高考数学等差等比数列知识点解读

合集下载

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。

以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。

2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。

4. 等差中项:任意两项的算术平均值等于第三项。

5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。

等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。

2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。

3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。

4. 等比中项:任意两项的几何平均值等于第三项。

5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。

以上是关于等差数列和等比数列的主要知识点总结。

在学习这些内容时,可以通过做练习题来加深理解和巩固知识。

高考数学-等差数列、等比数列与数列求和(教师版)

高考数学-等差数列、等比数列与数列求和(教师版)

例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.【高考命题】一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n(4){}n a 为等差数列,公差为d ,则11n n a a += 【小测】1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 11-q 51-q·1-q a 11-q 2=1-q 51-q 2=1--251-4=-11.3.(2012·无锡市第一学期期末考试)设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m =________.解析 设等比数列{a n }的公比为q ,显然q ≠1.由2S 9=S 3+S 6得2·a 11-q 91-q=a 11-q 31-q+a 11-q 61-q,所以2q 9=q 3+q 6,即1+q 3=2q 6.由于a 2+a 5=2a m ,所以a 1q +a 1q 4=2a 1q m -1,即1+q 3=2q m -2,所以m -2=6,所以m =8.4.数列{a n }是等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析 由题意,可知数列{a n }的前n 项和S n 有最大值,所以公差小于零,故a 11<a 10,又因为a 11a 10<-1,所以a 10>0,a 11<-a 10,由等差数列的性质有a 11+a 10=a 1+a 20<0,a 10+a 10=a 1+a 19>0,所以S n 取得最小正值时n =19.【考点1】等差数列与等比数列的综合【例1】 (2011·江西卷)(1)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }唯一,求a 的值;(2)是否存在两个等比数列{a n },{b n },使得b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列?若存在,求{a n },{b n }的通项公式;若不存在,说明理由.解 (1)设{a n }的公比为q ,则b 1=1+a ,b 2=2+aq ,b 3=3+aq 2,由b 1,b 2,b 3成等比数列得(2+aq )2=(1+a )(3+aq 2),即aq 2-4aq +3a -1=0.*由a >0得,Δ=4a 2+4a >0,故方程*有两个不同的实根. 再由{a n }唯一,知方程*必有一根为0,将q =0代入方程*得a =13.(2)假设存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列. 设{a n }的公比为q 1,{b n }的公比为q 2,则b 2-a 2=b 1q 2-a 1q 1,b 3-a 3=b 1q 22-a 1q 21,b 4-a 4=b 1q 32-a 1q 31. 由b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成等差数列,得 ⎩⎨⎧2b 1q 2-a 1q 1=b 1-a 1+b 1q 22-a 1q 21,2b 1q 22-a 1q 21=b 1q 2-a 1q 1+b 1q 32-a 1q 31,即⎩⎨⎧b 1(q 2-1)2-a 1(q 1-1)2=0, ①b 1q 2(q 2-1)2-a 1q 1(q 1-1)2=0. ②①×q 2-②得a 1(q 1-q 2)(q 1-1)2=0, 由a 1≠0得q 1=q 2或q 1=1.(ⅰ)当q 1=q 2时,由①②得b 1=a 1或q 1=q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾. (ⅱ)当q 1=1时,由①②得b 1=0或q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾.综上所述,不存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列.[方法总结] 对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【变式】 (2012·苏州市自主学习调查)已知数列{a n }各项均为正数,其前n 项和为S n ,点(a n ,S n )在曲线(x +1)2=4y 上.(1)求数列{a n }的通项公式;第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. [方法总结] 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.【变式】 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项和S n . 解 a n =1n +1+2n +1+…+nn +1=1+2+…+n n +1=n n +12n +1=n2.∴b n =2a n ·a n +1=2n 2·n +12=8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1.∴S n =8⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =8⎝ ⎛⎭⎪⎫1-1n +1=8nn +1. 【考点4】错位相减法求和【例4】 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .审题视点 (1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,① ∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,② ①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④ ④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-31-3n 1-3,∴S n =2n -13n +14+34.[方法总结] 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养. 【变式】 (2011·辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎨⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n . (2)n2n -1.即2q 2-5q +2=0,解得q =2或q =12(舍去). 又∵a 25=a 10=a 5·q 5,∴a 5=q 5=25=32, ∴32=a 1·q 4,解得a 1=2,∴a n =2×2n -1=2n ,故a n =2n .4.(2012·重庆卷)已知数列{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.解 (1)设数列{a n }的公差为d ,则由⎩⎨⎧a 1+a 3=8,a 2+a 4=12,得⎩⎨⎧2a 1+2d =8,2a 1+4d =12,解得a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)得S n =na 1+a n 2=n2+2n 2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1·S k +2,即(2k )2=2(k +2)(k +3), 也即k 2-5k -6=0,解得k =6或k =-1(舍去).7.(2012·常州一中期中)已知数列{a n }与{2a n +3}均为等比数列,且a 1=1,则a 168=________.解析 设{a n }公比为q ,a n =a 1q n -1=q n -1, 则2a 1+3,2a 2+3,2a 3+3也为等比数列, ∴5,2q +3,2q 2+3也为等比数列, 则(2q +3)2=5(2q 2+3),∴q =1, 从而a n =1为常数列,∴a 168=1.10.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.13(4n-1). 14.(2012·盐城市二模)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m 15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由条件得公差d =21-54=4,从而a 1=1,所以a n =4n -3,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n =1+15+…+14n -3.11。

