切线的判定ppt
合集下载
《切线的判定》课件
切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。
切线长定理(共33张PPT)
试用文字语言叙述你所发现的结论
切线长定理
PA、PB分别切⊙O于A、B
PA = PB
∠OPA=∠OPB
从圆外一点引圆的两条切线,它们的切线长相等。
几何语言:
反思:切线长定理为证明线段相等、角相等提供新的方法
O
P
A
B
试一试
A
P
O
B
若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.
a+b-c
2
ab
a+b+c
· O
A
B
C
D
E
F
O
A
B
C
D
E
思考:如图,AB是⊙O的直径, AD、DC、BC是切线,点A、E、B 为切点,若BC=9,AD=4,求OE的长.
例题讲解
例1、已知:P为⊙O外一点,PA、PB为⊙O的 切线,A、B为切点,BC是直径。 求证:AC∥OP
P
A
C
B
D
B
A
P
O
C
E
D
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有相等的线段
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC
OA=OB=OD=OE, PA-=PB, AC=BC, AE=BE
已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周长。
设AD= x , BE= y ,CE= r
∵ ⊙O与Rt△ABC的三边都相切
∴AD=AF,BE=BF,CE=CD
切线长定理
PA、PB分别切⊙O于A、B
PA = PB
∠OPA=∠OPB
从圆外一点引圆的两条切线,它们的切线长相等。
几何语言:
反思:切线长定理为证明线段相等、角相等提供新的方法
O
P
A
B
试一试
A
P
O
B
若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.
a+b-c
2
ab
a+b+c
· O
A
B
C
D
E
F
O
A
B
C
D
E
思考:如图,AB是⊙O的直径, AD、DC、BC是切线,点A、E、B 为切点,若BC=9,AD=4,求OE的长.
例题讲解
例1、已知:P为⊙O外一点,PA、PB为⊙O的 切线,A、B为切点,BC是直径。 求证:AC∥OP
P
A
C
B
D
B
A
P
O
C
E
D
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有相等的线段
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC
OA=OB=OD=OE, PA-=PB, AC=BC, AE=BE
已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周长。
设AD= x , BE= y ,CE= r
∵ ⊙O与Rt△ABC的三边都相切
∴AD=AF,BE=BF,CE=CD
切线的定义及判定定理ppt课件
课后作业 : A 组 3, 4, 5.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
问题:定理中的两个条件缺少一个行不行?
判断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
课堂小结
1.切线的判定定理: 经过半径外端并且垂直于这条半径的直线是
圆的切线。 2.切线的判定方法有三种: ①直线与圆有唯一公共点; ②直线到圆心的距离等于该圆的半径; ③切线的判定定理.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
应用定理,强化训练
例1 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线
证明:连结OC ∵OA=0B,CA=CB,
O
∴OC是等腰三角形OAB底边AB上的中线
∴AB⊥OC
AC B
∴直线AB经过半径OC的外端C并且垂直于半径OC
Байду номын сангаас
∴AB是⊙O的切线.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
•切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即: 经过半径的外端并且垂直这条半径的直线 是圆的切线
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
问题:定理中的两个条件缺少一个行不行?
判断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
课堂小结
1.切线的判定定理: 经过半径外端并且垂直于这条半径的直线是
圆的切线。 2.切线的判定方法有三种: ①直线与圆有唯一公共点; ②直线到圆心的距离等于该圆的半径; ③切线的判定定理.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
应用定理,强化训练
例1 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB. 求证:直线AB是⊙O的切线
证明:连结OC ∵OA=0B,CA=CB,
O
∴OC是等腰三角形OAB底边AB上的中线
∴AB⊥OC
AC B
∴直线AB经过半径OC的外端C并且垂直于半径OC
Байду номын сангаас
∴AB是⊙O的切线.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
•切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即: 经过半径的外端并且垂直这条半径的直线 是圆的切线
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
《切线的判定与性质》PPT课件 人教版九年级数学
利用判定定理时,要注意直线须具备以下两个条件,缺一 不可: (1)直线经过半径的外端;(2)直线与这半径垂直.
