选修4-5 不等式选讲(教材解读与教学建议)
复习小结建议-北师大版选修4-5不等式选讲教案
复习小结建议-北师大版选修4-5 不等式选讲教案前言选修4-5是高中数学中的重要组成部分,不等式作为其中的一个重要知识点,是数学竞赛和高考的重点。
每一个学生对不等式的掌握程度都是需要不断提高的。
因此,通过对北师大版选修4-5 不等式选讲教案的复习小结和建议,希望能够帮助同学们更好地掌握这一知识点。
教案目标本教案旨在让学生了解不等式的定义和基本性质,并能运用不等式解决实际问题。
教学内容1.不等式的基本概念和符号2.不等式基本性质3.不等式的代数加减法4.不等式的乘除法5.不等式的解法6.不等式应用复习小结不等式的基本概念和符号不等式的概念是指关系式中含有一个“<”或“>”的算式,左右两侧可以是数字、字母和常数项的运算式,我们称这种关系式为不等式。
符号“<”和“>”表达的含义是左式的大小关系,左式小于右式,或者左式大于右式。
不等式基本性质不等式表示的是两个数量的大小关系。
两个不等式相加或相减的结果仍是不等式,其符号依据大小关系改变。
例如:a<b 且 c<d,则a+c<b+d若不等式两端同乘或同除一个正数,则不等关系不变。
若同乘或同除一个负数,则不等关系改变。
例如:1. 若a<b,则2a<2b;若a>b,则2a>2b。
2. 若a<b,则a/2<b/2;若a>b,则a/2>b/2。
不等式的代数加减法不等式可以像等式一样进行加减法,但是需要注意的是,加减后的不等关系会发生改变,需要通过基本性质重新确定大小关系。
例如:1. 若a<b,则a+c<b+c、a-c<b-c;若a>b,则a+c>b+c、a-c>b-c。
2. 不等式的两端可以同时加上相同的数,两端也可以同时减去相同的数。
不等式的乘除法不等式的乘除法也需要注意符号的改变,而且是否可以进行乘除法运算还需要进行讨论。
如果乘、除的数是正数,则不等关系不变;如果乘、除的是负数,则不等关系要改变。
高中文科数学第十三章 不等式选讲(选修4-5)
第十三章⎪⎪⎪不等式选讲(选修4-5)第一节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题体验]1.(教材习题改编)设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④D .②和④解析:选C ∵ab >0,即a ,b 同号, 则|a +b |=|a |+|b |, ∴①④正确,②③错误.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:23.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3, x ≤-1,2x -1, -1<x <2,3, x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥11.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<|||a |-|b |D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法(基础送分型考点——自主练透)[题组练透]1.(易错题)若不等式|x -a |+3x ≤0(其中a >0)的解集为{}x |x ≤-1,求实数a 的值.解:不等式|x -a |+3x ≤0等价于⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2 .由题设可得-a2=-1,故a =2.2.在实数范围内,解不等式|2x -1|+|2x +1|≤6. 解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪x -12 +⎪⎪⎪⎪x +12 ≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32 .3.(2015·山东高考改编)解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立.所以此时不等式无解.综上,不等式的解集为(-∞,4).[谨记通法]1.求解绝对值不等式要注意两点:(1)要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段讨论.(2)对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.如“题组练透”第1题要注意分类讨论.2.求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.考点二 绝对值不等式的证明 (重点保分型考点——师生共研)[典例引领](2015·唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝⎛⎭⎫-12,12 . 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)[典例引领](2016·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3② 或⎩⎪⎨⎪⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2]. (2)∵当x ∈[1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.[由题悟法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a .[即时应用](2015·重庆高考改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值. 解:当a =-1时,f (x )=3|x +1|≥0,不满足题意; 当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤a ,x -1-2a , a <x ≤-1,3x +1-2a , x >-1,f (x )min =f (a )=-3a -1+2a =5, 解得a =-6;当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤-1,-x +1+2a , -1<x ≤a ,3x +1-2a , x >a ,f (x )min =f (a )=-a +1+2a =5, 解得a =4.综上所述,实数a 的值为-6或4.1.(2016·福建四地六校联考)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧ -1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2.∴实数a 的取值范围是[-1,2].2.(2016·忻州模拟)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1, 得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立, ∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2, 解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12 ∪⎣⎡⎭⎫52,+∞. 4.(2016·唐山一模)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{}x |-1<x <1.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2 +|x +1|+⎪⎪⎪⎪x -a 2 ≥⎪⎪⎪⎪1+a 2 +0=⎪⎪⎪⎪1+a2 , 当且仅当(x +1)⎝⎛⎭⎫x -a 2 ≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2 =1,解得a =-4或0.5.(2015·南宁二模)已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{}x |-1≤x ≤5,求实数a ,m 的值; (2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m ,∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t 2,∵1≤1+t 2≤2,∴0≤x ≤1+t2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2,当0≤t <2时,无解,当t =2时,x ∈[2,+∞). ∴当0≤t <2时原不等式的解集为⎝⎛⎦⎤-∞,t2+1; 当t =2时原不等式的解集为[2,+∞).6.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),则△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,x ∈⎝⎛⎭⎫-54,12 . (2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103 . 8.(2016·大庆模拟)设函数f (x )=|2x -1|-|x +4|. (1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解:(1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{}x |x ≤-4.当-4<x <12时,不等式化为1-2x -x -4>0,解得x <-1,即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{}x |-4<x <-1.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5,即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{}x |x >5.综上,原不等式的解集为{}x |x <-1或x >5.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9. ∴由题意可知|a -1|≤9,解得-8≤a ≤10, 故所求a 的取值范围是[]-8,10.第二节 不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.[小题体验]1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.[小题纠偏]1.已知a >0,b >0,则a a b b________(ab )+2a b (填大小关系).