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结数列是数学中经常出现的概念,它是按照一定规律排列的一组数的集合。

其中,等差数列和等比数列是两种常见的数列类型。

本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行总结。

一、等差数列等差数列是指数列中相邻两项之差均相等的数列。

用通项公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差。

1. 等差数列的基本概念等差数列中,每一项与它的前一项的差值都相等,这个差值称为公差。

等差数列可以是正差、零差或负差的数列。

2. 等差数列的性质(1)首项和末项之和等于中间项之和的两倍:a1 + an = 2Sn,其中Sn表示前n项和。

(2)任意一项与首项之和等于任意一项与末项之和:ai + aj = a1 + an。

(3)等差数列的前n项和Sn等于首项与末项之和乘以项数的一半:Sn = (a1 + an) × n / 2。

3. 求等差数列的和求解等差数列的和可以利用求和公式Sn = (a1 + an) × n / 2,其中n 为项数。

4. 等差数列的应用等差数列在实际问题中有广泛的应用,如金融投资、房贷分期还款等均可以利用等差数列的性质进行计算。

二、等比数列等比数列是指数列中相邻两项之比均相等的数列。

用通项公式表示为:an = a1 × r^(n-1),其中an表示第n项,a1为首项,r为公比。

1. 等比数列的基本概念等比数列中,每一项与它的前一项的比值都相等,这个比值称为公比。

等比数列可以是正比、零比或负比的数列。

2. 等比数列的性质(1)相邻两项之商等于任意一项与首项之商等于任意一项与末项之商:ai/aj = a1/ai = ai/an。

(2)等比数列的前n项和Sn等于首项与末项之差除以公比减1:Sn = (a1 - an × r^n) / (1 - r)。

3. 求等比数列的和求解等比数列的和可以利用求和公式Sn = (a1 - an × r^n) / (1 - r),其中r不等于1。

高考数学《等差数列、等比数列》复习

高考数学《等差数列、等比数列》复习

(1)等差数列通项公式:an=a1+(n-1)d.
(2)等差数列前 n 项和公式:Sn=n
a1+an 2
=na1+n
n- 2
d.
(3)等差中项公式:2an=an-1+an+1(n∈N*,n≥2).
2.等比数列
(1)等比数列通项公式:an=a1qn-1.
na1 q=
(2)等比数列前n项和公式:Sn= a1 -qn 1-q
高考数学《等差数列、等比数列》复习
高考考点
1. 等差(比)数列的基本运算 2. 等差(比)数列的判断与证明 3. 等差(比)数列的性质
考点解读
1. 在等差(比)数列中, a1,an, Sn,n,d(q) 这五个量中已知其中的三个量, 求另外两个量 2. 考查等差(比)数列的通项公式,前n项和公式, 考查方程的思想以及运算能力
(2)等差数列中连续 k 项的和成等差数列,即 Sk,S2k-Sk,S3k-S2k,…成等差数列, 公差为 k2d.
5.若 A2n-1,B2n-1 分别为等差数列{an},{bn}的前 2n-1 项的和, 则an=A2n-1.
bn B2n-1
解题技巧
判断或证明数列是否为等差或等比数列, 一般是依据等差数列、等比数列的定义, 或利用等差中项、等比中项进行判断.
A.15
B.30
C.45
√D.60
S100 a1 a2 a100 90 ,设 S a1 a3 a99 ,则 2S a2 a4 a100 ,S 2S S100 90,S 30 , 故 a2 a4 a100 2S 60 .故选 D.
1.不能忽视等比数列的条件:判断一个数列是等比数列时, 注意各项都不为零的条件. 2.不能漏掉等比中项:正数a,b的等比中项是±,不能漏掉-. 3.对等比数列的公比的讨论: 应用等比数列前n项和公式时应首先讨论公式q是否等于1

等差数列等比数列知识点归纳总结

等差数列等比数列知识点归纳总结

等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。

本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。

一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。

这个相等的差值被称为等差数列的公差,通常用字母d表示。

1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。

2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。

(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。

(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。

3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。

(2)物理问题中的匀速直线运动、连续等差分布等。

(3)经济学中的利润、销售额等。

二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。

这个相等的比值被称为等比数列的公比,通常用字母r表示。

1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。

2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。

(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。

(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。

3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。

(2)物理问题中的连续等比分布、指数增长等。

高三高考数学复习等差数列、等比数列(共29张PPT)