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
《切线的判定》课件
在求解切点弦问题中的应用
切点弦方程
通过切点可以求出过该点的弦的方程,进而求出弦长或与弦 有关的量。
切点弦与切线的关系
利用切点弦与切线的关系,可以求解与切点弦有关的问题。
04 切线定理的证明
切线的判定定理的证明
切线的判定定理
如果一条直线与圆只有一个交点,则 这条直线是圆的切线。
证明方法
反证法。假设直线与圆有两个交点, 则直线与圆相交而非相切,与题目条 件矛盾。
利用切线的性质判定
切线的性质
切线与半径垂直,因此可以利用 这一性质判定切线。
判定方法
若直线与圆的半径垂直,则该直 线为圆的切线。
利用辅助线判定
辅助线的作法
在圆上任取一点,连接这点与圆心, 将连线与待判断的直线相交于一点, 然后过该点作直线的垂线,与圆相交 于另一点,连接圆心与该点。
判定方法
若所作的辅助线与待判断的直线重合 ,则该直线为圆的切线。
切线的判定定理
若直线与圆有交点,且连接交点和圆心的线段垂直于交点所连的直线,则该直线为圆的 切线。
证明过程
利用反证法,假设直线不是切线,则它与圆有两个交点,形成两个弦,由垂径定理可知 ,过圆心作弦的垂线,则这条垂线平分弦,但由题意知这条垂线同时也是连接圆心和切
点的线段,因此弦也被这条线平分,这与题意矛盾,因此假设不成立,直线为切线。
在三角函数中,切线定理可以用来求 解三角函数的值,或者用来证明某个 三角函数表达式等于零。
切线定理也可以用来求解三角函数的 单调性、周期性和最值等问题。
感谢您的观看
THANKS
如果一条直线与圆相交于两点,且 这两点与圆心构成的角平分线与该 直线垂直,则该直线是圆的切线。
切线定理在解析几何中的应用
《切线的判定方法》课件
的切线。
02
如果一条直线经过半径 的外端并且与半径之间 的夹角为90度,那么 这条直线就是圆的切线
。
03
如果一条直线经过圆的 某个点,并且与经过该 点的半径垂直,那么这 条直线就是圆的切线。
02
切线的判定方法
圆心到直线的距离
圆心到直线的距离为0
如果圆心到直线的距离为0,径的交点叫做切点,切点是圆上的一 点。
切线的性质
1 2
3
切线与半径垂直
切线与半径之间的夹角为90度。
切线与圆只有一个交点
切线与圆只有一个公共点,即切点。
切线与半径的交点是切点
切点是圆上的一点,也是切线与半径的交点。
切线的判定条件
01
切线的判定条件是:经 过半径的外端并且垂直 于这条半径的直线是圆
《切线的判定方法》ppt课件
$number {01}
目录
• 切线的定义 • 切线的判定方法 • 切线定理的应用 • 切线定理的证明 • 切线定理的拓展
01
切线的定义
切线的几何定义
01
切线是一条与圆只有一个交点的直线,这个交 点叫做切点。
02
切线与半径垂直,即切线与半径之间的夹角为 90度。
03
切线的判定定理
经过半径的外端且垂直于半径的直线是圆的切线
如果经过半径的外端且垂直于半径的直线是圆的切线。
经过直径的外端且垂直于直径的直线是圆的切线
如果经过直径的外端且垂直于直径的直线是圆的切线。
经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线
如果经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线。
切线定理在其他领域的应用
数学物理方法
切线定理在数学物理方法中有着广泛 的应用。例如,在求解偏微分方程时 ,可以利用切线定理来分析解的性质 和变化趋势。
02
如果一条直线经过半径 的外端并且与半径之间 的夹角为90度,那么 这条直线就是圆的切线
。
03
如果一条直线经过圆的 某个点,并且与经过该 点的半径垂直,那么这 条直线就是圆的切线。
02
切线的判定方法
圆心到直线的距离
圆心到直线的距离为0
如果圆心到直线的距离为0,径的交点叫做切点,切点是圆上的一 点。
切线的性质
1 2
3
切线与半径垂直
切线与半径之间的夹角为90度。
切线与圆只有一个交点
切线与圆只有一个公共点,即切点。
切线与半径的交点是切点
切点是圆上的一点,也是切线与半径的交点。
切线的判定条件
01
切线的判定条件是:经 过半径的外端并且垂直 于这条半径的直线是圆
《切线的判定方法》ppt课件
$number {01}
目录
• 切线的定义 • 切线的判定方法 • 切线定理的应用 • 切线定理的证明 • 切线定理的拓展
01
切线的定义
切线的几何定义
01
切线是一条与圆只有一个交点的直线,这个交 点叫做切点。
02
切线与半径垂直,即切线与半径之间的夹角为 90度。
03
切线的判定定理
经过半径的外端且垂直于半径的直线是圆的切线
如果经过半径的外端且垂直于半径的直线是圆的切线。
经过直径的外端且垂直于直径的直线是圆的切线
如果经过直径的外端且垂直于直径的直线是圆的切线。
经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线
如果经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线。
切线定理在其他领域的应用
数学物理方法
切线定理在数学物理方法中有着广泛 的应用。例如,在求解偏微分方程时 ,可以利用切线定理来分析解的性质 和变化趋势。
《切线的性质和判定》PPT课件
常添辅助线
连接圆心和切点
垂直于
切点
圆心
惟一
半径
垂直于
┃考点聚焦
考点2 切线长及切线长定理
切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长
切线长定理
从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角
基本图形
如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP
切线的性质和判定
- .