解析:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab ) +2a b .答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9考点一 比较法证明不等式(基础送分型考点——自主练透)[题组练透]1.(2016·莆田模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). 证明:因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b )=(a 12-b 12)(a 32-b 32),因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). 2. 已知a =ln 22,b =ln 33,试比较a ,b 大小. 解:∵ln 22>0,ln 33>0, ∴b a =2ln 33ln 2=log 89>1.∴b >a .[谨记通法]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.考点二 综合法证明不等式 (重点保分型考点——师生共研)[典例引领]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.[由题悟法]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).[即时应用]已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .证明:因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c =1bc +1ac +1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .考点三 分析法证明不等式 (重点保分型考点——师生共研)[典例引领](2016·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3. (2)abc +b ac +cab ≥ 3(a +b +c ).证明:(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2) abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=33时等号成立).所以原不等式成立.[由题悟法]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时应用]已知a>b>c,且a+b+c=0,求证:b2-ac<3a.证明:要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0.∴(a-b)(a-c)>0显然成立,故原不等式成立.1.设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证:c-c2-ab<a<c+c2-ab,只需证:-c2-ab<a-c<c2-ab,只需证:|a-c|<c2-ab,只需证:(a-c)2<c2-ab,只需证:a2+c2-2ac<c2-ab,即证:2ac>a2+ab.因为a>0,所以只需证2c>a+b,由题设,上式显然成立.故c-c2-ab<a<c+c2-ab.3.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0, 得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2, 即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.4.(2015·长春三模)(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2; (2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明:(1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0. 又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0,即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2. (2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc .① 同理b 2(a 2+c 2)≥2ab 2c . ② c 2(a 2+b 2)≥2abc 2. ③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .5.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 6.(2016·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4,①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab ,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.8.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x2+11-y2≥2(1-x2)(1-y2).故要证明结论成立,只要证明2(1-x2)(1-y2)≥21-xy成立.即证1-xy≥(1-x2)(1-y2)成立即可.∵(y-x)2≥0,有-2xy≥-x2-y2,∴(1-xy)2≥(1-x2)(1-y2),∴1-xy≥(1-x2)(1-y2)>0.∴不等式成立.法二:(综合法)∵211-x2+11-y2≤1-x2+1-y22=2-(x2+y2)2≤2-2|xy|2=1-|xy|,∴11-x2+11-y2≥21-|xy|≥21-xy,∴原不等式成立.提升考能、阶段验收专练卷(一)集合与常用逻辑用语、函数、导数及其应用(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q解析:选D 根据特称命题的否定为全称命题知D 正确. 2.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:选D A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.3.(2015·南昌一模)若集合A ={}x |1≤3x ≤81,B ={}x |log 2x 2-x,则A ∩B =()A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]解析:选A 因为A ={}x |1≤3x≤81 ={}x |30≤3x ≤34={}x |0≤x ≤4, B ={}x |log 2x 2-x={}x |x 2-x >2={}x |x <-1或x >2,所以A ∩B ={}x |0≤x ≤4∩{}x |x <-1或x >2={}x |2<x ≤4=(2,4].4.(2016·陕西质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.5.(2016·南昌二中模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .已知y =f (x )是R 上的可导函数,则“f ′(x 0)=0”中“x 0是函数y =f (x )的极值点”的必要不充分条件C .命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”D .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题解析:选B 选项A 不正确,∵不符合否命题的定义;选项B 显然正确;选项C 不正确,命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1≥0”;对于选项D ,原命题是假命题,故逆否命题也为假命题,故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.7.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,log 13x , x >1,则函数y =f (1-x )的大致图象是()解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43 =log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343 ,排除C. 8.(2016·宁夏中宁一中月考)设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:选D 设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.9.(2016·湖南调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12 x -2在(0,+∞)上是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12 -1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫12 0<0, f (3)=ln 3-⎝⎛⎭⎫12 1>0, ∴x 0∈(2,3).10.(2016·洛阳统考)设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]解析:选C 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,∴f (x )在⎝⎛⎭⎫-∞,a 2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].11.(2015·全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:选C 设(x ,y )为函数y =f (x )的图象上任意一点,则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.故选C. 12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.(二)填空题(本大题共4小题,每小题5分)13.(2016·江门调研)若f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2-2x ,x >0,则f (x )的最小值是________.