Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动要点
Creo 2.0动态机构仿真操作手册之欧阳美创编
Creo2.0动态机构仿真操作手册12 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。
本标准适用于公司产品结构设计选用。
3 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。
design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
图1-1 由装配环境进入机构环境图图1-2 机构模块下的主界面图图1-3 机构菜单图1-4 模型树菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。
:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。
3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。
打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。
打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。
:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。
PROE运动仿真教程
PROE机构仿真之活动剖析症结词:PROE 仿真活动剖析反复组件剖析衔接回放活动包络轨迹曲线术语创建机构前,应熟习下列术语在PROE中的界说:主体 (Body) 一个元件或彼此无相对活动的一组元件,主体内DOF=0.衔接 (Connections) 界说并束缚相对活动的主体之间的关系.自由度 (Degrees of Freedom) 许可的机械体系活动.衔接的感化是束缚主体之间的相对活动,削减体系可能的总自由度.拖动 (Dragging) 在屏幕上用鼠标拾取并移念头构.动态 (Dynamics) 研讨机构在受力后的活动.履行电念头 (Force Motor) 感化于扭转轴或平移轴上(引起活动)的力.齿轮副衔接 (Gear Pair Connection) 运用到两衔接轴的速度束缚.基本 (Ground) 不移动的主体.其它主体相对于基本活动.接头 (Joints) 特定的衔接类型(例如销钉接头.滑块接头和球接头).活动 (Kinematics) 研讨机构的活动,而不斟酌移念头构所需的力.环衔接 (Loop Connection) 添加到活动环中的最后一个衔接.活动 (Motion) 主体受电念头或负荷感化时的移动方法.放置束缚 (Placement Constraint) 组件中放置元件并限制该元件在组件中活动的图元.回放 (Playback) 记载着重放剖析运行的成果.伺服电念头 (Servo Motor) 界说一个主体相对于另一个主体活动的方法.可在接头或几何图元上放置电念头,并可指定主体间的地位.速度或加快度活动.LCS 与主体相干的局部坐标系.LCS 是与主体中界说的第一个零件相干的缺省坐标系.UCS 用户坐标系.WCS 全局坐标系.组件的全局坐标系,它包含用于组件及该组件内所有主体的全局坐标系.活动剖析的界说在知足伺服电念头轮廓和接头衔接.凸轮从念头构.槽从念头构或齿轮副衔接的请求的情形下,模仿机构的活动.活动剖析不斟酌受力,它模仿除质量和力之外的活动的所有方面.是以,活动剖析不克不及运用履行电念头,也不必为机构指定质量属性.活动剖析疏忽模子中的所有动态图元,如弹簧.阻尼器.重力.力/力矩以及履行电念头等,所有动态图元都不影响活动剖析成果.假如伺服电念头具有不持续轮廓,在运交活动剖析前软件会测验测验使其轮廓持续,假如不克不及使其轮廓持续,则此伺服电机将不克不及用于剖析.运用活动剖析可获得以下信息:几何图元和衔接的地位.速度以及加快度元件间的干预机构活动的轨迹曲线作为 Pro/ENGINEER 零件捕获机构活动的活动包络反复组件剖析WF2.0以前版本里的“活动剖析”,在WF2.0里被称为“反复组件剖析”.