5512塔机基础配重技术参数表

5512塔机基础配重技术参数表
5512塔机基础配重技术参数表

TCT5512(1.5×1.5)外套式

1.性能表

起重特性表

k

g

6

4

5

m

1

6

.

8

1

7

5

1

8

2

2

2

2

4

2

6

2

8

3

3

2

3

4

3

6

3

8

4

4

2

4

4

4

5

m

1

7

1

8

5

1

9

2

2

4

5

2

1

8

5

2

3

4

2

5

1

5

2

7

1

2

9

3

3

1

8

5

3

4

8

3

8

2

4

2

2

4

7

5

5

2

9

5

5

6

4

T

C

T

5

5

1

2

6

5

m

1

5

.

6

5

m k

g

4

4

4

8

4

6

4

2

4

3

8

3

6

3

4

3

3

2

2

8

2

4

2

6

2

2

1

8

2

1

6

1

4

5

5

8

3

5

5

1

2

4

5

4

5

4

7

5

3

6

8

5

3

3

5

5

3

7

2

8

2

5

2

6

1

2

4

2

2

2

5

2

1

1

9

6

5

1

8

4

5

1

7

3

1

6

3

1

5

3

5

6

5

5

m

1

5

.

8

5

4

4

4

8

4

6

4

2

4

3

8

3

6

3

4

3

3

2

2

8

2

4

2

6

2

2

2

m k

g

5

2

5

4

5

5

1

8

1

6

1

2

5

6

2

4

9

2

5

4

3

7

5

3

9

2

3

5

4

3

2

2

2

9

5

2

7

1

2

5

2

3

2

2

1

5

5

2

1

1

8

8

1

7

6

1

6

5

1

5

5

5

1

4

6

5

1

3

8

1

3

5

1

2

3

5

3

m

k

g

m

3

2

8

2

6

2

4

2

2

2

1

8

6

1

6

.

1

6

1

7

5

6

7

5

5

3

2

5

4

7

3

4

2

4

5

3

8

4

3

5

3

2

5

2

9

5

6

1

8

2

2

2

2

4

2

6

2

8

3

3

2

3

4

3

6

3

8

4

m k

g

4

m

2

5

1

6

.

1

1

1

7

5

6

5

5

5

3

5

4

7

1

5

4

2

3

3

8

2

5

3

4

8

5

3

1

9

2

9

4

2

7

1

5

2

5

2

2

3

4

5

2

1

9

2.主要技术参数表

3预埋螺栓固定式示意图

第一节架固定方式示意图

(预埋螺栓固定式塔机)

技术要求

1.预埋螺M36,材料采用40Cr,热处理T235,共16条;螺母M36,材料采用35,其埋设方法由施工单位根据承载状况自定。

2.预埋螺栓要保证孔距中心的对称性,可用定位架定位(如图B),也可先在地基上用定位板(如图C)划线定好螺栓空位再埋设螺栓;固定时还需保证预埋螺栓的垂直度。

警告:预埋地脚螺栓时,应用铁丝与钢筋绑扎,绝不允许采用点焊的方法固定

3.1混凝土基础承载图

混凝土基础承载简图

用户和安装单位在安装固定式或附着式塔吊前,应对安装的混凝土基础的强度和施工方法预先计算和确定。

塔机固定在基础上,起升高度达到40米,而未采用附着装置时,对基础产生的载荷值最大,具体数值见上表。

3.2预埋螺栓固定基础节的砼座,打混凝土基础,制作预埋螺栓、压板

等。

警告:预埋地脚螺栓时应用铁丝与钢筋绑扎,绝不允许采用点焊的方法固定。

1.33k g /条

9.19k g /条

25.99k g /条

6.53k g /条

竖条

5400

5370

5400

52条

6条

52条

建筑

钢材

Q 235-A

①1100

5370

1100

48条

下图为b =5500m m ,h =1200m m 的基础配筋参数,其余两种方案

用户可参考此图确定配筋参数.