解析:当x ≤0时,f (x )=-x ,此时f (x )min =0; 当x >0时,f (x )=x 2-2x =(x -1)2-1, 此时f (x )min =-1.综上,当x ∈R 时,f (x )min =-1. 答案:-114.已知函数f (x )=x -2m 2+m +3(m ∈Z)为偶函数,且f (3)<f (5),则m =________. 解析:因为f (x )是偶函数, 所以-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3, 整理得⎝⎛⎭⎫35 -2m 2+m +3<1, 所以-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,所以m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:115.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.解析:根据题意,由lg 1 000-lg 0.001=6得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A9,则lg A9-lg 0.001=9,解得A9=106,同理5级地震的最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案:610 00016.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a最多有4个零点.其中真命题的序号是________.解析:由导数图象可知,当-1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5时,f′(x)<0,函数单调递减,当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=1.5.又f(-1)=f(5)=1,所以函数的最大值为2,最小值为1,值域为[1,2],①正确.②正确.因为当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,要使当x∈[-1,t]时函数f(x)的最大值是2,则t 的最大值为5,所以③不正确. 由f (x )=a ,因为极小值f (2)=1.5,极大值为f (0)=f (4)=2, 所以当1<a <2时,y =f (x )-a 最多有4个零点, 所以④正确.故真命题的序号为①②④. 答案:①②④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6, 故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数; 当2<x <3时,f ′(x )<0, 故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.(本小题满分12分)已知函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8).(1)求实数k ,a 的值;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并说明理由. 解:(1)把A (0,1),B (3,8)的坐标代入f (x )=k ·a -x,得⎩⎪⎨⎪⎧k ·a 0=1,k ·a -3=8. 解得k =1,a =12.(2)g (x )是奇函数.理由如下: 由(1)知f (x )=2x , 所以g (x )=f (x )-1f (x )+1=2x -12x +1.函数g (x )的定义域为R , 又g (-x )=2-x -12-x +1=2x ·2-x -2x2x ·2-x +2x=-2x -12x +1=-g (x ),所以函数g (x )为奇函数.附加卷:集合与常用逻辑用语、函数、导数及其应用(教师备选)(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.已知集合A ={}a ,0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg x 5-2x ,x ∈Z ,如果A ∩B ≠∅,则a =( )A.52 B .1 C .2D .1或2解析:选D 由题意得B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52,x ∈Z ={}1,2,则由A ∩B ≠∅,得a =1 或2.2.(2016·长沙一模)已知函数f (x )=⎩⎨⎧x 12,x >0,⎝⎛⎭⎫12 x,x ≤0,则f [f (-4)]=( )A .-4B .4C .-14D.14解析:选B 因为f (-4)=⎝⎛⎭⎫12 -4=16,所以f [f (-4)]=f (16)=(16)12=4.3.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0解析:选B 因为函数f (x )为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为该幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35.所以m=-1.4.已知命题p :∃x 0∈(-∞,0),3x 0<4x 0,命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x .则下列命题中为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q解析:选D 由指数函数的单调性可知命题p :∃x 0∈(-∞,0),3x 0<4x 0为假,则命题綈p 为真;易知命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x 为真,则命题綈q 为假.根据复合命题的真值表可知命题p ∧q 为假,命题p ∨(綈q )为假,命题p ∧(綈q )为假 ,命题(綈p )∧q 为真.5.(2016·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D 由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).6.(2015·云南二检)设a =3log 132,b =log 1213,c =23,则下列结论正确的是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:选B a =3log 132<0,1<b =log 1213=log 23<2,0<c =23<1,故a <c <b . 7.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 016)的值为( )A .2B .0C .-2D .±2解析:选A ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 016)=f (0)=2.8.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174D .a 2解析:选B ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①,②联立得g (2)=a =2,f (2)=a 2-a -2=154. 9.已知函数f (x )=x 2-bx +a 的图象如图所示,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)解析:选B 由题图可知f (x )的对称轴x =b 2∈⎝⎛⎭⎫12,1,则1<b <2,易知g (x )=ln x +2x -b ,则g ⎝⎛⎭⎫14 =-2ln 2+12-b <0,g ⎝⎛⎭⎫12 =-ln 2+1-b <0,g (1)=2-b >0,故g (x )的零点所在的区间是⎝⎛⎭⎫12,1.10.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3 000元B .3 300元C .3 500元D .4 000元解析:选B 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x ) ≤50⎝⎛⎭⎫58+x +70-x 22≤204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.11.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∩[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,因为函数g (x )是二次函数,值域不会是选项A ,B ,画出函数y =f (x )的图象(如图所示),易知,当g (x )的值域是[0,+ ∞)时,f (g (x ))的值域是[0,+∞).12.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0),ln x (x >0),则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间[-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.(二)填空题(本大题共4小题,每小题5分)13.函数y =log 13(2x +1)(1≤x ≤3)的值域为________.解析:当1≤x ≤3时,3≤2x +1≤9, 所以-2≤y ≤-1,所求的值域为[-2,-1]. 答案:[-2,-1] 14.若函数y =xx -m在区间(1,+∞)内是减函数,则实数m 的取值范围是________. 解析:y =x x -m =1+mx -m ,由函数的图象及性质可得0<m ≤1.答案:(0,1]15.(2016·台州调考)若函数f (x )=1ax 2+bx +c(a ,b ,c ∈R)的部分图象如图所示,则b=________.解析:令g (x )=ax 2+bx +c ,由图象可知,1,3是ax 2+bx +c =0的两个根,因此a +b +c =0,9a +3b +c =0,又函数f (x )的图象过点(2,-1),则f (2)=-1,即4a +2b +c =-1,因此可得a =1,c =3,b =-4.答案:-416.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R)有下列命题:①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.解析:∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R),显然f (-x )=f (x ),即函数f (x )为偶函数,图象关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ,令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即在x =1处取到最小值为2.由偶函数的图象关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.答案:①③④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围. 解:(1)由题意知,A ={}x |-1≤x ≤3, B ={}x |m -3≤x ≤m +3. 当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A ⊆B ,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].18.(本小题满分12分)(2016·辽宁五校联考)已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2xx 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x +2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,得x =-1或x =12.。