它与活动剖析相似,所有实用于活动剖析的请求及设定,都可用于反复组件剖析,所有不适于活动剖析的身分,也都不实用于反复组件剖析.反复组件剖析的输出成果比活动剖析少,不克不及剖析速度.加快度,不克不及做机构的活动包络.运用反复组件剖析可获得以下信息:几何图元和衔接的地位元件间的干预机构活动的轨迹曲线活动剖析工作流程创建模子:界说主体,生成衔接,界说衔接轴设置,生成特别衔接检讨模子:拖动组件,磨练所界说的衔接是否能产生预期的活动参加活动剖析图元:设定伺服电机预备剖析:界说初始地位及其快照,创建测量剖析模子:界说活动剖析,运行成果获得:成果回放,干预检讨,检讨测量成果,创建轨迹曲线,创建活动包络装入元件时的两种方法:接头衔接与束缚衔接向组件中增长元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”.“移动”.“衔接”.传统的装配元件办法是在“放置”页面给元件参加各类固定束缚,将元件的自由度削减到0,因元件的地位被完全固定,如许装配的元件不克不及用于活动剖析(基体除外).另一种装配元件的办法是在“衔接”页面给元件参加各类组合束缚,如“销钉”.“圆柱”.“刚体”.“球”.“6DOF”等等,运用这些组合束缚装配的元件,因自由度没有完全清除(刚体.焊接.通例除外),元件可以自由移动或扭转,如许装配的元件可用于活动剖析.传统装配法可称为“束缚衔接”,后一种装配法可称为“接头衔接”.束缚衔接与接头衔接的雷同点:都运用PROE的束缚来放置元件,组件与子组件的关系雷同.束缚衔接与接头衔接的不合点:束缚衔接运用一个或多个单束缚来完全清除元件的自由度,接头衔接运用一个或多个组合束缚来束缚元件的地位.束缚衔接装配的目标是清除所有自由度,元件被完全定位,接头衔接装配的目标是获得特定的活动,元件平日还具有一个或多个自由度.“元件放置”窗口:(yd1)接头衔接的类型接头衔接所用的束缚都是能实现特定活动(含固定)的组合束缚,包含:销钉.圆柱.滑动杆.轴承.平面.球.6DOF.通例.刚性.焊接,共10种.销钉:由一个轴对齐束缚和一个与轴垂直的平移束缚构成.元件可以绕轴扭转,具有1个扭转自由度,总自由度为1.轴对齐束缚可选择直边或轴线或圆柱面,可反向;平移束缚可所以两个点对齐,也可所以两个平面的对齐/配对,平面临齐/配对时,可以设置偏移量.圆柱:由一个轴对齐束缚构成.比销钉束缚少了一个平移束缚,是以元件可绕轴扭转同时可沿轴向平移,具有1个扭转自由度和1个平移自由度,总自由度为2.轴对齐束缚可选择直边或轴线或圆柱面,可反向.滑动杆:即滑块,由一个轴对齐束缚和一个扭转束缚(现实上就是一个与轴平行的平移束缚)构成.元件可滑轴平移,具有1个平移自由度,总自由度为1.轴对齐束缚可选择直边或轴线或圆柱面,可反向.扭转束缚选择两个平面,偏移量依据元件所处地位主动盘算,可反向.轴承:由一个点对齐束缚构成.它与机械上的“轴承”不合,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,是以元件可沿轴线平移并随意率性偏向扭转,具有1个平移自由度和3个扭转自由度,总自由度为4.平面:由一个平面束缚构成,也就是肯定了元件上某平面与组件上某平面之间的距离(或重合).元件可绕垂直于平面的轴扭转并在平行于平面的两个偏向上平移,具有1个扭转自由度和2个平移自由度,总自由度为3.可指定偏移量,可反向.球:由一个点对齐束缚构成.元件上的一个点对齐到组件上的一个点,比轴承衔接小了一个平移自由度,可以绕着对齐点随意率性扭转,具有3个入扭转自由度,总自由度为3.6DOF:即6自由度,也就是对元件不作任何束缚,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件产生联系关系.元件可随意率性扭转和平移,具有3个扭转自由度和3个平移自由度,总自由度为6.刚性:运用一个或多个根本束缚,将元件与组件衔接到一路.衔接后,元件与组件成为一个主体,互相之间不再有自由度,假如刚性衔接没有将自由度完全清除,则元件将在当前地位被“粘”在组件上.假如将一个子组件与组件用刚性衔接,子组件内各零件也将一路被“粘”住,其原有自由度不起感化.总自由度为0.焊接:两个坐标系对齐,元件自由度被完全清除.