①φ14a =216n =25

4.配重(平衡重)

说明

配重由三种混凝土块(A 、B 、C )组成,用它们进行组合可以得到与臂长相一致的各种重量。这些混凝土块一块挨着一块地吊挂在平衡臂尾部。混凝土块配重的制作由用户负责。以下给出了混凝土配重块的组合及其具体结构和尺寸。

为了得到每块配重要求的重量(允差±25kg ),可改变尺寸H (见下表)。要求称出每块混凝土块的重量并标识在每块的侧面上。 配重组合

4.1平衡重设计(仅供参考,以说明书为准,比重为2450 kg/m3时减少平衡重的长

度,重量一致)

平衡重A

件4件1

件3

2.在平衡重的正背面、两个侧面和上平面分别用油漆标注或其他方法标注其实际重量。

3.用E4303焊条将角钢与角钢及钢筋焊成一体后再浇注,理论重量与实际重量误差较大时,以实际重量为准。所用配筋圆钢可用同等级别螺纹钢代替。

件3

件1

件4

注:1. 砼标号:C35,如果混凝土的实际比重大于2300kg/m 时,应适当减少混凝土的长度。

2.在平衡重的正背面、两个侧面和上平面分别用油漆标注或其他方法标注其实际重量。

3.用E4303焊条将角钢与角钢及钢筋焊成一体后再浇注,理论重量与实际重量误差较大时,以实际重量为准。所用配筋圆钢可用同等级别螺纹钢代替。

件3

件1

件4

注:1. 砼标号:C35,如果混凝土的实际比重大于2300kg/m 时,应适当减少混凝土的长度。

2.在平衡重的正背面、两个侧面和上平面分别用油漆标注或其他方法标注其实际重量。

3.用E4303焊条将角钢与角钢及钢筋焊成一体后再浇注,理论重量与实际重量误差较大时,以实际重量为准。所用配筋圆钢可用同等级别螺纹钢代替。

塔机附墙设计计算说明书

塔机附墙设计计算说明书 一、工程概述 本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。 本项目总用地面积55103.4平方米,总建筑面积133288.98平方米(含保温建筑面积)。地上总建筑面积101191.19平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积32097.79平米。 本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为45.6m,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在4.0m左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙8.997m。所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。 图1 22号楼1#塔吊布置图 图2 塔吊附墙示意图

二、编制依据 本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。 三、设计方案 1.原说明书要求 按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。(见图3) 图3 原附着架示意图 2.改进设计方案 根据现场实际情况,塔机中心到连接点距离为8.997米。设计方案如图4所示。 图4 塔吊附墙杆设置图 四、计算说明 1.计算附墙架对塔身的支反力 假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。实际使用中,塔机最上面的一道附墙受力最大,因为该道附墙节点力除由M引起的附墙受力外,还有承受由塔机悬臂端风

箱式电阻炉设计

辽宁工业大学 热工过程与设备课程设计(说明书) 题目:热处理箱式电阻炉的设计 (生产率110kg/h,功率30kw,温度≤600℃) 院(系):材料科学与工程学院 专业班级:材料083 学号: 学生姓名: 指导教师: 起止时间:2011-12-26~2011-1-8

课程设计任务及评语

目录 一、炉型的选择.................................................................................................. - 4 - 二、确定炉体结构和尺寸.................................................................................. - 4 - 三、砌体平均表面积计算.................................................................................. - 5 - 四、计算炉子功率.............................................................................................. - 6 - 五、炉子热效率计算.......................................................................................... - 8 - 六、炉子空载功率计算...................................................................................... - 8 - 七、空炉升温时间计算...................................................................................... - 8 - 八、功率的分配与接线...................................................................................... - 9 - 九、电热元件材料选择及计算.......................................................................... - 9 - 十、电热体元件图............................................................................................ - 10 - 十一、电阻炉装配图........................................................................................ - 10 - 十二、电阻炉技术指标(标牌).................................................................... - 10 - 参考文献............................................................................................................. - 11 -

塔吊基础承载力验算

塔吊天然基础计算书 一、参数信息 塔吊型号:JL5613,塔吊起升高度H=80.00m, 塔吊倾覆力矩M=1930kN.m,混凝土强度等级:C35, 塔身宽度B=1.5m,起重:6T 自重F1=800kN,基础承台厚度h=1.6m, 最大起重荷载F2=60kN,基础承台宽度Bc=5.00m, 钢筋级别:三级钢。 二、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图:

当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心矩较大时的基础设计值计算公式: 式中F──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F=860.00kN; G──基础自重 G=25.0×5×5×1.6=1000.00kN; Bc──基础底面的宽度,取Bc=5.000m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.833m3; M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1930.00kN.m; e──偏心矩,e=M / (F + G)=1.0376 m,故e>承台宽度/6=0.833 m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a= Bc / 2 - M / (F + G)=1.4624m。 经过计算得到: 有附着的压力设计值P=(860.000+1000.00)/5.0002=74.4kPa; 偏心矩较大时压力设计值Pkmax=2×(860.000+1000.00)/(3×5.000×1.462 4)=169.584kPa。 三、地基承载力验算 依据设计强风化泥质粉砂岩地基承载力特征值fak=500kPa.

塔吊基础知识设计计算

塔式起重机方形独立基础的设计计算 余世章余婷媛 《内容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的范畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规范设计计算的为数不多,厂家所提供基础大小数据有些是不满足规范要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定的条件,对方形截面独立基础规范化的设计,很有参考和实用价值。下面举例采用中联重科的塔吊类型进行论述和阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸的确定 根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》的构造要求进行配筋和验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算 三、方形独立基础尺寸的确定 3.1方形基础宽度B的上限值 根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。根据偏心距e(荷载按标准组合):

地基承载力计算计算书

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 修正用基础埋深:d=1.50m 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m b = 4 0 l=4000 x Y 3.计算参数 天然地面标高:bg=0.00m 地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 地下水标高-4.00 基底标高-2.00地面标高0.00 5 5 5 5 5 4.土层信息: 土层参数表格

二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为: G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = F k+G k A= 1000.00+32.00 16.00= 64.50 kPa 1.2当竖向力N和Mx同时作用时:x方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m x方向的基础底面抵抗矩为: W = lb2 6= 4.00×4.00 2 6= 10.67m 3 x方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 1.3当竖向力N和My同时作用时:y方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m y方向的基础底面抵抗矩为: W = bl2 6= 4.00×4.00 2 6= 10.67m 3 y方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 2.修正后的地基承载力特征值计算 基底标高以上天然土层的加权平均重度,地下水位下取浮重度 γm = ∑γi h i ∑h i = 2.0×18.0 2.0= 18.00 基底以下土层的重度为 γ = 18.00 b = 4.00 f a = f ak + ηbγ (b-3) + ηdγm (d-0.5) = 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 炉子用途:中小型零件的热处理; 材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理; 生产率:160kg/h; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度950℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p为160kg/h,按照教材表5-1选择箱式炉用于正火和淬火时的单位面积生产率p0为 120kg/(m2﹒h),故可求得炉底有效面积: F1=P = 160 =1.33 m2 由于有效面积与炉底总面积存在关系式F1F=0.75~0.85,取系数上限,得炉底实际面积: F= F1 0.85 = 1.33 0.85 =1.57 m2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B=2,因此,可求得: L===1.772 m B=L2=1.7722=0.886 m 根据标准砖尺寸,为便于砌砖,取L=1.741 m,B=0.869 m,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H与宽度B之比H B通常在0.5~0.9之间,根据炉子工作条件,取H B=0.64Om。 因此,确定炉膛尺寸如下: 长L=230+2×7+230×1 2 +2=1741 m 宽B=120+2×4+65+2+40+2×2+113+2×2=869 mm 高H=65+2×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效 =1500 mm B 效 =700 mm H 效 =500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN?0.8轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,+113mm B级硅藻土砖。 炉顶采用113 mmQN?1.0轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,

塔吊桩基承载力计算书(最终版)