考点1 圆的切线
切线的性质
圆的切线________过切点的半径
推论
(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________
切线的判定
(1)和圆有________公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线;(3)经过半径的外端并且________这条半径的直线是圆的切线
探究一、圆的切线的性质
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.
探究二、圆的切线的判定方法
┃归类探究
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用切线长定理计算;2.利用切线长定理证明.
相等
平分
┃考点聚焦
考点3 三角形的内切圆
连接圆心和切点
垂直于
切点
圆心
惟一
半径
垂直于
┃考点聚焦
考点2 切线长及切线长定理
切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长
切线长定理
从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角
基本图形
如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP
切线的性质和判定
- .
考点1 圆的切线
切线的性质
圆的切线________过切点的半径
推论
(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________
切线的判定
(1)和圆有________公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线;(3)经过半径的外端并且________这条半径的直线是圆的切线
探究一、圆的切线的性质
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.
探究二、圆的切线的判定方法
┃归类探究
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用切线长定理计算;2.利用切线长定理证明.
相等
平分
┃考点聚焦
考点3 三角形的内切圆
切线判定定理课件
3 强调对该定理的理解和运用的重要性
强调切线判定定理在数学和实际问题中的重要性,并激发学生的兴趣和学习动力。
课堂互动
1 提供一些实例让学生尝试应用切线判定定理
提供一些具体的问题,鼓励学生应用切线判定定理来解决。
2 鼓励学生互相讨论,促进交流和学习
鼓励学生在小组内或全班上展开讨论,促进彼此之间的思想交流和学习。
Q&A
留出时间进行问题的解答和回答学生的疑问。
1 利用极限的定义推导出切线存在的条件
详细阐述如何利用导数的极限定义推导出切线存在的条件。
2 详细阐述每一步推导的原理和方法
逐步展示每个推导步骤的原理和方法,以确保学生理解证明的过程。
实例分析
1
将切线判定定理应用到具体曲线上
选择一个具体的曲线并应用切线判定定理,以加深学生对定理的理解。
2
求解曲线上某点的切线方程
通过计算导数值,求解曲线上特定点的切线方程。
3
解释切线方程的含义和应用
详细解释切线方程的意义以及在实际问题中的应用。
总结与回顾
1 系统总结切线判定定理的内容和应用
概括性总结切线判定定理的核心内容和实际应用。
2 提醒学生注意该定理的前置知识
强调学生需要具备哪些前置知识来更好地理解和应用切线判定定理。
切线判定定理ppt课件
本课程将介绍切线判定定理,该定理用于判断曲线上某点处的切线是否存在。
定理ቤተ መጻሕፍቲ ባይዱ容
1 切线判定定理的核心内容
该定理是用于判断曲线上某点处切线的存在性。
2 曲线上某点处的切线存在的条件
细致讲解曲线上某点的导数值的意义和条件。
3 切线方程的求解方法
详细介绍如何根据导数值求解切线方程。
切线判定定理的证明
强调切线判定定理在数学和实际问题中的重要性,并激发学生的兴趣和学习动力。
课堂互动
1 提供一些实例让学生尝试应用切线判定定理
提供一些具体的问题,鼓励学生应用切线判定定理来解决。
2 鼓励学生互相讨论,促进交流和学习
鼓励学生在小组内或全班上展开讨论,促进彼此之间的思想交流和学习。
Q&A
留出时间进行问题的解答和回答学生的疑问。
1 利用极限的定义推导出切线存在的条件
详细阐述如何利用导数的极限定义推导出切线存在的条件。