衔接后,元件与组件成为一个主体,互相之间不再有自由度.假如将一个子组件与组件用焊接衔接,子组件内各零件将参照组件坐标系发按其原有自由度的感化.总自由度为0.接头衔接类型:(yd2)接头衔接束缚:通例通例:也就是自界说组合束缚,可依据须要指定一个或多个根本束缚来形成一个新的组合束缚,其自由度的若干因所用的根本束缚种类及数目不合而不合.可用的根本束缚有:匹配.对齐.拔出.坐标系.线上点.曲面上的点.曲面上的边,共7种.在界说的时刻,可依据须要选择一种,也可先不拔取类型,直接拔取要运用的对象,此时在类型那边开端显示为“主动”,然后依据所选择的对象体系主动肯定一个适合的根本束缚类型.通例—匹配/对齐:对齐).单一的“匹配/对齐”构成的自界说组合束缚转换为束缚衔接后,变成只有一个“匹配/对齐”束缚的不完全束缚,再转换为接头束缚后变成“平面”衔接.这两个束缚用来肯定两个平面的相对地位,可设定偏距值,也可反向.界说完后,在不修正对象的情形下可更改类型(匹配通例—拔出:拔取对象为两个柱面.单一的“拔出”构成的自界说组合束缚转换为束缚衔接后,变成只有一个“拔出”束缚的不完全束缚,再转换为接头束缚后变成“圆柱”衔接.通例—坐标系:拔取对象为两个坐标系,与6DOF的坐标系束缚不合,此坐标系将元件完全定位,清除了所有自由度.单一的“坐标系”构成的自界说组合束缚转换为束缚衔接后,变成只有一个“坐标系”束缚的完全束缚,再转换为接头束缚后变成“焊接”衔接.通例—线上点:拔取对象为一个点和一条直线或轴线.与“轴承”等效.单一的“线上点”构成的自界说组合束缚转换为束缚衔接后,变成只有一个“线上点”束缚的不完全束缚,再转换为接头束缚后变成“轴承”衔接.通例—曲面上的点:拔取对象为一个平面和一个点.单一的“曲面上的点”构成的自界说组合束缚转换为束缚衔接后,变成只有一个“曲面上的点”束缚的不完全束缚,再转换为接头束缚后仍为单一的“曲面上的点”构成的自界说组合束缚.通例—曲面上的边:拔取对象为一个平面/柱面和一条直边.单一的“曲面上的点”构成的自界说组合束缚不克不及转换为束缚衔接.自由度与冗余束缚自由度(DOF)是描写或肯定一个体系(主体)的活动或状况(如地位)所必须的自力参变量(或坐标数).一个不受任何束缚的自由主体,在空间活动时,具有6个自力活动参数(自由度),即沿XYZ三个轴的自力移动和绕XYZ三个轴的自力迁移转变,在平面活动时,则只具有3个自力活动参数(自由度),即沿XYZ三个轴的自力移动.主体受到束缚后,某些自力活动参数不再消失,相对应的,这些自由度也就被清除.当6个自由度都被清除后,主体就被完全定位并且不成能再产生任何活动.如运用销钉衔接后,主体沿XYZ三个轴的平移活动被限制,这三个平移自由度被清除,主体只能绕指定轴(如X轴)扭转,不克不及绕另两个轴(YZ轴)扭转,绕这两个轴扭转的自由度被清除,成果只留下一个扭转自由度.冗余束缚指过多的束缚.在空间里,要完全束缚住一个主体,须要将三个自力移动和三个自力迁移转变分离束缚住,假如把一个主体的这六个自由度都束缚住了,再另加一个束缚去限制它沿X轴的平移,这个束缚就是冗余束缚.合理的冗余束缚可用来分摊主体各部分受到的力,使主体受力平均或削减磨擦.抵偿误差,延长装备运用寿命.冗余束缚对主体的力状况产生影响,对主体的对活动没有影响.因活动剖析只剖析主体的活动状况,不剖析主体的力状况,在活动剖析时,可不斟酌冗余束缚的感化,而在涉及力状况的剖析里,必须要恰当的处理好冗余束缚,以得到精确的剖析成果.体系在每次运行剖析时,都邑对自由度进行盘算.并可创建一个测量来盘算机构有若干自由度.若干冗余.PROE的帮忙里有一个门搭钮的例子来讲冗余与自由度的盘算,但其剖析实丰有欠妥善,列位想精确盘算模子的自由度的话,请找机构设计方面的书来细心研讨一番.这也不是几句话能解释确的,我这里只提一下就是了,不再详.束缚转换接头衔接与束缚衔接可互相转换.在“元件放置”窗口的“放置”页面和“衔接”页面里,在束缚列表下方,都有一个“束缚转换”按钮.运用此按钮可在任何时刻依据须要将接头衔接转换为束缚衔接,或将束缚衔接转换为接头衔接.在转换时,体系依据现有束缚及其对象的性质主动拔取最相配的新类型.如对体系主动拔取的成果不知足,可再进行编辑.转换的规矩,可参考PROE的自带帮忙.