数学选修45不等式选讲教学设计 (2)
数学选修45不等式选讲教学设计一、教学目标通过本次教学,让学生掌握以下知识和能力:1.理解不等式的概念及其表示方法;2.掌握一元一次不等式的解法;3.掌握二元一次不等式的解法;4.学会运用不等式解决实际问题;5.培养学生的逻辑思维能力和问题解决能力。
二、教学重难点•重点:掌握不等式解法和应用方法;•难点:学会运用不等式解决实际问题。
三、教学过程1.引入不等式是中国古代数学中的一个重要概念,也是现代数学中的一个重要部分。
本次课程将围绕不等式的概念、解法和应用展开。
2.概念解释不等式是一种代数式,是通过不等于、小于、大于等符号连接起来的数的形式表达式。
例如:x>3上式中的“大于”符号表示x的取值范围大于3。
3.一元一次不等式的解法一元一次不等式是一个只含有一项的一次式不等于0的不等式。
例如:2x+1>5对于这种不等式,可以采用以下解法:•移项法;•变形法。
4.二元一次不等式的解法二元一次不等式是一个只含有两个变量的一次式不等于0的不等式。
例如:x+2y<6对于这种不等式,可以采用以下解法:•图形法;•代数法;5.应用举例不等式在许多实际问题中有着广泛的应用。
例如:•达到一定生产目标需要完成的任务数;•减肥的过程中需要控制的饮食热量;•经济发展中需要达到的增长目标等。
6.课堂练习这部分通过一些练习题的讲解来加深学生对不等式的掌握。
训练题的设计应紧密贴合所学内容。
7.课堂小结本课程主要介绍了不等式的概念、表示方法、一元一次不等式的解法、二元一次不等式的解法以及应用方法。
通过课堂实践,可以让学生更好地掌握不等式解决实际问题的能力,在数学以及其他学科中取得更好的成绩。
四、教学评价本课程主要用到了讲解和练习两种教学方法。
讲解方法可以帮助学生掌握概念和解法要点,练习则可以提高学生的运用能力。
考试成绩和出勤情况也是对教学效果的重要评价指标。
人教a版高考数学(理)一轮课件:选修4-5不等式选讲
考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.
高中数学 : 选修4-5 不等式选讲
解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17
或
1 x 1, (x 1) (2x 2) 1
或
x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7
选修4-5_不等式选讲(教材解读与教学建议)
• 一、本章的地位和作用 • 二、考纲和课程标准解读 • 三、教材分析 • 四、教学建议
9.通过一些简单问题了解证明不等式的基本方法: 比较法、综合法、分析法、反证法、放缩法.
10.完成一个学习总结报告.
课
具体内容
要求
说明
标
不等式的基本性质
理解 回顾和复习不等式的基本性质和基本不等
不
式,掌握二元和三元 平均不等式证明和应
等
基本不等式
掌握 用,理解二元和三元 平均不等式几何背
式
景,理解这些不等式的实质。会求一些特
明
本、最重要的方法。它所依据是实数大小的基本事实,
不 等
综合法与分 析法
掌握
证明不等式时关键有较强的恒等变换技巧。比较法两种 中差值法是最基本而重要的一种方法。综合法是由因导
式
果,而分析法是执果索因,命题时总是交替出现。直接
的 基 反证法
由条件推结论困难时用反证法。放缩法证明题时,把握 理解 好放缩的度。证明不等式是一定注意“逻辑方法”、“思
不 不等 解 证明思路,对具有明确大小顺序、数目相同的两列数,考虑它
等式
们对应乘积之和的大小关系时,排序不等式是很有用的工具。
式
课 标
具体内容
要 求
说明
了解数学归纳法的原理及其使用范围,会用
数 学
了
数学归纳法 解 数学归纳法证明一些简单问题。
高中数学:不等式选讲教案北师大版选修4-5
选修4-5 不等式选讲课 题: 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
0选修4-5教材分析与教学建议
《选修4-5》教材分析与教学建议山东一、本模块在整个高中数学教学的地位与作用1、本模块近六年来高考全国Ⅰ卷考查情况统计从以上的统计可以看出选修4-5不等式选讲,除2014年考察了基本不等式外,其余五年均考察绝对值不等式;绝对值不等式的解法每年必考,三年考察参数范围问题,两年考察绝对值函数图象.可见,不等式选讲属于高考考查的必考内容,至少占10分左右,而且其带来的方法和工具在其他章节中有着重要的应用,这就要求我们在教学中夯实双基,务实教学,把它当成一个重要的内容进行讲解。
通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。
2、《选修4-5》不等式选讲的内容,可以认为是《必修五》不等式一章的继续、深入和提高,从感性上升到理性.内容上保持相对的完整。
使不等式内容及思想方法系统化。
体现循序渐进,螺旋上升。
以回顾和学习出发,对不等式基本性质系统地归纳、整理。
对学生的思维能力、运算能力、综合能力提出了更高的要求,既是复习又是提高,教学中可以结合原来的知识,边复习边提高,使得学生的不等式水平提高到一个新的高度。
二、本模块教材的编写特点与原教材的主要区别1、作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:不等式选讲第一讲不等式和第二讲证明不等第三讲柯西不等式第四讲数学归纳①第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。
回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。
学习总结报告-苏教版选修4-5不等式选讲教案
学习总结报告-苏教版选修4-5 不等式选讲教案一、教学目标本次教学内容主要针对苏教版选修4-5 不等式选讲教案,通过对学生学习不等式的基本概念、性质和解不等式的方法进行深入地讲解,提高学生对不等式知识的理解和应用能力,提高学生的数学思维能力。
二、教学重点1.不等式基本概念的认识和理解;2.不等式的性质及相关定理的掌握;3.解不等式的方法及其应用。
三、教学难点1.对不等式的性质进行深入讲解,让学生理解不等式的本质;2.解决不等式组、绝对不等式和含有分式的不等式。
四、教学步骤和内容1. 引入(10min)首先,引导学生回忆单元前面所学过的知识,包括不等式符号的含义、如何解一元一次不等式等内容。
从而为进一步讲解不等式打下基础。
2. 不等式基本概念的讲解(20min)介绍不等式的定义和性质,严格阐述“不等式”这一概念,这是后续学习不等式的基础。
3. 不等式的性质及相关定理的掌握(30min)介绍不等式相关的定理,包括不等式传递律、相反数性质、等式加减原理等内容。
教师应深入逐一讲解每个定理及其推论,让学生从定义上理解每个定理的意义,并给出实例加深印象。
4. 解不等式的方法及其应用(40min)这一部分是本次教学的重点,由于时间较长,对教师提出了较高的要求。
详细讲解解不等式的方法,并围绕“求解环节”中常见的不等式类型加强训练。
根据实际情况,可以分为以下几个小节分别讲解:•一元一次不等式的解法(10min)•一元绝对值不等式的解法(10min)•含有分式的一元不等式的解法(10min)•一元二次不等式的解法(10min)5. 总结(10min)教师应在上述几部分的讲解过程中,时不时地留下一些思考题,引发学生思考,将理解得到的知识应用于实际问题中。
同时,教师应作一个小结,回顾一下今日所学过的知识,以便学生更好地消化、理解所学内容。
五、教学反思本次教学虽然讲授时长较长、知识点繁多,但通过对不等式基本概念、性质及解题方法的深入讲解,学生在学习后对这一部分的知识有了一个更深刻的理解。
数学选修45不等式选讲教学设计
数学选修45不等式选讲教学设计教学目标本次教学的核心目标是梳理和讲解高中数学选修四、五阶段中关于不等式的基本知识点和常见解题思路,让学生掌握该领域中的常规算法,进一步提高数学思维和解题能力。
在具体的教学过程中,我们将通过讲解、习题演示、自主练习三个部分来达成教学目标。
具体的内容安排和教学策略会在下面的章节中逐一给出。
教学内容本次教学内容大致包括以下几个部分:•不等式的基本定义•不等式的基本性质•不等式的基本解法•常见解题思路教学步骤第一步:讲解讲解环节是本次教学的基本步骤,我们将通过简明易懂的语言,对不等式的基本知识点展开讲解,包括但不限于以下几点:不等式的基本定义在讲不等式的基本定义时,我们将强调在学习高中数学不等式知识点时,不等式的定义是最为基础且最重要的内容。
同时,我们还会指出,不等式定义中的“符号”是不等式学习中最核心的部分,是后面内容理解的基础。
不等式的基本性质在讲不等式的基本性质时,我们将重点强调以下几个方面:1.不等式的加、减、乘、除操作规律2.不等式的两边平方规律3.不等式的倒数规律4.不等式的反向性不等式的基本解法在讲不等式的基本解法时,我们将系统讲解以下几点:1.常规不等式的解法2.二次函数不等式的解法3.绝对值函数不等式的解法4.根号函数不等式的解法常见解题思路在讲常见解题思路时,我们将讲解一些常用的解题思路和技巧,包括但不限于以下几点:1.通过图像来理解不等式2.通过移项来理解不等式3.通过恒等变形来理解不等式第二步:习题演示通过习题演示,我们将重点呈现一些基础题和典型题,让学生感受到不等式知识点的实际应用和习题技巧。
本次习题演示的具体安排如下:1.基础题:从前几章的知识入手,给予学生足够的演示题量,帮助他们熟悉和掌握基础题解题思路。
2.典型题:挑选两到三道典型题,涉及不同类型的不等式,帮助学生理解和掌握不等式知识点的具体应用。