高三高考数学复习等差数列、等比数列(共29张PPT)

即会“脱去”数学文化的背景,提取关键信息;二是构造模型,
即由题意构建等差数列或等比数列或递推关系式的模型;三是
“解模”,即把文字语言转化为求数列的相关信息,如求指定项、
公比(或公差)、项数、通项公式或前 n 项和等. 精编优质课PPT江苏省2020届高三高考数学复习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
从而 a3×a5=25×27=212,所以 log2(a3a5)=log2212=12.
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
变式1-3(2018·全国Ⅰ卷改编)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1= 2,则a5=__-1__0____. 解:法一 设等差数列{an}的公差为 d,
解:设数列{an}首项为a1,公比为q(q≠1),
精编优质课PPT江苏省2020届高三高考数学复习 等差数列、等比数列(共29张PPT)(获奖课件推荐下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
法二 同法一得a5=3.
等差数列的等差中项
∴又da=2a5a+5-3a8a=2=d0⇒2,3anana21+=mamaa82=-0d⇒=2-a25+. 2a5=0a⇒n aa2=m -(n3. m)d

等比等差知识点

等比等差知识点

等比等差是数学中常见的两种数列,它们有着重要的应用和特点。

本文将介绍等比数列和等差数列的基本概念、性质以及常见的应用。

一、等差数列1.定义等差数列是指一个数列中,从第二个数开始,每个数与其前面的数之差都相等。

这个相等的差值称为公差,通常用字母d表示。

一个等差数列可以用首项a1和公差d来表示。

2.性质等差数列有以下性质:•公差d是常数。

•第n项an可以通过公式an = a1 + (n-1)d来计算。

•第n项an和第m项am之间的差可以通过公式am - an = (m - n)d 来计算。

•等差数列的前n项和Sn可以通过公式Sn = (n/2)(a1 + an)来计算。

3.应用举例等差数列在实际生活中有着广泛的应用。

例如,考虑一个连续保存每天销售额的数据表格,如果销售额满足等差数列,那么可以使用等差数列的性质来计算某一段时间内的总销售额。

二、等比数列1.定义等比数列是指一个数列中,从第二个数开始,每个数与其前面的数之比都相等。

这个相等的比值称为公比,通常用字母q表示。

一个等比数列可以用首项a1和公比q来表示。

2.性质等比数列有以下性质:•公比q是常数。

•第n项an可以通过公式an = a1 * q^(n-1)来计算。

•第n项an和第m项am之间的比可以通过公式am / an = q^(m - n)来计算。

•等比数列的前n项和Sn可以通过公式Sn = a1 * (1 - q^n) / (1 - q)来计算(当q不等于1时)。

3.应用举例等比数列在实际生活中也有许多应用。

例如,考虑一个存款账户每年按照一定比例产生的利息,如果每年的利息满足等比数列,那么可以使用等比数列的性质来计算多年后账户的总金额。

三、等比数列与等差数列的关系等比数列和等差数列在某些情况下存在一定的关系,并可以相互转化。

如果一个等比数列的公比为q,则将该等比数列取对数,得到的数列就是一个等差数列,公差为ln(q)。

四、总结在数学中,等比数列和等差数列是两个重要的数列概念。

高一数学等差等比知识点

高一数学等差等比知识点

高一数学等差等比知识点等差数列和等比数列是高中数学中非常重要的知识点,它们在各个数学分支以及实际应用中都有着广泛的应用。

本文将从基本概念、性质、应用等方面介绍等差数列和等比数列的知识点,帮助读者更好地理解和掌握这两个概念。

一、等差数列等差数列是指数列中任意两个相邻项的差值都相等的数列。

数列中的每一项称为等差数列的项,差值称为公差。

1. 基本概念等差数列的通项公式为an=a1+(n-1)d,其中an表示第n项,a1为首项,d为公差。

通过这个通项公式,可以方便地求解等差数列的任意一项。

2. 性质等差数列具有以下性质:- 任意三项可以构成一个等差数列;- 等差数列的前n项和可以通过求和公式Sn=(a1+an)n/2来计算;- 等差数列的前n项和与项数n成正比;- 等差数列的项数n与首项a1、末项an、公差d之间满足关系式an=a1+(n-1)d。

3. 应用等差数列广泛应用于数学和实际问题中,如等差数列在数列求和、数学推理、金融利息计算、物理学运动学、经济学等方面都有应用。

二、等比数列等比数列是指数列中任意两个相邻项的比值都相等的数列。

数列中的每一项称为等比数列的项,比值称为公比。

1. 基本概念等比数列的通项公式为an=a1*r^(n-1),其中an表示第n项,a1为首项,r为公比。

通过这个通项公式,可以方便地求解等比数列的任意一项。

2. 性质等比数列具有以下性质:- 任意三项可以构成一个等比数列;- 等比数列的前n项和可以通过求和公式Sn=a1*(1-r^n)/(1-r)来计算;- 等比数列的前n项和与项数n成正比;- 等比数列的项数n与首项a1、末项an、公比r之间满足关系式an=a1*r^(n-1)。