不过,没有很好的空间想像力和耐性的兄弟就不必看了.须要记住的一个:曲线上的点.曲面上的点.相切束缚,在转换时是不会转换成通例衔接的.下图显示“束缚转换”和“反向”按钮:(yd3)基本与重界说主体基本是在活动剖析中被设定为不介入活动的主体.创建新组件时,装配(或创建)的第一个元件主动成为基本.元件运用束缚衔接(“元件放置”窗口中“放置”页面)与基本产生关系,则此元件也成为基本的一部分.假如机构不克不及以预期的方法移动,或者因两个零件在统一主体中而不克不及创建衔接,就可以运用“重界说主体”来确认主体之间的束缚关系及删除某些束缚.进入“机构”模块后,“编辑”—>“重界说主体”进入主体重界说窗口,选定一个主体,将在窗口里显示这个主体所受到的束缚(仅束缚衔接及“刚体”接头所用的束缚).可以选定一个束缚,将其删除.假如删除所有束缚,元件将被封装.“重界说主体”窗口:(yd4)特别衔接:凸轮衔接凸轮衔接,就是用凸轮的轮廓去掌握从动件的活动纪律.PROE里的凸轮衔接,运用的是平面凸轮.但为了形象,创建凸轮后,都邑让凸轮显示出必定的厚度(深度).凸轮衔接只须要指定两个主体上的各一个(或一组)曲面或曲线就可以了.界说窗口里的“凸轮1”“凸轮2”分离是两个主体中任何一个,并不是从动件就是“凸轮2”.假如选择曲面,可将“主动拔取”复选框勾上,如许,体系将主动把与所选曲面的邻接曲面选中,假如不必“主动拔取”,须要选多个相邻面时要按住Ctrl.假如选择曲线/边,“主动拔取”是无效的.假如所选边是直边或基准曲线,则还要指定工作平面(即所界说的二维平面凸轮在哪一个平面上).凸轮一般是从动件沿凸轮件的概况活动,在PROE里界说凸轮时,还要肯定活动的现实接触面.拔取了曲面或曲线后,将会出线一个箭头,这个箭头指导出所选曲面或曲线的法向,箭头指向哪侧,也就是活动时接触点将在哪侧.假如体系指导出的偏向与想界说的偏向不合,可反向.关于“启用升离”,打开这个选项,凸轮运转时,从动件可分开主动件,不运用此选项时,从动件始终与主动件接触.启用升离后才干界说“恢复系数”,即“启用升离”复选框下方的谁人“e”.因为是二维凸轮,只要肯定了凸轮轮廓和工作平面,这个凸轮的外形与地位也就算界说完全了.为了形象,体系会给这个二维凸轮显示出一个厚度(即深度).平日我们可不必去修正它,运用“主动”就可以了.也可自已界说这个显示深度,但对剖析成果没有影响.须要留意:A.所选曲面只能是单向曲折曲面(如拉伸曲面),不克不及是多向曲折曲面(如扭转出来的鼓形曲面).B.所选曲面或曲线中,可以有平面和直边,但应防止在两个主体上同时消失.C.体系不会主动处理曲面(曲线)中的尖角/拐点/不持续,假如消失如许的问题,应在界说凸轮前恰当处理.凸轮可界说“升离”.“恢复系数”与“磨擦”.凸轮界说窗口:(yd5)特别衔接:齿轮衔接齿轮衔接用来掌握两个扭转轴之间的速度关系.在PROE中齿轮衔接分为尺度齿轮和齿轮齿条两种类型.尺度齿轮需界说两个齿轮,齿轮齿条需界说一个小齿轮和一个齿条.一个齿轮(或齿条)由两个主体和这两个主体之间的一个扭转轴构成.是以,在界说齿轮前,需先界说含有扭转轴的接头衔接(如销钉).界说齿轮时,只需选定由接头衔接界说出来的与齿轮本体相干的谁人扭转轴即可,体系主动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”.“齿条”)和“托架”,“托架”一般就是用来装配齿轮的主体,它一般是静止的,假如体系选反了,可用“反向”按钮将齿轮与托架主体交流.“齿轮2”或“齿条”所用轴的扭转偏向是可以变动的,点界说窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会消失一个很粗的箭头指导此轴扭转的正向.速比界说:在“齿轮副界说”窗口的“齿轮1”.“齿轮2”.“小齿轮”页面里,都有一个输入节圆直径的地方,可以在界说齿轮时将齿轮的现实节圆直径输入到这里.在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户界说的”.选择“节圆直径”时,D1.D2由体系主动依据前两个页面里的数值盘算出来,不成修正.选择“用户界说的”时,D1.D2须要输入,此情形下,齿轮速度比由此处输入的D1.D2肯定,前两个页面里输入的节圆直径不起感化.