第三步:自主练习最后一个环节是自主练习,在自主练习环节,我们将配合教学案例和习题演示,提供足够的自主练习时间,让学生通过练习,巩固和提高对不等式知识点的理解和掌握程度。
数学选修45不等式选讲教学设计 (3)
数学选修45不等式选讲教学设计选修课程背景本课程是数学选修模块中的一个重要部分,旨在通过对不等式的深度探究和研究,帮助学生掌握不等式的基本性质、方法和应用,增强学生的数学思维能力和解决问题的能力。
教学目标本课程的教学目标主要有以下三项:1.掌握不等式的基本概念和基本性质。
2.掌握不等式的求解方法,并能够灵活运用。
3.掌握不等式在各种问题中的应用方法。
教学内容第一部分:不等式的基本概念和基本性质1.不等式的定义和表示方法。
2.不等式的基本性质及其证明。
3.不等式的常见类型和特殊形式。
第二部分:不等式的求解方法1.不等式的变形和化简。
2.不等式的分析法和代数法求解。
3.不等式的图像法和几何法求解。
第三部分:不等式在问题中的应用1.利用不等式解决实际问题。
2.利用不等式证明数学定理。
3.利用不等式进行数学游戏和思维拓展。
教学方法1.讲授法:通过板书、示例和解题过程,使学生理解不等式的定义、性质和求解方法。
2.练习法:通过习题解析和课堂练习,帮助学生巩固知识点,提高解题技巧和能力。
3.探究法:通过引导学生自主思考、探究不等式的性质和应用,提高学生的创新性和独立思考能力。
4.案例法:通过案例分析,让学生了解不等式在实际问题中的应用,培养学生的实际解决问题的能力。
教学评价1.写作评价:要求学生在课后完成一篇题目相关的论文或报告,对所学知识进行总结和归纳,并提出自己的思考和建议。
2.课堂测验:每节课结束时进行小测验,测试学生对所学知识的掌握情况和解题能力,并在下节课回顾和分析小测验,让学生真正理解知识点和解题技巧。
3.期末考试:期末考试主要考查学生对不等式知识的理解、运用和综合能力,包含理论分析和实际解题两部分。
教学资源1.教材:使用教育部最新出版的选修45数学教材,包含了不等式相关的所有知识点和例题。
2.资料:收集整理相关的教学资料和习题集,供学生参考和练习。
3.工具:利用计算机提供的各种工具和软件进行图像展示和数学计算,提高教学效率和趣味性。
选修4-5 不等式选讲 第一节 绝对值不等式
第一节绝对值不等式1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想. 法二:利用“零点分段法”求解,体现了分类计论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.不等式|x -2|>x -2的解集是________. 解析:原不等式同解于x -2<0,即x <2. 答案:x <22.已知|x -a |<b 的解集为{x |2<x <4},则实数a 等于________. 解析:由|x -a |<b 得a -b <x <a +b ,由已知得⎩⎪⎨⎪⎧a -b =2,a +b =4,解得a =3,b =1.答案:33.若不等式|8x +9|<7和不等式ax 2+bx >2的解集相等,则实数a 、b 的值分别为________.解析:据题意可得|8x +9|<7⇒-2<x <-14,故由{x |-2<x <-14}是二次不等式的解集可知x 1=-2,x 2=-14是一元二次方程ax 2+bx -2=0的两根,根据根与系数关系可知x 1x 2=-2a =12⇒a =-4,x 1+x 2=-b a =-94⇒b =-9.答案:a =-4,b =-94.不等式|2x -1|<3的解集为________. 解析:原不等式可化为-3<2x -1<3, 解得-1<x <2.故所求解集为{x |-1<x <2}. 答案:{x |-1<x <2}5.(2011年陕西)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是______________.解析:令y =|x +1|+|x -2|,由题意知应|a |≥y min ,而y =|x +1|+|x -2|≥|x +1-x +2|=3,∴a ≥3或a ≤-3.答案:(-∞,-3]∪[3,+∞)例1 解不等式|x -1|+|x +2|<5.【解析】 法一:分别求|x -1|,|x +2|的零点,即1,-2. 由-2,1把数轴分成三部分:x <-2,-2≤x ≤1,x >1. 当x <-2时,原不等式即1-x -2-x <5, 解得-3<x <-2;当-2≤x ≤1时,原不等式即1-x +2+x <5, 因为3<5,恒成立,即-2≤x ≤1; 当x >1时,原不等式即x -1+2+x <5, 解得1<x <2.综上,原不等式的解集为{x |-3<x <2}.法二:不等式|x -1|+|x +2|<5的几何意义为数轴上到-2,1两个点的距离之和小于5的点组成的集合,而-2,1两个端点之间的距离为3,由于分布在-2,1以外的点到-2,1的距离在-2,1外部的距离要计算两次,而在-2,1内部的距离则只计算一次,因此只要找出-2左边到-2的距离等于5-32=1的点-3,以及1右边到1的距离等于5-32=1的点2,这样就得到原不等式的解集为{x |-3<x <2}.【点评】 含绝对值的不等式的解法应想法去掉绝对值符号,转化为不含绝对值的方法求解.其方法有:(1)利用公式或平方法转化;(2)利用绝对值的定义转化;(3)利用数形结合思想转化;(4)利用“零点分段法”等.1.(2011年课标全国)设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解析:(1)当a =1时,f (x )≥3x +2 可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0. 此不等式化为不等式组⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x ≤a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2.由题设可得-a2=-1,故a =2.例2 已知函数f (x )=1+x 2,设a ,b ∈R ,且a ≠b , 求证:|f (a )-f (b )|<|a -b |.【证明】 证法一:|f (a )-f (b )|<|a -b | ⇔|1+a 2-1+b 2|<|a -b |⇔(1+a 2-1+b 2)2<(a -b )2⇔2+a 2+b 2-2(1+a 2)(1+b 2)<a 2+b 2-2ab⇔1+ab <(1+a 2)(1+b 2).①当ab ≤-1时,式①显然成立;当ab >-1时,式①⇔(1+ab )2<(1+a 2)(1+b 2) ⇐2ab <a 2+b 2.②∵a ≠b ,∴②式成立,故原不等式成立. 证法二:当a =-b 时,原不等式显然成立; 当a ≠-b 时,∵|1+a 2-1+b 2| =|(1+a 2)-(1+b 2)|1+a 2+1+b 2<|a 2-b 2||a |+|b |≤|(a +b )(a -b )||a +b |=|a -b |,∴原不等式成立.证法三:设x =(1,a ),y =(1,b ),则|x |=1+a 2,|y |=1+b 2,x -y =(0,a -b ),|x -y |=|a -b |,而||x |-|y ||≤|x -y |,∴|1+a 2-1+b 2|≤|a -b |,又a ≠b , 即|f (a )-f (b )|<|a -b |.证法四:设y =1+x 2(x ∈R ),则y =1+x 2表示双曲线y 2-x 2=1上支的部分.其渐近线为y =±x ,设A (a ,f (a )),B (b ,f (b ))为曲线y =1+x 2上两不同的点.则|k AB |<1,即⎪⎪⎪⎪⎪⎪f (b )-f (a )b -a <1.∴|f (a )-f (b )|<|a -b |.【点评】 (1)证法一用的是分析法;(2)证法二是综合法,其证明中用到的技巧有:①分子有理化,②不等式|a |+|b |≥|a +b |,③放缩法;(3)证法三用的是构造向量,利用向量不等式;(4)证法四是数形结合思想.2.(2010年广东卷)设A (x 1,y 1),B (x 2,y 2)是平面直角坐标系xOy 上的两点,现定义由点A 到点B 的一种折线距离ρ(A ,B )为ρ(A ,B )=|x 2-x 1|+|y 2-y 1|.对于平面xOy 上给定的不同的两点A (x 1,y 1),B (x 2,y 2),(1)若点C (x ,y )是平面xOy 上的点,试证明:ρ(A ,C )+ρ(C ,B )≥ρ(A ,B ); (2)在平面xOy 上是否存在点C (x ,y ),同时满足 ①ρ(A ,C )+ρ(C ,B )=ρ(A ,B );②ρ(A ,C )=ρ(C ,B ). 若存在,请求出所有符合条件的点;若不存在,请予以证明. 解析:证明:∵ρ(A ,C )=|x -x 1|+|y -y 1|, ρ(C ,B )=|x 2-x |+|y 2-y |. ρ(A ,B )=|x 2-x 1|+|y 2-y 1|,∴ρ(A ,C )+ρ(C ,B )=|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y | =(|x -x 1|+|x 2-x |)+(|y -y 1|+|y 2-y |) ≥|(x -x 1)+(x 2-x )|+|(y -y 1)+(y 2-y )| =|x 2-x 1|+|y 2-y 1|=ρ(A ,B ).(2)注意到点A (x 1,y 1)与点B (x 2,y 2)不同,下面分三种情形讨论. ①若x 1=x 2,则y 1≠y 2,由条件②得 |x -x 1|+|y -y 1|=|x 2-x |+|y 2-y |, 即|y -y 1|=|y -y 2|,∴y =y 1+y 22.由条件①得|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y |=|x 2-x 1|+|y 2-y 1|.∴2|x -x 1|+12|y 2-y 1|+12|y 2-y 1|=|y 2-y 1|,∴|x -x 1|=0, ∵x =x 1.因此,所求的点C 为(x 1,y 1+y 22)②若y 1=y 2,则x 1≠x 2,类似于①, 可得符合条件的点C 为(x 1+x 22,y 1).③当x 1≠x 2,且y 1≠y 2时,不妨设x 1<x 2.(ⅰ)若y 1<y 2,则由(1)中的证明知,要使条件①成立,当且仅当(x -x 1)(x 2-x )≥0与(y -y 1)(y 2-y )≥0同时成立,故x 1≤x ≤x 2且y 1≤y ≤y 2.从而由条件②,得x +y =12(x 1+x 2+y 1+y 2).此时所求点C 的全体为M =⎩⎨⎧(x ,y )|x +y =12(x 1+x 2+y 1+y 2),x 1≤x ≤x 2}且y 1≤y ≤y 2.(ⅱ)若y 1>y 2,类似地由条件①可得x 1≤x ≤x 2且y 2≤y ≤y 1,从而由条件②得x -y =12(x 1+x 2-y 1-y 2).此时所求点的全体为N =⎩⎨⎧(x ,y )|x -y =12(x 1+x 2-y 1-y 2),x 1≤x ≤x 2}且y 2≤y ≤y 1.