3. 应用等比数列也具有广泛的应用,常见的应用包括复利计算、几何级数求和、生物学种群增长模型、物理学波动模型等。

综上所述,等差数列和等比数列是高中数学中重要且实用的概念。

通过了解它们的基本概念、性质和应用,我们可以在解决各种数学问题的过程中更加灵活和高效。

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结

数列的等差数列与等比数列知识点总结在数学的广袤领域中,数列是一个重要的概念,而等差数列和等比数列则是其中最为基础且关键的两种类型。

理解和掌握它们的知识点,对于解决各种数学问题以及培养逻辑思维能力都具有至关重要的意义。

一、等差数列(一)定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

这个常数叫做等差数列的公差,常用字母\(d\)表示。

例如:数列\(2, 4, 6, 8, 10\cdots\)就是一个公差为\(2\)的等差数列。

(二)通项公式等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。

比如,在等差数列\(3, 5, 7, 9, 11\cdots\)中,首项\(a_1 = 3\),公差\(d = 2\),那么第\(5\)项\(a_5 = 3 +(5 1)×2 = 11\)。

(三)等差中项若\(a\),\(b\),\(c\)成等差数列,则\(b\)为\(a\),\(c\)的等差中项,且\(b =\frac{a + c}{2}\)。

例如:\(4\)是\(2\)和\(6\)的等差中项,因为\(\frac{2 +6}{2} = 4\)。

(四)前\(n\)项和公式等差数列的前\(n\)项和公式有两个:\(S_n =\frac{n(a_1 + a_n)}{2}\)\(S_n = na_1 +\frac{n(n 1)d}{2}\)假如有一个等差数列\(1, 3, 5, 7, 9\cdots\),要求前\(5\)项的和。

首项\(a_1 = 1\),第\(5\)项\(a_5 = 9\),项数\(n = 5\),那么\(S_5 =\frac{5×(1 + 9)}{2} = 25\)或者,利用另一个公式,公差\(d = 2\),\(S_5 = 5×1 +\frac{5×(5 1)×2}{2} = 25\)(五)性质1、若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。

等差数列和等比数列的特点知识点总结

等差数列和等比数列的特点知识点总结

等差数列和等比数列的特点知识点总结等差数列是指数列中的每一项与它的前一项之差都相等的数列,而等比数列则是指数列中的每一项与它的前一项之比都相等的数列。

在数学中,等差数列和等比数列是非常重要且常见的数列类型。

下面将分别介绍等差数列和等比数列的特点与相关知识点。

一、等差数列的特点与知识点等差数列的特点:1. 公差:等差数列中相邻两项之差称为公差,用d表示。

公差可以是正数、负数或零。

2. 通项公式:等差数列的通项公式是指通过已知的首项和公差,求出数列中任意一项的公式。

对于等差数列a1, a2, a3, ..., an,通项公式为an = a1 + (n-1)d。

3. 求和公式:等差数列的求和公式用于计算数列中前n项和的值。

对于等差数列a1, a2, a3, ..., an,求和公式为Sn = (n/2)(a1 + an) =(n/2)(2a1 + (n-1)d)。

等差数列的知识点:1. 判定一组数字是否为等差数列:通过计算任意相邻两项的差是否相等,若相等则为等差数列。

2. 求等差数列的第n项:已知首项和公差,利用通项公式即可计算出第n项的值。

3. 求等差数列的前n项和:已知首项、公差和项数,利用求和公式即可计算出前n项和的值。

4. 求等差数列中项的个数:已知首项、公差和末项,利用末项与首项之间的关系,即(末项-首项)/公差+1,即可计算出项的个数。

5. 应用:等差数列在日常生活中的应用很广泛,例如计算年龄、身高、价格等各类增量或减量的规律。

二、等比数列的特点与知识点等比数列的特点:1. 公比:等比数列中相邻两项之比称为公比,用r表示。

公比可以是正数、负数或零,但不能为1。

2. 通项公式:等比数列的通项公式是指通过已知的首项和公比,求出数列中任意一项的公式。

对于等比数列a1, a2, a3, ..., an,通项公式为an = a1 * r^(n-1)。

3. 求和公式:等比数列的求和公式用于计算数列中前n项和的值。

高一等比等差知识点

高一等比等差知识点

高一等比等差知识点等差数列和等比数列是高中数学中非常重要的知识点,它们在解决数学问题、推导公式以及实际应用中起到了重要的作用。

本文将详细介绍高一等比等差知识点,包括定义、性质、公式推导以及应用实例等内容。

一、等差数列等差数列是指数列中的相邻两项之差保持不变的数列。

用数学符号来表示,设数列为{a1, a2, a3, ...},其中a1为首项,d为公差,则有:a2 - a1 = d,a3 - a2 = d,....通项公式:an = a1 + (n-1)d等差数列的性质:1. 公差:等差数列中相邻两项的差值称为公差,记为d。