速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1.齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由体系依据小齿轮的节圆数值盘算出来,不成修正,选择“用户界说的”时,其数值须要输入,此情形下,小齿轮界说页面里输入的节圆直径不起感化.图标地位:界说齿轮后,每一个齿轮都有一个图标,以显示这里界说了一个齿轮,一条虚线把两个图标的中间连起来.默认情形下,齿轮图标在所选衔接轴的零点,图标地位也可自界说,点选一个点,图标将平移到谁人点地点平面上.图标的地位只是一视觉后果,不会对剖析产生影响.要留意的事项:A.PROE里的齿轮衔接,只须要指定一个扭转轴和节圆参数就可以了.是以,齿轮的具体外形可以不必做出来,即使是两个圆柱,也可以在它们之间界说一个齿轮衔接.B.两个齿轮应运用公共的托架主体,假如没有公共的托架主体,剖析时体系将创建一个不成见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一.并且在运行与力相干的剖析(动态.力均衡.静态)时,会提醒指出没有公共托架主体.齿轮界说窗口:(yd6)特别衔接:槽衔接槽衔接是两个主体之间的一个点曲线衔接.从动件上的一个点,始终在主动件上主体之间是否干预,点和曲线甚至可所以零件实体以外的基准点和基准曲线,当然也可以在实体内部.曲线可所以任何一组相邻曲线(即请求相连,不必相切),可所以基准曲线,也可所以实体/曲面的边,可所以凋谢的,也可所以关闭的.点可所以任何一个基准点或极点,但只能是零件中的,组件中的点不克不及用于槽衔接.活动时,从动件上的点始终在主动件上的指定曲线上,假如曲线是一条(组)凋谢曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,假如是一条(组)关闭曲线,则默认无故点.假如愿望活动区间不是在整条曲线(曲线组)上,而只是在个中的一段上,则须要自界说槽的端点.对于凋谢曲线(曲线组),只要指定新的端点就可以了,对于关闭曲线,指定两个新端点后,体系主动拔取被两头点朋分出的两段曲线中的一段为运行区间,假如不是所须要的,点“反向”拔取另一段.界说槽端点可拔取基准点.极点.曲线/边/曲面,假如选的曲直线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点.槽衔接可界说“恢复系数”与“磨擦”.槽衔接界说窗口:(yd7)拖动与快照拖动,是在许可的规模内移念头械.快照,对机械的某一特别状况的记载.可以运用拖动调剂机构中各零件的具体地位,初步检讨机构的装配与活动情形,并可将其保管为快照,快照可用于后续的剖析界说中,也可用于绘制工程图.“机构”“拖动”,进入“拖动”窗口,此窗口具有一个对象栏,对象栏左第一个按钮为“保管快照”,即将当前屏幕上的状况保管为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以转变元件的地位,左第三个按钮“裁撤”和“恢复”,每一次拖动,体系都邑记载入内存,运用此两按钮,可检讨已做的各次拖动的成果.“快照”页和“束缚”页,分离有一个列表,显示当前已经界说的快照和为当前拖动界说的暂时束缚.快照列表左侧有一列对象按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的地位提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状况;第四个为画图可用,使选定快照可被当做分化状况运用,从而在画图中运用,这是一个开关型按钮,当快照可用于画图时,列表中的快照名前会有一个图标;第五个是删除选定快照.束缚列表显示已为当前拖动所界说的暂时束缚,这些暂时束缚只用于当前拖动操纵,以进一步限制拖动时各主体之间的相对活动.“高等拖动选项”供给了一组对象,用于精确限制拖动时被拖动点或主体的活动.拖动窗口:(yd8)恢复系数与磨擦即碰撞系数,其物理界说为两物体碰撞后的相对速度(V2V1)与碰撞前的相对速度(V10V20)的比值,即e=(V2V1)/(V10V20),它的值介于0到1之间.