塔吊桩基承载力计算书(附件一) 湖畔美居工程施工期间,用2台塔式起重机,型号:TC5613,安装位置见施工平面图。 一、 TC5613附着式塔机在附着之前对基础的荷载值,见右图。 1、竖向力F=820KN 2、倾覆力矩Mx=3200KN ·m 3、扭力矩Mk=480KN ·m 4、水平力H=65KN 5、塔吊基础(桩承台)重G =424KN 说明:TC5613塔吊起重力矩为800KN 〃m ,但是在使用说明书上未提供荷载值。上述荷载值是采用的1250KN 〃m 塔吊的荷载值。此荷载值比800KN 〃m 塔吊的荷载值大许多,能保证安全使用。 二、 TC5613塔吊基础桩承受的荷载值: 塔机使用说明书规定,地耐力为210Kpa 、150Kpa 、110Kpa 。而本工程的地面土层承载力仅40-80KPa ,不能作为塔基持力层。又因为场地所限,安不下6m ×6m 的塔吊基础。所以改为桩基。 每台塔基下设n=4根人工挖孔桩,直径d=1.2m 。桩平面布置见图二(附后)。砼护壁厚度150mm ,护壁外径1500mm 。 因为塔吊工作时按360°旋转,偏心力矩总是随同塔吊的吊臂旋转而改变力矩方位。计算基桩荷载时,可取两个典型的力矩方向,对比之后,取最大的荷载值作为基桩顶面的荷载设计值N i K 塔吊荷载图

(一)、按图a 方向: N i =(F+G )/n ±(M x Y i )/∑Y i 2 =(820+424)/4 ± (3200×1.5)/[4×(1.5)2] =311±533=844KN (抗压桩) =-222KN (抗拔桩) (二)、按图b 方向: N i =(F+G )/n ±(M x Y i )/∑Y i 2 =(820+424)/4 ± (3200×2.121)/[2×(2.121)2] =311±754=1065KN (抗压桩) =-443KN (抗拔桩) 结论:上述两式对比,第(二)种情况桩顶荷载设计值最大,所以,当基桩受压时,荷载设计值N i =1065KN 。当基桩受拉时,(上拔)荷载设计值N i = 图a X 图b

塔吊矩形板式基础计算书

矩形板式基础计算书计算依据: 1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 2、《混凝土结构设计规范》GB50010-2010 3、《建筑地基基础设计规范》GB50007-2011 一、塔机属性 二、塔机荷载 1、塔机传递至基础荷载标准值

2、塔机传递至基础荷载设计值 三、基础验算

基础布置图

基础及其上土的自重荷载标准值: G k=blhγc=6.2×6.2×1.35×25=1297.35kN 基础及其上土的自重荷载设计值:G=1.35G k=1.35×1297.35=1751.423kN 荷载效应标准组合时,平行基础边长方向受力: M k''=661kN·m F vk''=F vk'/1.2=36.9/1.2=30.75kN 荷载效应基本组合时,平行基础边长方向受力: M''=892.35kN·m F v''=F v'/1.2=49.815/1.2=41.512kN 基础长宽比:l/b=6.2/6.2=1≤1.1,基础计算形式为方形基础。 W x=lb2/6=6.2×6.22/6=39.721m3 W y=bl2/6=6.2×6.22/6=39.721m3 相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=661×6.2/(6.22+6.22)0.5=467.398kN·m M ky=M k l/(b2+l2)0.5=661×6.2/(6.22+6.22)0.5=467.398kN·m 1、偏心距验算 相应于荷载效应标准组合时,基础边缘的最小压力值: P kmin=(F k+G k)/A-M kx/W x-M ky/W y =(333+1297.35)/38.44-467.398/39.721-467.398/39.721=18.879kPa≥0 偏心荷载合力作用点在核心区内。