2. 首项:等差数列中的第一项称为首项,记为a1。

3. 末项:等差数列中的最后一项称为末项,记为an。

4. 项数:等差数列中的项的个数称为项数,记为n。

5. 总和:等差数列的前n项和可表示为Sn = n/2 * (a1 + an)。

二、等比数列等比数列是指数列中的相邻两项之比保持不变的数列。

用数学符号来表示,设数列为{a1, a2, a3, ...},其中a1为首项,r为公比,则有:a2 / a1 = a3 / a2 = r,a3 / a2 = a4 / a3 = r,....通项公式:an = a1 * r^(n-1)等比数列的性质:1. 公比:等比数列中相邻两项的比值称为公比,记为r。

2. 首项:等比数列中的第一项称为首项,记为a1。

3. 末项:等比数列中的最后一项称为末项,记为an。

4. 项数:等比数列中的项的个数称为项数,记为n。

5. 总和:等比数列的前n项和可表示为Sn = a1 * (1 - r^n) / (1 - r)。

三、等差数列和等比数列的应用等差数列和等比数列在各个领域中都有广泛的应用,下面以几个常见的实例进行说明。

1. 财务问题:等差数列和等比数列可以用来计算投资、借贷、存款等金融问题。

例如,年底固定存入一定金额的存款,假设每年存款增加10%,求未来5年的总存款金额。

等比等差知识点总结

等比等差知识点总结

等比等差知识点总结一、等比数列1. 定义等比数列是指一个数列中,每一项与它的前一项的比都相等的数列。

例如,数列1,2,4,8,16,......就是一个等比数列,因为后一项与前一项的比都是2。

2. 通项公式设等比数列的首项为a,公比为r,则等比数列的第n项可以表示为an = ar^(n-1)。

3. 性质(1)等比数列的前n项和公式等比数列的前n项和公式为:Sn = a * (1 - r^n) / (1 - r),其中a为首项,r为公比。

(2)等比中项对于等比数列a,ar,ar^2,ar^3,...,设其中项为ax,则x = aq+k*r^(n-1),其中n为项数,q为前q项和,k为末项与中项的比值。

(3)等比均值不等式对于任意的正整数n,等比数列a1,a2,...,an的乘积大于或等于n个等比数列的n次方的乘积。

(4)和与积的关系等比数列的前n项和等于首项与尾项的乘积除以公比与1的差值。

4. 应用(1)经济学中的应用在经济学中,等比数列常常用来描述成长率、利息等的变化规律。

(2)几何学中的应用在几何学中,等比数列常常用来描述固定比例缩小或放大的图形。

(3)物理学中的应用在物理学中,等比数列也常用来描述指数增长、衰减等现象。

二、等差数列1. 定义等差数列是指一个数列中,每一项与它的前一项的差都相等的数列。

例如,数列1,3,5,7,9,......就是一个等差数列,因为后一项与前一项的差都是2。

2. 通项公式设等差数列的首项为a,公差为d,则等差数列的第n项可以表示为an = a + (n-1)d。

3. 性质(1)等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a + an) * n / 2,其中a为首项,an为末项。

(2)等差数列的性质等差数列的奇数项和偶数项分别是另外两个等差数列。

(3)和与积的关系等差数列的前n项和等于首项与尾项的乘积除以公差与1的和值。

4. 应用(1)物理学中的应用在物理学中,等差数列常常用来描述匀加速运动的位移、速度等变化规律。

数列高考知识点大全

数列高考知识点大全

数列高考知识点大全数列是高中数学中的一个重要内容,也是高考中经常出现的考点之一。

掌握好数列的相关知识点,对于解题和提高数学分数都十分关键。

本文将对数列在高考中的各个知识点进行全面总结和归纳,以帮助考生快速复习和掌握相关内容。

一、等差数列等差数列是指数列中相邻两项之差都相等的数列。

在高考中,涉及到等差数列的考点有:1. 等差数列的通项公式及性质;2. 等差数列的前n项和公式及性质;3. 等差数列的性质和应用,如等差数列的中项、公差等。

二、等比数列等比数列是指数列中相邻两项之比都相等的数列。

在高考中,涉及到等比数列的考点有:1. 等比数列的通项公式及性质;2. 等比数列的前n项和公式及性质;3. 等比数列的性质和应用,如等比数列的求和、常用等比数列问题的解题方法等。

三、斐波那契数列斐波那契数列是指数列中从第三项开始,每一项都是前两项之和的数列。

在高考中,涉及到斐波那契数列的考点有:1. 斐波那契数列的定义和性质;2. 斐波那契数列的求解和应用,如斐波那契数列的递推公式、斐波那契数列与黄金分割、应用题等。