2 详细阐述每一步推导的原理和方法
逐步展示每个推导步骤的原理和方法,以确保学生理解证明的过程。
实例分析
1
将切线判定定理应用到具体曲线上
选择一个具体的曲线并应用切线判定定理,以加深学生对定理的理解。
2
求解曲线上某点的切线方程
通过计算导数值,求解曲线上特定点的切线方程。
3
解释切线方程的含义和应用
详细解释切线方程的意义以及在实际问题中的应用。
总结与回顾
1 系统总结切线判定定理的内容和应用
概括性总结切线判定定理的核心内容和实际应用。
2 提醒学生注意该定理的前置知识
强调学生需要具备哪些前置知识来更好地理解和应用切线判定定理。
切线判定定理ppt课件
本课程将介绍切线判定定理,该定理用于判断曲线上某点处的切线是否存在。
定理ቤተ መጻሕፍቲ ባይዱ容
1 切线判定定理的核心内容
该定理是用于判断曲线上某点处切线的存在性。
2 曲线上某点处的切线存在的条件
细致讲解曲线上某点的导数值的意义和条件。
3 切线方程的求解方法
详细介绍如何根据导数值求解切线方程。
切线判定定理的证明
切线的判定定理ppt
D
4 r . 5
A
●
O
┓
F
1 S r a b c . 2
B
E
C
2S r . abc
思考题: 如图,某乡镇在进入镇区的道路交叉 口的三角地处建造了一座镇标雕塑,以树立起文明 古镇的形象。已知雕塑中心M到道路三边AC、BC、 AB的距离相等,AC⊥BC,BC=30米,AC=40米。 请你帮助计算一下,镇标雕塑中心M离道路三边的 距离有多远?
(第二课时)
经过直径的一端,并且垂直于这 条直径的直线是圆的切线.
B
∵AB是⊙O的直径,直线 CD经过A点,且CD⊥AB, ∴ CD是⊙O的切线.
这个定理实际上就是: d=r 直线和圆相切。 C 的另一种说法。
●
O
D
A
例:如图:AB是⊙O的直径, 0,AT=BA. ∠ABT=45 求证:AT是⊙O的切线.
r
●
O ┐
d
r
●
d ┐
O
r
●
O
相交 d < r d =r d >r
直线和圆相交
相切
d ┐
相离
直线和圆相切 直线和圆相离
圆心O到直线l的距离d如何变化?
B O l
如图,AB是⊙O的直径,直线l经过点A,l 与AB的夹角为∠α,当l绕点A顺时针旋 转时,
●
α d
α ┓ A
你能写出一个命题来表 述这个事实吗?
B
O
T
A
1.如图,已知直线AB 经过⊙O 上的点C, 并且OA=OB,CA=CB, 那么直线 AB是⊙O 的切线吗?
O
A
C
B
圆的切线的性质及判定定理 课件
∴∠1=∠3,∴OD∥AE.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
切线的判定课件
求证:直线AB是⊙O旳切线.
证明: 连接OC
∵OA=OB, CA=CB
∴△OAB是等腰三角形,OC 是底边AB上旳中线
∴OC⊥AB
∴AB是⊙O旳切线
• 如图 7-8-13,以等腰ΔABC旳腰AB为直 径旳⊙O交底边BC于 D,DE丄AC于 E,求 证:DE为⊙O旳切线.
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆
例1与例2旳证法有何不同?
O A
D
B
O
A
C
B
E C
(1)假如已知直线经过圆上一点,则连结这点和圆
心,得到辅助半径,再证所作半径与这直线垂直。简
记为:连半径,证垂直。
(2)假如已知条件中不知直线与圆是否有公共点, 则过圆心作直线旳垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
• AB是⊙O旳直径,C为⊙O上一点,AD⊥CD, AC平分∠BAD,求证:CD与⊙O相切
想一想
判断一条直线是圆旳切线,你目前会有多少种措施?
有下列三种措施: 1.利用切线旳定义:与圆有唯一公共点
旳直线是圆旳切线。 2.利用d与r旳关系作判断:当d=r时直
线是圆旳切线。 3.利用切线旳鉴定定理:经过半径旳外
端而且垂直于这条半径旳直线是圆旳切线。
例1 直线AB经过⊙O上旳点C,而且OA=OB,CA=CB,
心,OD为
D
B
半径作⊙O。
A
O
求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。
E C
∵ AO平分∠BAC,
OD⊥AB
∴ OE=OD
∵ OD是⊙O旳半径
∴ AC是⊙O旳切线。
.在Rt△ABC中,∠B=90°,∠A旳平分线交BC于D,以D为 圆心,DB长为半径作⊙D.试阐明:AC是⊙D旳切线.