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

塔吊基础承载力及稳定性计算书

塔吊基础承载力及稳定性计算书 一、工程概况 嘉兴市清华长三角研究院创业大厦工地拟采用QTZ63型塔吊。工地南侧塔吊高度为120M,北侧塔吊高度为40M。 根据使用说明书中提供的数据:QTZ63型塔吊最大起重矩为630KNM,塔机自重38T。当采用5×5M×1.350M基础时,基础顶面所受弯矩M=1252.4KNM,基础所受垂直荷载N1=473KN,基础砼重N2=800KN,受力情况见图(A)、(B) 根据对基础地耐力要求,若采用浅基大板基础(即5×5M×1.350M 砼基础),地耐力应不低于140KPa,而本工程塔基所处土层③层提供的地耐力为70KPa,不满足,因此考虑采用桩基础。为此需对桩基支承的大板基础进行桩基强度验算及抗倾覆稳定性计算。 计算依据:《建筑桩基技术规范》(JGJ94-94国标) 《建筑地基基础设计规范》(DB33/1001-2003省标)二、塔吊基础设计参数: 塔吊基础剖面见图(C) 塔吊桩基础采用直径600㎜的钻孔灌注桩的有效长度为16.55M,桩穿越如下土层(按J7钻孔):③a(厚1.18M)、③(厚6.80)、 ③b(厚4.50)和⑤2-1(厚4.7M)。钻孔桩配筋:主筋Ф14Ф16, 箍筋Ф10@300,采用C30砼。 根据地质报告(浙江省工程勘察院《浙江清华长三角研究院院区北区创业大厦岩土工程勘察报告》),桩基所穿越土层的力学参数, Ra=U∑ψsia q sia L i+A q pa =0.6×3.14(1×12×1.18+1×7×6.80+1×14×4.50+1×27×4.07)+3.14×0.32×2000 =442.08+565.2 =1007.28KN

塔吊基础计算

塔吊基础方案 一、工程概况 1、本工程位于松江区九亭镇,地块南临蒲汇塘河,东临沪亭路,西临横泾河,北临沪松公路并与地铁9#线车站一墙之隔,与9#线车站物业开发管理为一个整体。地块面积41162㎡,由3#、4#、5#、6#、7#、8#公寓楼及9#酒店、10#办公楼组成。 2、因地块面积巨大,根据塔吊平面布置应最大程度满足施工区域吊装需要,尽可能减少吊装盲区的原则,以及地下室工程施工中能充分利用塔吊来满足施工需要,按照施工组织总设计要求拟搭设6台附墙式塔吊,其中QTZ80B(工作幅度60M,额定起重力矩800KN.M)2台,QTZ80A(工作幅度55M,额定起重力矩800KN.M)4台,平面位置详附图。 3、拟建建筑物高度及层数 4、根据建筑物高度,1#塔吊位于3#楼西北侧位置,搭设高度为86M;2#塔吊位于9#楼南侧位置,搭设高度为114M;3#塔吊位于5#楼西北侧位置,搭设高度为77M,设水平限位装置;4#塔吊位于10#楼东南侧位置,搭设高度为114M;5#塔吊位于6#楼西北侧位置,搭设高度为100M,6#塔吊位于8#楼西北侧位置,搭设高度为100M。其中5#、6#塔吊为QTZ80B,其余4台为QTZ80A。 5、塔吊应在土方开挖前安装完毕,故采用型钢格构式非塔吊标准节插入钻孔灌注桩内,以保障塔吊安全、稳定和牢固可靠,且不妨碍地下室顶板混凝土的整体浇筑施工,有利于加快施工进度和确保工程质量。 6、本工程采用钻孔灌注桩筏板基础,基坑底标高为-8.000、-8.800、-9.100,本工程±0.000相当于绝对标高6.150M,自然地坪标高相对于绝对标高-1.45M。

7、根据本工程地质勘察报告,各土层极限摩阻力、端阻力标准值指标见下表: 8、塔式起重机主要技术性能表 二、塔吊布置原则 本工程作业面积大,综合考虑塔吊的作用半径、起吊重量、基础工程桩位布置、围檩支撑结构设计、房屋结构设计、经济性比较后,作出以下布置原则。