例3 设函数f (x )=|x -1|+|x -a |. (1)设a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】 (1)当a =-1时,f (x )=|x -1|+|x +1|,由f (x )≥3得|x -1|+|x +1|≥3. ①x ≤-1时,不等式化为1-x -1-x ≥3, 即-2x ≥3.不等式组⎩⎪⎨⎪⎧x ≤-1f (x )≥3,的解集为⎝ ⎛⎦⎥⎤-∞,-32. ②当-1<x ≤1时,不等式化为 1-x +x +1≥3,不可能成立.不等式组⎩⎪⎨⎪⎧-1<x ≤1,f (x )≥3的解集为∅.③当x >1时,不等式化为 x -1+x +1≥3,即2x ≥3.不等式组⎩⎪⎨⎪⎧x >1,f (x )≥3的解集为⎣⎡⎭⎫32,+∞. 综上得,f (x )≥3的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. (2)若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1.即,f (x )的最小值为1-a . 若a >1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a .即,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1)∪[3,+∞).【点评】 如果一个不等式中含有两个(或两个以上)的绝对值符号,应考虑用零点分段讨论法去掉绝对值符号,这时实质是将原不等式转化为n 个不等式组,把每个不等式组的解求出后,取它们的并集得到原不等式的解集.3.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在①的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解析:(1)由f (x )≤3得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].法二:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].一、填空题 1.不等式⎪⎪⎪⎪x -2x >x -2x 的解集是________.解析:由绝对值的意义知,原不等式同解于x -2x <0,即x (x -2)<0,∴0<x <2. 答案:(0,2)2.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足________.解析:由|x -a |<1得a -1<x <a +1. 由|x -b |>2得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2, 即a -b ≥3或a -b ≤-3,∴|a -b |≥3. 答案:|a -b |≥33.已知不等式|x -m |+|x |≥1的解集为R ,则实数m 的取值范围是________. 解析:由绝对值不等式的几何意义知|x -m |+|x |≥|(x -m )-x |=|m |,故|m |≥1,∴m ≥1或m ≤-1.答案:(-∞,-1]∪[1,+∞)4.若关于x 的不等式|x +1|+k <x 有解,则实数k 的取值范围是________. 解析:∵|x +1|+k <x , ∴k <x -|x +1|.若不等式有解则需k <(x -|x +1|)max . 设f (x )=x -|x +1|,则f (x )=⎩⎪⎨⎪⎧-1,x ≥-1,2x +1,x <-1.由解析式可以看出f (x )max =-1,∴k <-1. 答案:(-∞,-1)5.已知关于x 的不等式|x -1|+|x +a |≤8的解集不是空集,则a 的最小值是________. 解析:由|x -1|+|x +a |≥|1-x +x +a |=|a +1|知|a +1|≤8,故-9≤a ≤7,因此a 的最小值是-9.答案:-96.若不等式|x -a |+|x -2|≥1对任意实数x 均成立,则实数a 的取值范围为________. 解析:由|x -a |+|x -2|≥|(x -a )-(x -2)|=|a -2|. ∴|a -2|≥1解之得a ≤1或a ≥3. 答案:(-∞,1]∪[3,+∞)7.不等式||x +3|-|x -3||>3的解集为________.解析:由绝对值不等式的含义得到:x 到-3和3的距离之差的绝对值大于3, 结合数轴不难得出x >32或x <-32,故x ∈{x |x >32或x <-32}.答案:{x |x >32或x <-32}8.(2011年江西)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:法一:|x -1|≤1⇒0≤x ≤2,|y -2|≤1⇒1≤y ≤3,可得可行域如图(阴影部分).∵|x -2y +1|=5,|x -2y +1|5.其中z =|x -2y +1|5为点(x ,y )到直线x -2y +1=0的距离.当(x ,y )为(0,3)时z 取得最大值|0-2×3+1|5=55. 故|x -2y +1|max =5.法二:|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值为5.答案:59.给出下列四个命题:①若log a (a 2+4)≤log a (4a )<0,则a 的取值范围是(1,+∞); ②函数f (x )=log 2(x 2-5x +1)的单调递减区间为(-∞,52);③不等式|x |+|log 2 x |>|x +log 2 x |的解集为(0,1); ④若|a +b |<-c (a ,b ,c ∈R ),则|a |<|b |-c . 以上四个命题中,正确命题的序号为________. 解析:对于①,由于a 2+4≥4a且log a (a 2+4)≤log a (4a ),∴0<a <1,∴①错; 对于②,由x 2-5x +1>0, 得x >5+212或x <5-212,∴f (x )=log 2(x 2-5x +1)的递减区间为 ⎝ ⎛⎭⎪⎫-∞,5-212,故②错; 对于③,必有x >0且log 2 x <0, ∴0<x <1故③正确.对于④,∵|a |-|b |≤|a +b |<-c , ∴|a |<|b |-c ,故④正确. 答案:③④ 三、解答题10.(2011年江苏)解不等式x +|2x -1|<3.解析:法一:原不等式可化为|2x -1|<3-x .∴⎩⎪⎨⎪⎧ 2x -1<3-x 2x -1>x -3,∴⎩⎪⎨⎪⎧ x <43x >-2.∴原不等式的解集是{x |-2<x <43} 法二:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <43或-2<x <12. 所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |-2<x <43. 11.(2011年福建)设不等式|2x -1|<1的解集为M .(1)求集合M :(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.解析:(1)由|2x -1|<1得-1<2x -1<1,解得0<x <1,所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0,故ab +1>a +b .12.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)试证明|1+b |≤M ;(2)试证明M ≥12; (3)当M =12时,试求出f (x )的解析式. 解析:证明:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴|1+b | ≤M .(2)证明:依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2,∴M ≥12. (3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12① 同理-12≤1+a +b ≤12② -12≤1-a +b ≤12③ ②+③得-32≤b ≤-12④ 由①④得b =-12,当b =-12时,分别代入②③得⎩⎪⎨⎪⎧ -1≤a ≤00≤a ≤1⇒a =0,因此f (x )=x 2-12.。
人教A版高中数学选修4—5《不等式选讲》简析
发 讨论 不等 式 的基 本性质 ,介绍 了基 本 不等 式及其 几何 解 释 ; 后讨论 绝对值 不等 式 的性质 、 然 几何 意义 及解 法。
析 问 题 、 解 决 问题 的 能 力 等 做 为 本 专 题 的基 本 目标 。 围绕 这一 目标 ,在 本 专 题 的 编 写 中 ,编 者着 重 考 虑 了
题 的能 力 。
一
教 科 书 将 其 做 为 重 点 内 容 进 行 了 介绍 。 用 反证 法 和 放
缩 法证 明 不等 式 是 新 引 入 的 内容 。 第 三 讲 介 绍 了柯 西 不 等 式 、 排序 不等 式 以及 它们 的简 单 应 用 。 教 科 书 按 照 二 维 形 式 的柯 西 不等 式 — — 几 何 解 释 — — 向 量 形 式 的 柯 西 不 等 式 — — 一 般 形 式 的 柯 西 不 等 式 的 顺 序 展 开 教学 内容 , 注 意 与 二 次 函 数 、 并 函数 极值 、 归思 想 等 建 立 紧 密 联 系 ; 讨 论 排 序 不 等 化 在 式 时 , “ 究— — 猜 想— — 证 明— — 应 用 ” 研 究 过 以 探 的 程 , 导 学 生 通 过 自 己 的 数 学 活 动 , 识 排 序 不 等 式 的 引 认 数学意 义、 明方法和简单应 用。 西 不等式、 序不 ‘ 证 柯 排
1+ ≤ l +I 、 6l l l I
型 如 I + ≤c + ≥c — + l bl 6l 、I 6 I 、l cl — ≥Ⅱ的
不等 式 , 加 强 学 生从 “ 何 意 义 ” 察 不 等 式 的 意 识 , 以 几 考
第 二讲 介 绍 了证 明不 等 式 的 基 本 方 法 ,这 些 方 法
是 深入 讨 论 不 等 式 问题 的基 础 ,所 以 本讲 也是 本专 题 的 基 础 内 容 。 证 明 不等 式 的 几 种 方 法 中 , 较 法 ( 在 比 特 别 是 相减 比较 法 ) 证 明 不等 式 的最 基 本 的 方 法 , 此 是 因
高中课标课程选修4-5《不等式选讲》教学参考四 运用放缩法证明不等式
x2 + xy + y2 + y2 + yz + z2 + z2 + zx + x2
> 3(x + y + z)/2 . 分析 :本题的左 边较繁杂且 有根号,右 边较简 单且没有 根号,因而 考虑从左边 入手去掉根 号,配 方法是较 易想到的方 法,而三个 轮换对称式 各自配 方后多出 的一项自然 就通过放缩 法舍去从而 达到化 去根号的目的.