四、等差数列与等比数列的联立等差数列与等比数列的联立是指在题目中同时涉及到等差数列和等比数列的解题方法。

在高考中,涉及到等差数列与等比数列的联立的考点有:1. 根据已知条件建立等差数列或等比数列的方程;2. 利用等差数列和等比数列的性质求解方程组;3. 应用等差数列与等比数列的性质解答应用题。

五、数列的极限数列的极限是指随着项数趋于无穷大,数列的值趋于稳定的一个值。

在高考中,涉及到数列的极限的考点有:1. 数列极限的定义和性质;2. 数列极限的判敛方法,如夹逼定理、单调有界原理等;3. 应用数列极限解答极限计算题。

六、数列的应用数列的应用是指将数列的相关知识点应用于实际问题中。

在高考中,涉及到数列的应用的考点有:1. 利用数列解决经典问题,如数列求和问题、数列递推问题等;2. 利用数列建立模型,解决实际问题;3. 数列应用题的解题思路和方法。

(完整版)高考等差等比数列知识点总结

(完整版)高考等差等比数列知识点总结

高考数列知识点等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

2024年高考复习数学知识点+题型15+等差数列、等比数列的性质及其前n项和解题技巧

2024年高考复习数学知识点+题型15+等差数列、等比数列的性质及其前n项和解题技巧



3 A. 10
B.
1 3
1 C. 8
D.
1 9
【详解】由等差数列的性质可知 S3 、 S6 S3 、 S9 S6 、 S12 S9 成等差数列,

S3 S6
1 3 ,即 S6
3S3 , S6
S3
S3
S3
,∴
S9
S6
3S3 , S12
S9
4S3 ,∴
S9
6S3

S12 10S3 ,
例 4-2.
(2023·全国·统考高考真题)
记 Sn 为等比数列an的前 n 项和,若 S4 5, S6 21S2 ,则 S8 ( ).
A.120 B.85 C. 85 D. 120
方法一:设等比数列an的公比为 q,首项为 a1 ,
若 q 1 ,则 S4 0 5 ,与题意不符,所以 q 1 ;
S2 21S2
5 ,解得: S2
1 或 S2
5 4

当 S2 1 时, S2,S4 S2,S6 S4,S8 S6 ,即为 1, 4,16,S8 21 ,
易知, S8 21 64 ,即 S8 85 ;
当 S2
5 4
时, S4
a1
a2
a3
a4
a1
a2
1
q2
1 q2
例 1-1.
(江西·高考真题)
已知等差数列an ,若 a1 a2 a3 a12 21 ,则 a2 a5 a8 a11 .
根据等差数列的性质可得 a1
a2
a3
a12
6(a1
a12
)
21
,解得 a1
a12
7 2

高考数学中的等差数列和等比数列问题解析

高考数学中的等差数列和等比数列问题解析

高考数学中的等差数列和等比数列问题解析在高考数学中,等差数列和等比数列问题属于基础难度的部分。

同时,这两个问题对于数学竞赛和日常生活(如财务计划)也有着很大的参考价值。

本文将从定义、基本概念、公式推导以及考点解析等方面,较为全面地探讨这两个问题。

一、等差数列的定义和基本概念等差数列是指一个数列,其每一项与它的前一项之差都相等。

其一般形式为:$ a_{1},a_{2},a_{3},...,a_{n}$,其中$n≥2$,且对于任意$i\inZ^{+}$,满足$a_{i+1}=a_{i}+d$,其中d为公差,$a_{1}$为首项。

等差数列的基本概念包括:1. 公差:相邻项的差值,用d表示。

2. 首项:等差数列的第一项,用$a_{1}$表示。

3. 通项公式:第n项的计算公式,用$a_{n}$表示。

4. 求和公式:等差数列前n项和的计算公式,用$S_{n}$表示。

二、等差数列的公式推导1. 通项公式推导设首项为$a_{1}$,公差为d,则有:$$a_{2}=a_{1}+d,a_{3}=a_{2}+d=a_{1}+2d,...,a_{n}=a_{1}+(n-1)d $$设第n项为an,代入上式得:$$a_{n}=a_{1}+(n-1)d $$于是,通项公式为$a_{n}=a_{1}+(n-1)d$。

2. 求和公式推导等差数列的前n项和为:$$ S_{n}=a_{1}+a_{2}+...+a_{n} $$由通项公式得:$$ S_{n}=\frac{n }{2}(a_{1}+a_{n})=\frac{n }{2}[a_{1}+a_{1}+ (n-1)d]$$$$S_{n}=\frac {n}{2}[2a_{1}+(n-1)d] $$于是,求和公式为$S_{n}=\frac {n}{2}[2a_{1}+(n-1)d]$。