典范的恢复系数可从工程书本或现实经验中得到.恢复系数取决于材料属性.主体几何故及碰撞速度等身分.在机构中运用恢复系数,是在刚体盘算中模仿非刚性属性的一种办法.完全弹性碰撞的恢复系数为 1.完全非弹性碰撞的恢复系数为 0.橡皮球的恢复系数相对较高.而湿土壤块的恢复系数值异常接近0.摩擦阻碍凸轮或槽的活动.摩擦系数取决于接触材料的类型以及实验前提.可在物理或工程书本中查找各类典范的摩擦系数表.须要分离指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数.要在力均衡剖析中盘算凸轮滑动测量,必须指定凸轮衔接的磨擦系数.衔接轴设置“机构”—“衔接轴设置”,可为由接头衔接(如销钉)产生的衔接轴界说一些具体的属性,包含:衔接轴的地位,衔接轴的零参照,衔接轴的再生地位(用于反复组件剖析),衔接轴的活动限制.恢复系数及磨擦.进入此窗口后,需先拔取一衔接轴,然后再对此轴进行各类设置.“衔接轴地位”,这里显示的是衔接轴的两个零参照间的地位或距离,未转变时,显示的是当前屏幕上这个地位时的值.假如本身输入一个数值并回车(对于扭转轴,此数值为180到180,如超出此规模或超出“属性”里设置的限制规模,体系将主动转换成可接收的规模内的值),屏幕上的组件也将暂时转变地位以反应当前修正,假如按了“生成零点”,则将当前地位设定为衔接轴零点,其它测量都从此零点地位开端.点了“生成零点”后,“指定参照”将无效.假如选了“指定参照”,则“生成零点”无效.“指定参照”可为衔接轴的两个主体分离选定零地位的几何参照.拔取“再生值”,可让组件在非衔接轴零点地位再生,这个用于反复组件剖析中.“启用限制”,设置接头活动时的最大最小活动规模及恢复系数.对于扭转轴,“最小”值为180到180之间且小于最大值,“最大”值为180到180之间且大于最小值.恢复系数用来模仿当衔接轴活动到限制地位时的冲击力.“启用磨擦”,设置接头的两个主体之间互相活动的阻力.需指定静磨擦系数和动磨擦系数,对于扭转轴,还应指定一个大于零的接触半径值,它用于界说磨擦扭矩感化于衔接轴上的半径.静磨擦系数应大于动磨擦系数.在任何衔接轴上,都不克不及创建多个衔接轴零点.不克不及为球接头界说衔接轴设置.别的,不克不及编辑属于多扭转 DOF 接头(如 6DOF 或某个一般衔接)的扭转衔接轴的衔接轴设置.。
PROE运动仿真教程
P R O E运动仿真教程本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchPROE机构仿真之运动分析关键词:PROE仿真运动分析重复组件分析连接回放运动包络轨迹曲线术语创建机构前,应熟悉下列术语在PROE中的定义:主体 (Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。
连接 (Connections) - 定义并约束相对运动的主体之间的关系。
自由度 (Degrees of Freedom) - 允许的机械系统运动。
连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。
拖动 (Dragging) - 在屏幕上用鼠标拾取并移动机构。
动态 (Dynamics) - 研究机构在受力后的运动。
执行电动机 (Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。
齿轮副连接 (Gear Pair Connection) - 应用到两连接轴的速度约束。
基础 (Ground) - 不移动的主体。
其它主体相对于基础运动。
接头 (Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。
运动 (Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。
环连接 (Loop Connection) - 添加到运动环中的最后一个连接。
运动 (Motion) - 主体受电动机或负荷作用时的移动方式。
放置约束 (Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。