证明: x2 + xy + y2 = (x + y / 2)2 + 3y2 / 4
≥ (x + y / 2) 2 = x + y / 2 ≥x + y / 2 .
同理可得 y2 + yz + z 2 ≥y + z / 2 ,
z2 + zx + x2 ≥z + x / 2 . 由于实数 x、y、z 不全为零,故上述三式中至少 有一式等号不能成立,所以三式累加得
证明: f (1) f (n) = (e + e 1)(e n + e n ) = en+1 + en 1 + e1 n + e 1 n > en+1 + en 1 + e1 n
≥en+1 + 2 en 1 e1 n = en+1 + 2 , 同理 f ( 2) f (n 1) > en +1 + 2 , …, f (n) f (1) > en+1 + 2 ,
(en+1 + 2) n /2 (n ∈N* ) .
选修4-5不等式选讲
根据课程标准,本专题介绍一些重 要的不等式和它们的证明、数学归纳法 和它的简单应用。
本专题的内容是在初中阶段掌握了 不等式的基本概念,学会了一元一次不 等式、一元一次不等式组的解法,多数 学生在学习高中必修课五个模块的基础 上展开的.作为一个选修专题,教科书 在内容的呈现上保持了相对的完整性.
第二部分讨论了有关绝对值不等式的性质及 绝对值不等式的解法.绝对值是与实数有关 的一个基本而重要的概念,讨论关于绝对值 的不等式具有重要的意义.
• 绝对值三角不等式是一个基本的结论,教 科书首先引导学生借助于实数在数轴上的 表示和绝对值的几何意义,探究归纳出绝 对值三角不等式,接着联系向量形式的三 角不等式,得到绝对值三角不等式的几何 解释,最后用代数方法给出证明.这样, 数形结合,引导学生多角度认识这个不等 式,逐步深化对它的理解.利用绝对值三 角不等式可以解决一种特殊形式的函数的 极值问题,教科书安排了一个这样的实际 问题。
• 课程标准对于本专题的几个教学内容都明 确的教学要求,如:对于解含有绝对值的 不等式,只要求能解几种特殊类型的不等 式,不要求学生会解各种类型的含有绝对 值的不等式。对于数学归纳法证明不等式 的要求也只要求会证明一些简单问题。只 要求通过一些简单问题了解证明不等式的 基本方法,会利用所学的不等式证明一些 简单不等式,等等。
数学归纳法证明一些简单问题。 7.会用数学归纳法证明贝努利不等式:
(1+x)n >1+nx(x>-1,n为正整数)。
了解当n为实数时贝努利不等式也成立。
• 8.会用上述不等式证明一些简单问 题。能够利用平均值不等式、柯西 不等式求一些特定函数的极值。
• 9.通过一些简单问题了解证明不等 式的基本方法:比较法、综合法、 分析法、反证法、放缩法。
数学选修4-5不等式选讲
选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
数学选修4-5《不等式选讲》教案
选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
选修4_5_《不等式选讲》[全册]教案
第一讲 不等式和绝对值不等式 课题:第01课时 不等式的基本性质教学目标:1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。
2.掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式。
教学重点:应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法。
教学难点:灵活应用不等式的基本性质。
教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a mb ++,只要证m a m b ++>ab即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a 0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当且仅当 bi 0(i 1, 2,, n) 或存在一个数 k , 使得 ai kbi (i 1, 2,, n) 时, 等号成立.
定理解读: 1.知识点: 二元---三元---一般形式,突出几何的直观性(向量) 2.应用功能.怎样用? (1).正用.(2)逆用(3).变用(4)活用.
定理: 设 a1 , a2 , a3 ,, an , b1, b2 , b3 ,, bn 是实数, 则
2 2 2 2 (a12 a2 an )(b12 b2 bn ) (a1b1 a2b2 anbn )2
当且仅当 bi 0(i 1, 2,, n) 或存在一个数 k , 使得 ai kbi (i 1, 2,, n) 时, 等号成立.
a 2b 2 b 2 c 2 c 2 a 2 abc . 例 4( 教材P25例4 )已知 a, b, c 0 ,求证: abc
分析: 要证的不等式可以化为 a2b2 b2c2 c2a2 abc(a b c) , 即 a 2b2 b2c2 c2 a 2 a 2bc b2ac c 2ab . 观察上式, 左边各项是两个字母的平方之积, 右边各项涉及三个字母, 可以考虑用 x2 ( y 2 z 2 ) 2x2 yz .
不等式选讲
第一讲不等式和 绝对值不等式
第二讲证明不等 式的基本方法
第三讲柯西不等式 与排序不等式
第四讲数学归纳 法证明不等式
1.回顾和复习不等式的基本性质和基本不等式. 2.理解绝对值的几何意义,并能利用绝对值不等式的几何 意义证明以下不等式: (1)∣a+b∣≤∣a∣+∣b∣; (2)∣a-b∣≤∣a-c∣+∣c-b∣; (3)会利用绝对值的几何意义求解以下类型的不等式: ∣ax+b∣≤c ;∣ax+b∣≥c ;∣x-c∣+∣x-b∣≥a. 3.认识柯西不等式的几种不同形式,理解它们的几何意义. (1)证明柯西不等式的向量形式:|α||β|≥|α· |. β (2)证明:(a2+b2)(c2+d2)≥(ac+bd)2. (3)证明: 4.用参数配方法讨论柯西不等式的一般情况:
a2 (a b) b2 (a b) (a2 b2 )(a b) (a b)(a b)2
因为 a , b 都是正数, 所以
a b 0.