三、等比数列的定义和基本概念等比数列是指一个数列,其每一项与它的前一项之比都相等。

其一般形式为:$a_{1},a_{2},a_{3},...,a_{n }$,其中$n≥2$,且对于任意$i\in Z^{+}$,满足$\frac{a_{i+1}}{a_{i}}=q$,其中q为公比,$a_{1}$为首项。

等比数列等差数列知识点归纳总结

等比数列等差数列知识点归纳总结

等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。

在解决各种数学问题和应用中,它们都有着广泛的应用。

本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。

一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。

具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。

等差数列的常用术语包括首项、公差、通项公式和项数等。

1. 首项(a₁):等差数列的第一项称为首项。

2. 公差(d):等差数列中相邻两项的差称为公差。

公差可以是正数、负数或零。

3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。

在通项公式中,n表示项数。

4. 项数:等差数列包含的项的个数称为项数。

等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。

一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。

二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。

具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。

等比数列的常用术语包括首项、公比、通项公式和项数等。

1. 首项(a₁):等比数列的第一项称为首项。

2. 公比(r):等比数列中相邻两项的比称为公比。

公比可以是正数、负数或零,但不能为1。

3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。

在通项公式中,n表示项数。

4. 项数:等比数列包含的项的个数称为项数。

等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。

一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。

高中数学知识点总结等差数列与等比数列

高中数学知识点总结等差数列与等比数列

高中数学知识点总结等差数列与等比数列高中数学知识点总结:等差数列与等比数列等差数列和等比数列是高中数学中重要的数列概念。

它们在数学和实际问题中都具有广泛的应用。

本文将对等差数列和等比数列进行详细的总结和学习。

一、等差数列(Arithmetic Progression,简称AP)等差数列是指数列中任意两个相邻的项之间的差都是一个常数。

这个常数称为公差,通常用字母d表示。

等差数列的一般形式可以表示为:an = a1 + (n-1)d,其中an表示数列的第n项。

等差数列常见的性质和公式如下:1. 第n项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)3. 公差d的求法:d = (an - a1)/(n-1)4. 通项公式:an = a1 + (n-1)d5. 前n项和公式(求和公式):Sn = (n/2)(a1 + an)等差数列的应用非常广泛,特别是在数学、物理和工程学中。

等差数列可以帮助我们推导出一些重要的关系式,解决许多实际问题。

二、等比数列(Geometric Progression,简称GP)等比数列是指数列中任意两个相邻的项之间的比都是一个常数。

这个常数称为公比,通常用字母r表示。

等比数列的一般形式可以表示为:an = a1 * r^(n-1),其中an表示数列的第n项。

等比数列常见的性质和公式如下:1. 第n项公式:an = a1 * r^(n-1)2. 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r),其中r ≠ 13. 公比r的求法:r = √(an / a1)4. 通项公式:an = a1 * r^(n-1)5. 前n项和公式(求和公式):Sn = a1 * (1 - r^n) / (1 - r),其中r ≠1等比数列的应用同样非常广泛,在数学、物理、经济学等领域都有重要的作用。

高考数学专题三数列 微专题21 等差数列、等比数列

高考数学专题三数列 微专题21 等差数列、等比数列

设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.

由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.

由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列一、学习目标:等差数列的概念、性质及前n 项和求法。

1.设数列{}n a 的前n 项和为n S .已知5a 1=,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;解:依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-.因此,所求通项公式为nnn n 23-S b ==。

2.设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . 3.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316.【考点梳理】1.在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。

2.补充的一条性质1)项数为奇数21n -的等差数列有:1s ns n =-奇偶n s s a a -==奇偶中,21(21)n n s n a -=- 2)项数为偶数2n 的等差数列有:1n n s as a +=奇偶,s s nd -=偶奇 21()n n n s n a a +=+3.等差数列的判定:{a n }为等差数列⎪⎪⎩⎪⎪⎨⎧+=+=+==-⇔+++数”)(缺常数项的“二次函的“一次函数”)(关于(定义)Bn An S n B An a a a a d a a nn n n n n n 22112 即:*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=⇔=-⇔-++为常数)}{ Bn An s b kn a n n +=⇔+=⇔2;4.三个数成等差可设:a ,a +d ,a +2d 或a -d ,a ,a +d ; 四个数成等差可设:a -3d ,a -d ,a +d ,a +3d .5.等差数列与函数:1)等差数列通项公式与一次函数的关系:从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列.k=d=11--n a a n ,d=mn a a mn --,由此联想点列(n ,a n )所在直线的斜率.2)点)S (n,n 在没有常数项的二次函数2n S pn qn =+上。

其中,公差不为0. 6.等差数列前n 项和最值的求法(结合二次函数的图象与性质理解)1)若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。

(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2)若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小。