塔吊基础设计计算方法

塔吊基础设计计算方法 地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。 标签:塔吊基础;四桩;预应力管桩;承载力;倾覆力矩 1 工程概况 广东水利电力职业技术学院从化校区教工宿舍工程包括C1C4、C5C6、C15C16共3栋主体建安工程,二期精装修以及其他配套工程等。 三栋建筑由教工宿舍C1C4和教工宿舍C5C6、教工宿舍C15C16组成,总建筑面积:17782.82m2。其中教工宿舍C1C4地上6层;教工宿舍C5C6地上12层;教工宿舍C15C16地上6层,基地建筑面积2358.99m2(其中C1C4为862.89m2;C5C6为745.05m2;C15C16为751.05m2)。C1C4首层层高3m,二层~六层层高为3.0m,六层以上层高均为3.2m;C5C6首层层高4m,二层~十二层层高3m,十二层以上4.7m;C15C16首层层高3m,二层~六层层高3m,六层以上3.9m。C1C4、C15C16建筑结构类型为异形柱框架结构,C5C6建筑结构类型为剪力墙结构。 教工宿舍C1C4、教工宿舍C15C16建筑结构类型为异形柱框架结构,教工宿舍C5C6建筑结构类型为剪力墙结构。建筑安全等级为二级,抗震设防类型为丙类。地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。建筑防火类别为二类,耐火等级为二级;主体建筑屋面工程防水为2级。 根据施工现场场地条件及周边环境情况,安装1台塔式起重机负责建筑材料的垂直及水平运输。 2 塔吊基础(四桩)设计 2.1 计算参数 采用1台QTZ80塔式起重机,塔身尺寸1.60m,地下室开挖深度为0m;现场地面标高-0.60m,承台面标高-0.30m;采用预应力管桩基础,地下水位-2.90m。 2.1.1 塔吊基础受力情况 图1 塔吊基础受力示意图

TC5610塔吊基计算书

TC5610塔吊基础计算书

TC5610塔吊基础计算书 一、参数信息 塔吊型号:TC5610,塔吊起升高度H=40.00m, 塔吊倾覆力矩M=1552kN.m,混凝土强度等级:C35, 塔身宽度B=1.6m,最大起重荷载F2=60kN, 自重F1=456kN,基础承台厚度h=1.00m, 基础承台宽度Bc=5.00m,,钢筋级别:II级钢筋。 二、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算模型简图如下图所示: 当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心矩较大时的基础设计值计算公式: 式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载, F=(F1+ F2)×1.2=612.96kN;(恒载系数取1.2) G──基础自重与基础上面的土的自重:

G=1.2×25.0×Bc×Bc×Hc =750kN ;(恒载系数取1.2) Bc──基础底面的宽度,取Bc=5.00m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3; M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩 M=1.4×1552 =2172.80kN.m;(安全系数取1.4) a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a= Bc / 2 - M / (F + G)=5/2-2172.8/(612.96+750)=0.906m。 经过计算得到:无附着的最大压力设计值 Pmax=(612.96+750)/52+2172.8/20.83=158.83kPa; 无附着的最小压力设计值 Pmin=(612.96+750)/ 52-2172.8/20.83=-49.79kPa; 有附着的压力设计值 P=(612.96+750)/ 52 =54.52kPa; 偏心矩较大时压力设计值 Pkmax=2×(612.96+750)/(3×5×0.906)=200.58kPa。 三、地基基础承载力验算 地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。 计算公式如下: fa--修正后的地基承载力特征值(kN/m2); fak--地基承载力特征值,按本规范第5.2.3条的原则确定;取180.000kN/m2; ηb、ηd--基础宽度和埋深的地基承载力修正系数; ηb=2.0,ηd=3.0; γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3; b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值,取5 m; γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取20.000kN/m3; d--基础埋置深度(m) 取0.90m; 解得地基承载力设计值:fa=284.00kPa; 实际计算取的地基承载力设计值为:fa=284.00kPa;

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力 ]=240kPa[。试检算地为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力基承载力、偏心距、倾覆稳定性是否满足要求。 K≥1.5(提示:要求倾覆安全系数)0 [本题15分] 参考答案: 解: )(1

代入后,解得: ,满足要求 ),2满足要求( ), 满足要求(3 3kN,对应的偏心距e=0.3m×10。持力层的=5.0二、图示浅埋基础,已知主要荷载的合力为N容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案: 解:由题,应有 )2(N=6×1m×3m,已知作用在基础上的主要荷载为:竖向力图示浅埋基础的底面尺寸为6三、32M。试计算:kNm。此外,持力层的容许承载力0kN,弯矩×=1.510 1)基底最大及最小压应力各为多少?能否满足承载力要求?( e的要求?(2)其偏心距是否满足ρ≤N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时3)若(基底的最大及最小压应力各为多少?