证明: 连接OC
∵OA=OB, CA=CB
∴△OAB是等腰三角形,OC 是底边AB上旳中线
∴OC⊥AB
∴AB是⊙O旳切线
• 如图 7-8-13,以等腰ΔABC旳腰AB为直 径旳⊙O交底边BC于 D,DE丄AC于 E,求 证:DE为⊙O旳切线.
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆
例1与例2旳证法有何不同?
O A
D
B
O
A
C
B
E C
(1)假如已知直线经过圆上一点,则连结这点和圆
心,得到辅助半径,再证所作半径与这直线垂直。简
记为:连半径,证垂直。
(2)假如已知条件中不知直线与圆是否有公共点, 则过圆心作直线旳垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
• AB是⊙O旳直径,C为⊙O上一点,AD⊥CD, AC平分∠BAD,求证:CD与⊙O相切
想一想
判断一条直线是圆旳切线,你目前会有多少种措施?
有下列三种措施: 1.利用切线旳定义:与圆有唯一公共点
旳直线是圆旳切线。 2.利用d与r旳关系作判断:当d=r时直
线是圆旳切线。 3.利用切线旳鉴定定理:经过半径旳外
端而且垂直于这条半径旳直线是圆旳切线。
例1 直线AB经过⊙O上旳点C,而且OA=OB,CA=CB,
心,OD为
D
B
半径作⊙O。
A
O
求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。
E C
∵ AO平分∠BAC,
OD⊥AB
∴ OE=OD
∵ OD是⊙O旳半径
∴ AC是⊙O旳切线。
.在Rt△ABC中,∠B=90°,∠A旳平分线交BC于D,以D为 圆心,DB长为半径作⊙D.试阐明:AC是⊙D旳切线.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
想一想
判断一条直线是圆的切线,你现在会有多少种方法?
有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的
直线是圆的切线。 2.利用d与r的关系作判断:当d=r时直
线是圆的切线。 3.利用切线的判定定理:经过半径的外端
并且垂直于这条半径的直线是圆的切线。
-
例1 直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
心,OD为
D
B
半径作⊙O。
A
O
求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。
E C
∵ AO平分∠BAC,
OD⊥AB
∴ OE=OD
∵ OD是⊙O的半径
∴ AC是⊙O的切线。
-
.在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为 圆心,DB长为半径作⊙D.试说明:AC是⊙D的切线.
-
半径,从而想到添加辅助线,
OE垂直CD于E。
C
l
D
E
-
• AB为⊙O的直径,BC切⊙O于点B,AC交⊙O 于点P,CE=BE,点E在BC上,求证:PE是 ⊙O的切线。
A P
OA
B
E
C
-
• 如图所示,AB为⊙O的直径,∠ABC=90° ,过A作弦AD∥OC.求证:CD为⊙O的切线 .
•
-
• 如图,A是⊙O外一点,连OA交⊙O于C,过 ⊙O上一点P作OA的垂线交OA于F,交⊙O于E ,连结PA,若∠FPC=∠CPA,求证:PA是 ⊙O的切线.
•
-
课堂小结
1. 判定切线的方法有哪些?
直线l
与圆有唯一公共点 与圆心的距离等于圆的半径 经过半径外端且垂直这条半径
l是圆的切线 l是圆的切线 l是圆的切线
2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半径,
再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的垂
-
复习
1.直线和圆有哪些位置关系? 2.什么叫相切? 3.我们学习过哪些切线的判断方法?
-
思考:在⊙O中,经过半径OA的外端点A作直线L⊥OA,
则圆心O到直线L的距离 是多少?__O__A__,直线L和
.O
⊙O有什么位置关系?
___相__切____.
L
A 经过半径的外端并且垂直于这条半径的直线是
是圆的切线.
几何应用: ∵OA⊥L ∴L- 是⊙O的切线
判断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
O l
r
O
r l
O l
r
A
A
A
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线与这半径垂直。
线段,再证明这条垂线段等于圆的半径。(作垂直, 证半径)
-
• 如图,AB是⊙O的直径,∠ABT=45°, AT=AB,求证:AT是⊙O的切线
B
O
T
A
-
-
• AB是⊙O的直径,C为⊙O上一点,AD⊥CD, AC平分∠BAD,求证:CD与⊙O相切
D C
A
OA
B
-
如图,AB是圆O的直径,AC垂直于l, BD垂直 于l, C,D为垂足,且AC+BD=AB.