又因为 a b , 所以 (a b)2 0 ,于是 (a b)(a b)2 0 , 即 (a3 b3 ) (a2b ab2 ) 0 .所以
• 而选修4是在模块必修五的基础上展开的, 是必修五的继续、深入和提高,从感性上 升到理性.内容上保持相对的完整。使不 等式内容及思想方法系统化.体现循序渐 进,螺旋上升。以回顾和学习出发,展开 局部到整体,特殊到一般,具体到抽象, 对不等式基本性质,经系统地归纳、整理。 使学生学会研究数学问题的基本方法和通 常的研究过程。
例 3( 教材P24例3 )求证:
2 7 3 6.
证明:因为 2 7 和 3 6 都是正数,所以要证 2 7 3 6 只需证 只需证
2 2 ( 2 7) 3 6) (
9 2 14 9 2 18
只需证 14 18 只需证 14 18 因为 14 18 成立,所以 2 7 3 6 成立
设α ( a1 ,a2 , ,an ), β ( b1 ,b2 , ,bn ), 2 2 2 α β α β , α β α β
2 2 2 2 (a12 a2 an )(b12 b2 bn ) (a1b1 a2b2 anbn )2
数学归纳法 证明不等式
了 解
会用数学归纳法证明贝努利不等式:(1+x)n
>1+nx(x>-1,n 为正整数) 。
(一) 新旧教材对比 (二) 新教材的特点 (三) 典型问题的处理
(1)旧教材:线性逻辑结构;新教材:螺旋上升. (2)总课时:旧教材 13 课时. 新教材 16(必修)+18(选修)=34 课时 (3)内容变化: 1.调整了线性规划. 2.增加了两个基本不等式(柯西不等式、排序不等式).
• 1.回顾复习 • 2.直观感受 • 3.自主探究 • 4.承前启后
逻辑关系 突出背景 突出应用 突出工具
• 不等式在必修五中已学过,为什么还在选修 中出现? • 必修五中学生将通过具体情境,感受在现实 世界和日常生活中存在着大量的不等关系, 理解不等式(组)对于刻画不等关系的意义 和价值;掌握求解一元二次不等式的基本方 法,并能解决一些实际问题;能用二元一次 不等式组表示平面区域,并尝试解决一些简 单的二元线性规划问题;认识基本不等式及 其简单应用;体会不等式、方程及函数之间 的联系。
显性 隐性 知识的交 汇性最强
例 1、 教材P21例1 )已知 a , b 都是正数, 且 a b , 求证: a3 b3 a2b ab2 . (
分析: 可以把不等式两边相减, 通过适当的恒等变形, 转化为一个能够明确 确定正负的代数式. 证明: (a3 a3 ) (a2b ab2 ) (a3 a 2b) (ab 2 b3 )
要求用向量递归方法讨论排序不等式。理解讨论排序不等式的 证明思路,对具有明确大小顺序、数目相同的两列数,考虑它 们对应乘积之和的大小关系时,排序不等式是很有用的工具。
课 标
具体内容
要 求
说明
了解数学归纳法的原理及其使用范围,会用
数 学 归 纳 法 证 明 不 等 式 数学归纳法 了 解
数学归纳法证明一些简单问题。 数学归纳法可证明“等式、不等式、几何问 题、整除问题。 ”本讲的核心内容是用数学归纳 法证涉及正整数的不等式。
的柯 西不 等式 排 序 排序 不 不等 等 式 式
x1 x2 y1 y2
2
2
2
2 2
了 解
x2 x3 y2 y3
x1 x3 y1 y3
。
用柯西不等式求一些特定函数的极值。 理解一般形式柯西不等式的证明思路。
了 解
5.用向量递归方法讨论排序不等式. 6.了解数学归纳法的原理及其使用范围,会用数学 归纳法证明一些简单问题. 7.会用数学归纳法证明贝努利不等式: (1+x)n>1+nx(x>-1,n为正整数). 8.会用上述不等式证明一些简单问题.能够利用平均 值不等式、柯西不等式求一些特定函数的极值. 9.通过一些简单问题了解证明不等式的基本方法: 比较法、综合法、分析法、反证法、放缩法. 10.完成一个学习总结报告.
分析: 若把
基本不等式 柯西不等式 排序不等式
定理: 设 a1 , a2 , a3 ,, an , b1, b2 , b3 ,, bn 是实数, 则
2 2 2 2 (a12 a2 an )(b12 b2 bn ) (a1b1 a2b2 anbn )2
不等关系与相等关系都是客观事物 的基本数量关系,是数学研究的重要内 容。建立不等观念、处理不等关系与处 理等量问题是同样重要的。在本模块中, 学生将通过具体情境,感受在现实世界 和日常生活中存在着大量的不等关系。 通过回顾复习,体验从特殊到一般. 从 局部到整体,从具体到抽象的学习过程。
• 一、本章的地位和作用 • 二、考纲和课程标准解读 • 三、教材分析 • 四、教学建议
a3 b3 a 2 b a. 2 b
例 2. ( 教材P 例2 )如果用 a kg 白糖制出 b kg 糖溶液, 则糖的质量分数为 21
a . b
am 若在上述溶液中再添加 m kg 白糖, 此时糖的质量分数增加到 . 将这个事 bm 实抽象为数学问题, 并给出证明.
可以把上述事实抽象成如下不等式问题: am a . 已知 a, b, m 都是正数, 并且 a b , 则 bm b
课 标
具体内容
要求
说明
通过一些简单问题了解证明不等式的基本方法:比较 掌握 法、综合法、分析法、反证法、放缩法。比较法是最基 证 比较法 明 本、最重要的方法。它所依据是实数大小的基本事实, 不 综合法与分 证明不等式时关键有较强的恒等变换技巧。 比较法两种 掌握 中差值法是最基本而重要的一种方法。 等 析法 综合法是由因导 式 果,而分析法是执果索因,命题时总是交替出现。直接 的 由条件推结论困难时用反证法。 放缩法证明题时, 把握 理解 好放缩的度。证明不等式是一定注意“逻辑方法”“思 基 反证法 、 本 维方法”“操作方法、“构造方法” 、 ” 。 方 放缩法 掌握 法
理解绝对值的几何意义,并能利用绝对值不等式 的几何意义 等 式 绝对值不等式的解法
理解
1. 2.
a b a b a b a b a c c b
利用绝对值的几何意义求解以下类型的不等式: ∣ax+b∣≤c;∣ax+b∣≥c; 理解 ∣x-c∣+∣x-b∣≥a。 掌握一些典型绝对值不等式的解法。
(3)内容变化: 3.数学归纳法必选必考. 新教材作为选修内容. 在旧教材中含绝对值不等式的解法是安排在数学(必修) 第二册上第六章不等式的第五部分。数学归纳法是安排在 数学(必修)第三册数列、极限、数学归纳法部分。 4.均值不等式由二元——三元——一般情形.柯西不等式、 排序不等式由二元——三元——一般情形.。
课 具体 标 内容 二维 形式 的柯 柯 西不 西 等式
要 求
说明 认识柯西不等式的几种不同形式。理解它们的几何意义
理 解
(1)证明:柯西不等式向量形式: (2)证明: (a2 b2 )(c2 d 2 ) (ac bd )2 。 (3)证明:
2
不 等 一般 式 形式
课 标 不 等 式
具体内容
要求
说明
不等式的基本性质 基本不等式 三个正数的算术—几何平 均不等式