回放 (Playback) - 记录并重放分析运行的结果。
伺服电动机 (Servo Motor) - 定义一个主体相对于另一个主体运动的方式。
可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。
LCS - 与主体相关的局部坐标系。
LCS 是与主体中定义的第一个零件相关的缺省坐标系。
Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动要点
Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动今天我们来讲一下接触碰撞运动的仿真(这个恐怕是坛子里对凸轮连接最详细的教程)之前很多人pm还有在qq群问我说做模具顶出件运动怎么做,我直接回答用凸轮连接对设置连接,启用升离,再启用重力就可以了,这样还是有很多人不太明白,其这个东西听着很简单,里面还有很多的窍门和方法再加上一些经验,只要你看过了本教程,再加上平时多联系,相信接触碰撞这里,一般的问题都可以解决了,我们来看一下,以前的2001版本以前方针分析里面比较简单,简单的方针都可以做到,但是到了野火版本以后,功能提升了好多,在野火中有三种特殊的连接,可以设置特殊连接后进行各种分析,这三种连接分别为凸轮副连接,槽连接,齿轮运动副连接,今天讲的是接触碰撞的仿真,主要用到的是凸轮的链接,所以只讲凸轮,齿轮和槽连接以后再讲。
顶针顶出件运动仿真,其实就是在顶针头部和接触的件之间建立一个凸轮连接,有人会问,顶针和件是两个平面与平面相碰,怎么建立凸轮,在凸轮连接时,里面有一些技巧,尤其是建立曲面和选择曲面时,技巧性比较强,相信很多高手有些时候都那凸轮连接因没有选择好曲面或是没有建立好曲面,导致仿真多次失败。
我们先看一下凸轮的链接设置1 “凸轮1”选项卡:定义第一个凸轮(1)“曲面/曲线”:单击箭头选取曲线或曲面定义凸轮工作面,在选取曲面时若钩选自动选取复选框则系统自动选取与所选曲面相邻的任何曲面,凸轮与另一凸轮相互作用的一侧由凸轮的法线方向指示。
如果选取开放的曲线或曲面,会出现一个洋红色的箭头,从相互作用的侧开始延伸,指示凸轮的法向。
选取的曲线或边是直的,“机械设计模块”会提示选取同一主体上的点、顶点、平面实体表面或基准平面以定义凸轮的工作面。
所选的点不能在所选的线上。
工作面中会出现一个洋红色箭头,指凸轮法向。
3“属性选项卡”(1)升离:启用升离允许凸轮从动机构连接在拖动操作或分析运行期间分离e在0-1之间(2)摩擦:Us静摩擦系数Uk 动摩擦系数静摩擦系数应大于动摩擦系数举例:1.建立连个立方体和一个平板2.建立一个组件,平板默认装配,立方体A平面约束,front面和平板的front面,A的下表面和板的上表面,再装配C,C的front面和平板的front面设置平面约束,然后用手鼠标拖动C,让C的下表面大体能够贴在平板的上表面即可,让A和C有点距离。
CREO 机构的运动仿真与分析 ppt课件
使用此区域计算惯性矩。惯性矩是对机构的旋转惯量的定量测量,换言之,也就是主体 围绕固定轴旋转以反抗旋转运动发生改变的这种趋势。
“在坐标系原点”单选钮
测量相对于当前坐标系的惯性矩。
“在重心”单选钮
测量相对于机构的主惯性轴的惯性矩
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
16
11.3.2 重力的定义
7
其常用函数的具体含义如下表
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
函数类型 常数 斜坡
余弦
摆线 抛物线
多项式
公式 y=A y=A+B*t
y=A*cos(2*Pi*t/T+B)+C
y=L*t/TL*sin(2*Pi*t/T)/2*Pi y=A*t+1/2B(t2)
y=A+B*t+C+t2+D*t3
伺服电动机
3.选项说明
6
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
“伺服电动机定义”对话框中的选项含义见表
选项 “类型”选项卡
含义
“运动轴”单选钮
用于沿某一方向明确定义的运动,选择的运动轴可以为移动轴、旋转 轴或者由槽连接建立起的槽轴。
