.【分析】(1)根据函数图象上点的纵坐标,可得答案;(2)根据待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得答案.【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费18元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x≥18),∵直线经过点(18,45)(28,75),∴{18k+k=45,28k+k=75,解得{k=3k=−9∴函数的解析式为y=3x﹣9 (x≥18),当y=81时,3x﹣9=81,解得x=30,答:这个月用水量为30立方米.【点评】本题考查了一次函数的应用,利用待定系数法求出函数解析式是解题关键.19.(8分)(2017绍兴)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据B组的人数和所占的百分比即可求出总人数;利用总人数×%可得D组人数,可补全统计图.(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;D组人数为:160×%=30(人)统计图补全如图:(2)800×20+40+60160=600(人)答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到,参考数据:tan20°≈,tan18°≈)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】12 :应用题;554:等腰三角形与直角三角形.【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【解答】解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CEtan20°≈,在Rt△CDE中,DE=CDtan18°≈,∴教学楼的高BD=BE+DE=+≈,则教学楼的高约为.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2017绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【考点】HE:二次函数的应用.【分析】(1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可;(2)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可.【解答】解:(1)∵y=x 50−k2=﹣12(x﹣25)2+6252,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x 50−(k−2)2=﹣12(x﹣26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26﹣25=1≠2,∴小敏的说法不正确.【点评】此题主要考查了由实际问题列二次函数关系式以及二次函数的最值问题和一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.22.(12分)(2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE 是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=√12+12=√2.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=,∴AE=9﹣=,综上所述,满足条件的AE的长为5或.【点评】本题考查四边形综合题、正方形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.23.(12分)(2017绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC 上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20 °,β=10 °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出。
2005-2013年绍兴市数学中考试题含解析 2
2005年绍兴市中考数学试题及参考答案一、 选择题(本大题有12小题,满分48分)下面每题给出的四个选项中只有一个选项是正确的1.学校篮球场的长是28米,宽是( )(A )5米 (B )15米 (C ) 28米 (D )34米2.反比例函数2y x=的图象在( ) (A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限3.下列各式中运算不正确的是( )(A )235ab ab ab += (B )23ab ab ab -=-(C )236ab ab ab = (D )2233ab ab ÷= 4.已知圆柱的侧面积为10π,则它的轴截面面积为( )(A ) 5 (B ) 10 (C ) 12 (D ) 205.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )(A )代入法 (B )换元法 (C )数形结合 (D )分类讨论6.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m ,则这个数用科学记数法表示是( )(A )50.15610-⨯ (B )50.15610⨯ (C )61.5610-⨯ (D )61.5610⨯7.不等式组中的两个不等式的解在数轴上表示不如图所示,则此不等式组可以是( ) (A )01x x ≥⎧⎨≥⎩ (B )01x x ≤⎧⎨≤⎩ (C )01x x ≥⎧⎨≤⎩ (D )01x x ≤⎧⎨≥⎩8.将一张正方形纸片,沿图的虚线对折,得图,然后剪去一个角,展开铺平后的图形如右图所示,则图中沿虚线的剪法是( )9.化简()2244123x x x -+--得 (A ) 2 (B )44x -+ (C )-2 (D )44x -10.钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。