[本题12分] 参考答案: )解:(1 )(2 )3( ba,四周襟边尺寸相同,埋=某旱地桥墩的矩形基础,基底平面尺寸为7.4m=7.5m,四、hN=6105kN2m=,在主力加附加力的组合下,简化到基底中心,竖向荷载置深度,水平荷载HM=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算:,弯矩=273.9kN(1)检算持力层及下卧层的承载力; (2)检算基础本身强度; )检算基底偏心距,基础滑动和倾覆稳定性。3 (.

电阻炉设计与计算例题

电阻炉设计计算举例 一 设计任务 为某厂设计一台热处理电阻炉,其技术条件如下: (1) 用途:中碳钢、低合金钢毛坯或零件的淬火、正火及调质处理,处理 对象为中小型零件,无定型产品,处理批量为多品种,小批量; (2) 生产率:160kg/h ; (3) 工作温度:最高使用温度≤950℃; (4) 生产特点:周期式成批装料,长时间连续生产。 二 炉型的选择 根据设计任务给出的生产特点,拟选用箱式热处理电阻炉,不通保护气氛。 三 确定炉体结构和尺寸 1. 炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。一直生率P 为160kg/h ,按表1选择箱式炉用于正火和淬火时的单位面积生产率P 0为120kg/(m 2.h)。 表1 故可求得炉底有效面积 210160 1.33m 120 P F P = == 由于有效面积与炉底总面积存在关系式1 0.75~0.85F F =,取系数上限,得炉底实际面积 21 1.33 1.57m 0.850.85 F F = == 2. 炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑装出料方便,取L/B=2,因此,可求得 1.772L m === B=L/2=1.772/2=0.886m 根据标准砖尺寸,为便于砌砖,取L=1.741m ,B=0.869m ,如图5-8所示。 3. 炉膛高度的确定 按统计资料,炉膛高度H 与宽度B 之比H/B 通常在0.5~0.9之间,根据炉子工作条件,取H/B=0.7左右,根据标准砖尺寸,选定炉膛高度H=0.640m 。 因此,确定炉膛尺寸如下 长 L=(230+2)×7+(230×1/2+2)=1741mm 宽 B=(120+2)×4+(65+2)+(40+2)×2+)(113+2)×2=869mm 高 H=(65+2)×9+37=640mm

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

复合地基承载力计算示例

1、单桩竖向承载力特征值: 设置桩长为空桩1.8m ,实桩6.5m ,桩底穿透淤泥质土夹粉砂5.2m ,进入粉质粘土0.5m ;桩距为1.5*1.5m 。 由桩周土和桩端土的抗力所提供的单桩承载力: kN 102.72455.014.31504.05.0152.5555.014.321=÷???+?+???=+=∑=)(p p n i i si p a A q l q u R α——① 由桩身材料强度确定的单桩承载力 kN 275.71455.014.3120025.02=÷???==p cu a A f R η——② 取①、②两者中较小值,R a =71.275kN ; 式中 cu f —与搅拌桩桩身水泥土配比相同的室内加固土试块(边长为70.7mm 的立方体,也可采用边长为50mm 的立方体)在标准养护条件下90d 龄期的立方体抗压强度平均值(kPa ); η—桩身强度折减系数,干法可取0.20~0.30;湿法可取0.25~0.33; p u —桩的周长(m ); n —桩长范围内所划分的土层数; si q —桩周第i 层土的侧阻力特征值; i l —桩长范围内第i 层土的厚度(m ); p q —桩端地基土未经修正的承载力特征值(kPa ),可按现行国家标准《建

筑地基基础设计规范》GB 50007的有关规定确定; α—桩端天然地基土的承载力折减系数,可取0.4~0.6,承载力高时取低值。 2、复合地基承载力特征值 kPa f m A R m sk p a 508.6750)1055.01(8.0237.0275.711055.0)1(f spk =?-?+?=-+=β 1055.05.1455.014.3m 2 2=÷?= 式中 spk f —复合地基承载力特征值(kPa ); m —面积置换率; a R —单桩竖向承载力特征值(kN ); p A —桩的截面积(m 2); β—桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值。 要复合地基承载力达到90KPa ,需调整搅拌桩间距,最疏为1.1m*1.1m ,计算得: kPa kPa f m A R m sk p a 9017.9150)196.01(8.0237 .0275.71196.0)1(f spk >=?-?+?=-+=β 196.01 .1455.014.3m 22=÷?= 2010-11-10