7.等差数列的定义、通项公式、求和公式、性质等 等 差 数 列 定义 {a n }为等差数列⇔a n+1-a n =d (常数),n ∈N +⇔2a n =a n-1+a n+1(n ≥2,n ∈N +) 通项公式 1)n a =1a +(n-1)d=k a +(n-k )d ;n a =dn +1a -d b kn += 2)推广:a n =a m +(n -m )d. 3)变式:a 1=a n -(n -1)d ,d=11--n a a n ,d=mn a a mn --,由此联想点列(n ,a n )所在直线的斜率.求和公式1)n B n A )2(22)1(2)(S 21211⨯+⨯=-+=-+=+=n da n d d n n na a a n n n 2)变式:21n a a +=n S n =n a a a n +⋅⋅⋅++21=a 1+(n -1)·2d=a n +(n -1)·(-2d).等差中项 1)等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b =2ca +;a 、b 、c 成等差数列是2b =a +c 的充要条件.2)推广:2n a =m n mn a a +-+重 要 性 质1 m n l k m n l k a a a a +=+⇒+=+(反之不一定成立);特别地,当2m n p +=时,有2m n p a a a +=;特例:a 1+a n =a 2+a n-1=a 3+a n-2=…。

2 下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…组成的数列仍为等差数列,公差为md .3 n n n n n s s s s s 232,,-- 成等差数列。

4)(11n m nm a a n a a d nm n ≠--=--=5 增减性{}为递增数列n a 0d ⇔> {}为常数列n a 0d ⇔= {}为递减数列n a 0d ⇔< 其 它 性 质1 a n =a m +(n -m )d.2 若数列{a n }是公差为d 的等差数列,则数列{λa n +b }(λ、b 为常数)是公差为λd 的等差数列;若{b n }也是公差为d 的等差数列,则{λ1a n +λ2b n }(λ1、λ2为常数)也是等差数列且公差为λ1d +λ2d .3 a n =an+b ,即a n 是n 的一次型函数,系数a 为等差数列的公差;S n =an 2+bn ,即S n 是n 的不含常数项的二次函数;三、合作探究:题型1 等差数列的基本运算 例1 在等差数列{a n }中,(1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8.解:(1)方法一:⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a ∴a 60=a 1+59d =130. 方法2 3815451545=--=--=a a m n a a d m n ,a n =a m +(n -m)d ⇒a 60=a 45+(60-45)d =90+15×38=130.(2)不妨设S n =An 2+Bn , ∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A∴S n =2n 2-17n ∴S 28=2×282-17×28=1092(3)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5 而d =31616=--a a ∴a 8=a 6+2 d =16 S 8=442)(881=+a a变式训练1 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n .解:设等差数列{a n }的公差为d ,则S n =na 1+21n (n -1)d . ∵S 7=7,S 15=75, ∴⎩⎨⎧=+=+,7510515,721711d a d a 即⎩⎨⎧=+=+.57,1311d a d a 解得a 1=-2,d =1.∴n S n =a 1+21(n -1)d =-2+21(n -1)=25-n .∴11++n S n -n S n =21. ∴数列{nS n }是等差数列,其首项为-2,公差为21.∴T n =41n 2-49n .小结与拓展:基本量的思想:常设首项、公差及首项,公比为基本量,借助于消元思想及解方程组思想等。

等差数列中,已知五个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.题型2 等差数列的判定与证明例2 已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36. 求数列{a n }的通项公式;解:∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d ,由a 3=5,S 6=36得⎩⎪⎨⎪⎧a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.变式训练2 在数列{a n }中,a 1=1,a n +1=2a n +2n.设b n =a n 2n -1,证明:数列{b n }是等差数列;证明:由已知a n +1=2a n +2n得b n +1=a n +12n =2a n +2n2n=a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.小结与拓展:证明数列{a n }是等差数列的两种基本方法是:1)利用定义,证明a n -a n -1(n ≥2)为常数;2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2). 题型3 等差数列的性质例3 设等差数列{}n a 的首项及公差均是正整数,前n 项和为n S ,且11a >,46a >,312S ≤,则2010a =_ _ _.答案:4020变式训练3 在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.答案:52解:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52.小结与拓展:解决等差(比)数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于a 1和d (q )的方程;②巧妙运用等差(比)数列的性质(如下标和的性质、子数列的性质、和的性质).一般地,运用数列的性质,可化繁为简. 题型4 等差数列的前n 项和及最值问题例4 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,S 3,…,S 12中哪一个最大,并说明理由. 解:(1)a 3=12,∴a 1=12-2d ,解得a 12=12+9d ,a 13=12+10d .由S 12>0,S 13<0,即2)(12121a a +>0,且2)(13131a a +<0,解之得-724<d <-3.(2)易知a 7<0,a 6>0,故S 6最大.变式训练4设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于( A )A .6B .7C .8D .9【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=⨯-+=-,解得2d =, 所以22(1)11212(6)362n n n S n n n n -=-+⨯=-=--,所以当6n =时,n S 取最小值。

相关文档
最新文档