则你认为( )(A )只有小敏回答正确 (B )只有小聪回答正确(C )小敏、小聪回答都正确 (D )小敏、小聪回答都不正确11.如图,已知AB 是⊙O 的直径,CD 是弦且CD ⊥AB ,BC =6,AC =8,则sin ∠ABD 的值是( )(A )43 (B ) 34 (C ) 35 (D )4512.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.5 4.9h t t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )(A )0.71s (B ) 0.70s (C )0.63s (D )0.36s二、 填空题(本大题有6小题,满分30分)将答案直接填在各填横线上13.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
绍兴市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质
绍兴市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1. (2002年浙江绍兴3分)抛物线2y ax bx c =++与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于【 】(A )-1 (B )-2 (C )2 (D )32. (2003年浙江绍兴4分)若点(-1,2)是反比例函数k y x =图象上一点,则k 的值是【 】 A .-21 B .21 C .-2 D .2【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】∵点(-1,2)是反比例函数k y x =图象上一点,∴k 21=-,解得:k 2=-。
故选C 。
3. (2004年浙江绍兴4分)已知正比例函数y=kx 的图象经过点(1,2),则k 的值为【 】A .21B .1C .2D .44. (2005年浙江绍兴4分)反比例函数2y x=的图象在【 】 (A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限5. (2005年浙江绍兴4分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2h 3.5t 4.9t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是【 】(A )0.71s (B ) 0.70s (C )0.63s (D )0.36s【答案】D 。
【考点】二次函数的应用。
【分析】∵224955h 3.5t 4.9t t 10148⎛⎫=-=--+ ⎪⎝⎭,且49010<-, ∴当()5t=0.36s 14≈时, h 最大,即他起跳后到重心最高时所用的时间是0.36s 。
故选D 。
6. (2006年浙江绍兴4分)小敏在某次投篮中,球的运动路线是抛物线21x 35y .5-=+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是【 】A .3.5mB .4mC . 4.5mD .4.6m7. (2006年浙江绍兴4分)如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1y (x 0)x=>的图象上,则点E 的坐标是【 】A .5151,22⎛⎫+- ⎪ ⎪⎝⎭;B .3535,22⎛⎫+- ⎪ ⎪⎝⎭C .5151,22⎛⎫-+ ⎪ ⎪⎝⎭;D .3535,22⎛⎫-+ ⎪ ⎪⎝⎭8. (2008年浙江绍兴4分)已知点11(x y ),,22(x y ),均在抛物线2y x 1=-上,下列说法中正确的是【 】A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若12x x 0<<,则12y y >9. 2009年浙江绍兴4分)平面直角坐标系中有四个点:M (1,-6),N (2,4),P (-6,-1),Q (3,-2),其中在反比例函数6y x=图象上的是【 】 A .M 点 B .N 点 C .P 点 D .Q 点10. (2009年浙江绍兴4分)如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线()()y ax y a 1x y a 2x ==+=+,,相交,其中a >0.则图中阴影部分的面积是【 】A .12.5B .25C .12.5aD .25a11. (2010年浙江绍兴4分)已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数2yx=的图象上的三点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是【 】 A .y 3<y 2<y 1 B .y 1<y 2<y 3 C .y 2<y 1<y 3 D .y 2<y 3<y 1【答案】C 。
【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析 专题06 函数的图像与