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用5.5m ×5.5m ×1.2m ,基础砼标号为C35(7天和28天 期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺 栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa ,基础的总重量不得小于80T ,砼 标 号 不 得 小 于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H :37.50m ,塔身宽度B :1.7m , 自重F K :453kN ,基础承台厚度h :1.2m ,最大起重荷载Q :60kN ,基础承台宽度b :5.50m , 混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计 计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn ·m , F K = 530KN ,Fv K =74.9KN ,砼基础重量 G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷 载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=1.2m ); G K ----------基础自重; b---------矩形基础底面的短边长度。(b=5.5m) 将上述塔式起重机各项数值M K 、Fv K 、F K 、h 、G K 、b 代入式①得: e =1.28< b/3=1.83m 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊 基础底板处承载力特征值为372Kpa 。取塔式起重机基础底土层的承载力标准值为 372Kpa ,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长× 宽×高=5500×5500×1200的形式,塔吊采用预埋螺栓固定式,塔式起重机对地 面压应力为170Kpa <372Kpa 满足要求,直接按说明的大样图施工,不再做另外

电阻炉设计

大家好,我已经在本论坛注册4年,但是发帖很少,在这里也学到了很多东西。作为答谢各位刀友,今天我要给各位刀友们提供一些实质性的具有操作意义东西。 电阻炉,各位刀友们一定都熟悉吧,它相比炭火炉、气炉等有着温度控制精确、清洁、节省能源等天生的优点。网上乃至本论坛有很多人都讲了怎么做电阻炉,不过我觉的他们讲的不够详细,也没有实际操作的可行性。 由于时间有限我今天就讲一讲电阻炉发热丝的设计与计算。 有的人要说了,不就电炉丝嘛,有什么好设计计算的。这里我要说那你就是外行了。首先我们的电阻炉是用来热处理的,要处理合金工具钢、不锈钢等材料温度必须要到1100度左右。这是普通电炉丝不能承受的,还有,你如何确定功率、如何让电阻丝长寿命的工作,如何在有限的炉膛里面布置下电阻丝这些都是问题。 大多数电阻丝都是预制好的(标定功率),但预制电阻丝并不总合适你的炉子尺寸。 我接着分为如下几个部分来讲解电阻丝的设计 1。电炉内部尺寸的确定和电阻丝功率的确定 2.电阻丝线径的确定 3.电阻丝表面负载 4.线圈直径和拉伸参数 5.综合考虑 免责声明:需要有基本电学知识。如果你没有基本电学知识,请不要尝试或者向精通者学习后再尝试。电是危险的,如果你因此受伤或者死亡本人概不负责。 你的首要考虑应该是: 1.1功率: 有什么样的电压可用(220V,380V等)和你的插座、电线、电表、空开允许多少安培的电流(别告诉我你不知道,铭牌上有的)。 例如:你有220V和允许最大电流16A。 U(伏)I(安培)= P(瓦特) 220伏x 16安培= 3520瓦 所以我设计的电炉最大功率必须小于3520w。 最好是有10%的安全余量3168w,避免空气开关跳闸。 1.2尺寸: 这取决于几个因素,设计最高温度、升温速度。 如果你是个热力学工程师,可以计算出尺寸和功耗的要求,准确的热损失率,对流,辐射和传导,绝热材料吸热量、热损失率等等。 我们不需要这样做,我查阅了国外商业电窑的一些设计参数。 奥尔森窑(给爱好烧陶瓷的人用的)设计参数是这样的:0.92瓦/平方厘米2- 1.3w /厘米2的功率密度。我也计算过一些美国专业给刀匠设计的热处理炉,大多数功率密度是0.6瓦特/厘米2- 0.7瓦/厘米2,我估计是他们的保温材料保温性能比较好,结合我们国家的实际,我觉得保险起见还是参照奥尔森窑的设计参数。那么我就取一个方便计算的值1瓦/平方厘米2

相关文档
最新文档