求证:直线l于圆O相切。
分析:已知条件中未给出直线
B O
l与圆的公共点,因此需要考
虑圆心到直线的距离是否等于 A
小结
例1与例2的证法有何不同?
O A
D
B
O
A
C
B
E C
(1)如果已知直线经过圆上一点,则连结这点和圆
心,得到辅助半径,再证所作半径与这直线垂直。简
记为:连半径,证垂直。
(2)如果已知条件中不知直线与圆是否有公共点, 则过圆心作直线的垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
求证:直线AB是⊙O的切线.
证明: 连接OC
∵OA=OB, CA=CB ∴△OAB是等腰三角形,OC
是底边AB上的中线 ∴OC⊥AB ∴AB是⊙O的切线
-
• 如图 7-8-13,以等腰ΔABC的腰AB为直 径的⊙O交底边BC于 D,DE丄AC于 E,求 证:DE为⊙O的切线.
-
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆
想一想
判断一条直线是圆的切线,你现在会有多少种方法?
有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的
直线是圆的切线。 2.利用d与r的关系作判断:当d=r时直
线是圆的切线。 3.利用切线的判定定理:经过半径的外端
并且垂直于这条半径的直线是圆的切线。
-
例1 直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
心,OD为
D
B
半径作⊙O。
A
O
求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。
E C
∵ AO平分∠BAC,
OD⊥AB
∴ OE=OD
∵ OD是⊙O的半径
∴ AC是⊙O的切线。
-
.在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为 圆心,DB长为半径作⊙D.试说明:AC是⊙D的切线.
-
半径,从而想到添加辅助线,
OE垂直CD于E。
C
l
D
E
-
• AB为⊙O的直径,BC切⊙O于点B,AC交⊙O 于点P,CE=BE,点E在BC上,求证:PE是 ⊙O的切线。
A P
OA
B
E
C
-
• 如图所示,AB为⊙O的直径,∠ABC=90° ,过A作弦AD∥OC.求证:CD为⊙O的切线 .
•
-
• 如图,A是⊙O外一点,连OA交⊙O于C,过 ⊙O上一点P作OA的垂线交OA于F,交⊙O于E ,连结PA,若∠FPC=∠CPA,求证:PA是 ⊙O的切线.
•
-
课堂小结
1. 判定切线的方法有哪些?
直线l
与圆有唯一公共点 与圆心的距离等于圆的半径 经过半径外端且垂直这条半径
l是圆的切线 l是圆的切线 l是圆的切线
2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半径,
再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的垂
-
复习
1.直线和圆有哪些位置关系? 2.什么叫相切? 3.我们学习过哪些切线的判断方法?
-
思考:在⊙O中,经过半径OA的外端点A作直线L⊥OA,
则圆心O到直线L的距离 是多少?__O__A__,直线L和
.O
⊙O有什么位置关系?
___相__切____.
L
A 经过半径的外端并且垂直于这条半径的直线是
是圆的切线.
几何应用: ∵OA⊥L ∴L- 是⊙O的切线
判断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
O l
r
O
r l
O l
r
A
A
A
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线与这半径垂直。
线段,再证明这条垂线段等于圆的半径。(作垂直, 证半径)
-
• 如图,AB是⊙O的直径,∠ABT=45°, AT=AB,求证:AT是⊙O的切线
B
O
T
A
-
-
• AB是⊙O的直径,C为⊙O上一点,AD⊥CD, AC平分∠BAD,求证:CD与⊙O相切
D C
A
OA
B
-
如图,AB是圆O的直径,AC垂直于l, BD垂直 于l, C,D为垂足,且AC+BD=AB.
求证:直线l于圆O相切。
分析:已知条件中未给出直线
B O
l与圆的公共点,因此需要考
虑圆心到直线的距离是否等于 A
小结
例1与例2的证法有何不同?
O A
D
B
O
A
C
B
E C
(1)如果已知直线经过圆上一点,则连结这点和圆
心,得到辅助半径,再证所作半径与这直线垂直。简
记为:连半径,证垂直。
(2)如果已知条件中不知直线与圆是否有公共点, 则过圆心作直线的垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
求证:直线AB是⊙O的切线.
证明: 连接OC
∵OA=OB, CA=CB ∴△OAB是等腰三角形,OC
是底边AB上的中线 ∴OC⊥AB ∴AB是⊙O的切线
-
• 如图 7-8-13,以等腰ΔABC的腰AB为直 径的⊙O交底边BC于 D,DE丄AC于 E,求 证:DE为⊙O的切线.
-
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