某某市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1. (2002年某某某某3分)抛物线2y ax bx c =++与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于【 】(A )-1 (B )-2 (C )2 (D )32. (2003年某某某某4分)若点(-1,2)是反比例函数k y x =图象上一点,则k 的值是【 】 A .-21 B .21 C .-2 D .2【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】∵点(-1,2)是反比例函数k y x =图象上一点,∴k 21=-,解得:k 2=-。
故选C 。
3. (2004年某某某某4分)已知正比例函数y=kx 的图象经过点(1,2),则k 的值为【 】A .21B .1C .2D .44. (2005年某某某某4分)反比例函数2y x=的图象在【 】 (A )第一、三象限 (B )第二、四象限 (C )第一、二象限 (D )第三、四象限5. (2005年某某某某4分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2h 3.5t 4.9t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是【 】(A )0.71s (B ) 0.70s (C )0.63s (D )0.36s【答案】D 。
【考点】二次函数的应用。
【分析】∵224955h 3.5t 4.9t t 10148⎛⎫=-=--+ ⎪⎝⎭,且49010<-, ∴当()5t=0.36s 14≈时,h 最大,即他起跳后到重心最高时所用的时间是0.36s 。
故选D 。
6. (2006年某某某某4分)小敏在某次投篮中,球的运动路线是抛物线21x 35y .5-=+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是【 】A .B .4mC .D .7. (2006年某某某某4分)如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1y (x 0)x=>的图象上,则点E 的坐标是【 】A .515122⎛⎫ ⎪ ⎪⎝⎭;B .353522⎛+- ⎝⎭C .5151-+⎝⎭;D .3535-+⎝⎭8. (2008年某某某某4分)已知点11(x y ),,22(x y ),均在抛物线2y x 1=-上,下列说法中正确的是【 】A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若12x x 0<<,则12y y > 9. 2009年某某某某4分)平面直角坐标系中有四个点:M (1,-6),N (2,4),P (-6,-1),Q (3,-2),其中在反比例函数6y x=图象上的是【 】 A .M 点 B .N 点 C .P 点 D .Q 点10. (2009年某某某某4分)如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线()()y ax y a 1x y a 2x ==+=+,,相交,其中a >0.则图中阴影部分的面积是【 】A .12.5B .25C .D .25a11. (2010年某某某某4分)已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数2y x=的图象上的三点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是【 】A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 2<y 3<y 1【答案】C 。
浙江省绍兴市中考数学试题(含答案)
3
( 2)若函数 y= x+b( b 为常数) 的坐标三角形周长为 16,
4
求此三角形面积 .
学习必备
欢迎下载
22. 某公司投资新建了一商场 ,共有商铺 30 间.据预测 ,当每间的年租金定为 10 万元时 ,可全部 租出 .每间的年租金每增加 5 000 元 ,少租出商铺 1 间 .该公司要为租出的商铺每间每年 交各种费用 1 万元 ,未租出的商铺每间每年交各种费用 5 000 元 . ( 1)当每间商铺的年租金定为 13 万元时 ,能租出多少间? ( 2)当每间商铺的年租金定为多少万元时 ,该公司的年收益(收益=租金-各种费用) 为 275 万元?
14. 根据第六届世界合唱比赛的活动细则
, 每个参赛的合唱团在比赛
第 12 题图
时须演唱 4 首歌曲 . 爱乐合唱团已确定了 2 首歌曲 , 还需在 A, B 两首歌曲中确定一首 , 在
C, D 两首歌曲中确定另一首 , 则同时确定 A, C 为参赛歌曲的概率是 _______________ . 15. 做如下操作:在等腰三角形 ABC 中 , AB= AC, AD 平分∠ BAC,
大佛 寺院
千丈 飞瀑
曹娥 庙宇
其它
景点
( 1)请在上述频数分布表中填写空缺的数据 , 并补全统计图;
( 2)该旅行社预计 6 月份接待外地来绍的游客 2 600 人, 请你估计首选景点是鲁迅故里的人
数.
学习必备
欢迎下载
20. 如图 , 小敏、小亮从 A, B 两地观测空中 C 处一个气球 , 分 别测得仰角为 30°和 60° , A, B 两地相距 100 m. 当气球 沿与 BA 平行地飘移 10 秒后到达 C′处时 , 在 A 处测得气 球的仰角为 45° . ( 1)求气球的高度(结果精确到 0.1 m); ( 2)求气球飘移的平均速度(结果保留 3 个有效数字) .
【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析 专题09 三角形
绍兴市2002-2013年中考数学试题分类解析 专题09 三角形、一、选择题1. (2002年浙江绍兴3分)边长为a 的正六边形的边心距为【 】(A )a (B )3a 2 (C )3a (D )2a2. (2003年浙江绍兴4分)已知点G 是△ABC 的重心,GP∥BC 交AB 边于点P ,BC=33,则GP 等于【 】A .33B .3C .23D .3323. (2003年浙江绍兴4分)身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面交角如过后下表(假设风筝线是拉直的),则三人所放的风筝中【 】同学甲 乙 丙 放出风筝线长 100m 100m 90m线与地面交角40°45°60°A.甲的最高 B.丙的最高C.乙的最低D.丙的最低4. (2008年浙江绍兴4分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为【】A.11.5米 B.11.75米 C.11.8米 D.12.25米二、填空题1. (2003年浙江绍兴5分)若正六边形的边长为2㎝,则此正六边形的外接圆半径为▲ ㎝.【答案】2。
【考点】正多边形和圆,等边三角形的判定。
【分析】正六边形可分成6个全等的等边三角形,等边三角形的边长是正六边形的外接圆半径,则此正六边形的外接圆半径=正六边形的边长=2㎝。
2. (2003年浙江绍兴5分)若某人沿坡度ⅰ=3:4的斜坡前进10m,则他所在的位置比原来的位置升高▲ m.3. (2004年浙江绍兴5分)在△ABC中,CD⊥AB,请你添加一个条件,写出一个正确结论(不在图中添加辅助线).条件:▲ ,结论:▲ .4. (2004年浙江绍兴5分)如图,河对岸有古塔AB.小敏在C 处测得塔顶A 的仰角为α,向塔前进s 米到达D ,在D 处测得A 的仰角为β则塔高是 ▲ 米.5. (2005年浙江绍兴5分)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省绍兴市2013年中考数学试卷
一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)
4.(4分)(2013•绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()
..
5.(4分)(2013•绍兴)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同..
从袋子中随机摸出一个球,它是黄球的概率2÷6=.
=
6.(4分)(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC 为5m,则水面宽AB为()
AD=
==4m
7.(4分)(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的
,则=2
8.(4分)(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔
漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y 与x的函数关系式的图象是()
..
9.(4分)(2013•绍兴)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:
(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;
(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()
得BM与OD的长,继而求得BD的值.
OM=AM=OA=
BM=,
DM=
∴OD=DM﹣OM=﹣=,
=
10.(4分)(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()
y=,
将(7,100)代入y=得k=700,∴y=,
,解得;
∴y=(7≤x≤),令y=50,解得x=14.
≤选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间
×≈≤
﹣2=≤
二、填空题(本大题共6小题,每小题5分,共30分)
11.(5分)(2013•绍兴)分解因式:x2﹣y2=(x+y)(x﹣y).
12.(5分)(2013•绍兴)分式方程=3的解是x=3.
13.(5分)(2013•绍兴)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.
,
14.(5分)(2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使
点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.
上的点
,
=2
15.(5分)(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.
16.(5分)(2013•绍兴)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.
AP=EF=2.5
AC=2.5
AB AD=
==0.7
三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)
17.(8分)(2013•绍兴)(1)化简:(a﹣1)2+2(a+1)
(2)解不等式:+≤1.
18.(8分)(2013•绍兴)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
,
19.(8分)(2013•绍兴)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n (n>2).
(1)求AB1和AB2的长.
(2)若AB n的长为56,求n.
20.(8分)(2013•绍兴)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:
(1)这次被调查的共有多少名同学?并补全条形统计图.
(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?
××
21.(10分)(2013•绍兴)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:
(2)当∠BAC=104°时,求AD的长(精确到1cm).
备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
考点:解直角三角形的应用.
(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,EAD=∠
22.(12分)(2013•绍兴)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.
(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).
(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.
①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?
②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.
考点:四边形综合题.
推出==
=,==,=,求出
得出=,h 分为两种情况:当B3C3=2×h,时,当B3C3=×h时,代入求出即可.
=,=,==,=,
=,
AG=
∴MN=GN=GH=HE=h,
×,时,=;
×h时,=
综合上述:BC与BC边上的高之比是或.
23.(12分)(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD 交于点G,点F在BC上.
(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.
(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.
考点:相似三角形的判定与性质;全等三角形的判定与性质.
EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,
∴sin∠B==,
BE
AEH==
AE
BE AE=1.
24.(14分)(2013•绍兴)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
,
△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直
x解方程组
,,
==,
﹣
由方程组.
,﹣)
∴==,
a
MG=FG=
a
a a
,﹣
∴==,
a
MG=FG=
a3+
综上可知,点M坐标为(,﹣)或(5,12).。