“几何”单选钮
通过指定模型中的几何图元建立运动过程,用于创建复杂的三维运动。
设置伺服电动机的运动类型
“轮廓”选项卡
“规范”选项组
设置电动机的位置、速度、加速度,可分别设置电动机的运动形式
“模”选项组 “图形”选项组
可以指定“模”的函数及参数,指定伺服电动机的位置、速度、加速 度的变化形式。常用函数的具体含义如下表11-2所示。
creo仿真教程
方法/步骤
接下来,我们点击拖动按钮,鼠标拖 动手柄进行转动,验证模型是否可以 转动,
方法/步骤
其次,我们对模型添加连接,本模型 添加齿轮连接,点击齿轮连接,选择 两个模型,
方法/步骤
接着,我们添加驱动机构,添加伺服 电机,选择运动轴,
方法/步骤
最后,我们添加机构分析,对要分析 的部位、内容进行添加就可以了。
参考资料:Creo Parametric5.0项目教程
《Creo Parametric5.0项目教程》是2021年人民邮电出版社出版的图书。
参考资料:Creo 4.0机械设计教程(高职高专教材)
《Creo 4.0机械设计教程(高职高专教材)》是2018年机械工业出版社出版的图书,作者是詹 友刚。
参考资料:边做边学——Creo 3.0机械设计立体化教程(微课版)
《边做边学——Creo 3.0机械设计立体化教程(微课版)》是2017年人民邮电出版社出版的图 书,作者是耿慧莲、谭雪松。
参考资料:Creo6.0运动仿真与分析教程
《Creo6.0运动仿真与分析教程》是2021年机械工业出版社出版的图书。
参考资料:Creo4.0运动仿真与分析教程
《Creo4.0运动仿真与分析教程》是2019年8月机械工业出版社出版的图书,作者是北京兆迪科 技有限公司。
谢谢观看
creo仿真教程
参考资料:详解Creo Parametric 2.0标准教程(含DVD光盘1张)
《详解Creo Parametric 2.0标准教程(含DVD光盘1张)》是2013年电子工业出版社出版的图书, 作者是刘昌丽、康士廷、杨忠俊。
内容介绍
creo仿真教程
方法/步骤
首先,我们应用教程
ProE机构运动仿真设计及分析
活塞速度的测量结果,也可导出为EXCEL和文本格式
测量特征也可加入到运动分析中,进行结果查看,图形输出,如测量连杆大头最外边 与缸体裙部的距离。
应将测量保存为一个特征,然后才能进行测量分析
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线”与“凸轮 合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。 菜单:插入--->轨迹曲线
序号
1 2 3 4 5 6 7
8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
1
2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
定义并约束相对运动的主体之间的关系。
自由度(Degrees 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的
of Freedom)
总自由度。
执行电动机( Force Motor)
作用于旋转轴或平移轴上(引起运动)的力。
机构(Joints)
特定的连接类型(例如销钉机构、滑块机构和球机构)
选取运动轴,曲柄连杆机构选 择曲轴的销钉连接图标 反向按钮改变旋向
定义轮廓,“规范”为位置时模选 项定义为斜坡曲轴旋转一圈360度, 图形中可以查看定义的轮廓,横坐 标为时间
creo运动仿真教程
连接类型机构的连接:在装配零件时,采用如图所示的连接类型,使的零件的之间具有一定的自由度小J 实现相对的运动. Type Graphic Icon DOF Pin销钉X1 Cyluklei 囲柱2 SI K I CI滑块8—] Planar平而3Weld焊接0 Ball 球伽3B^anng袖承C6—p74 Cain凸轮c5(S Vaiies Sim槽a沁Yari”Rigid刚性N/A-110 Gear齿轮N/A%Varies General —嚴Varies6D0F6连接类型销钉连接 mdo\connections\pin&cylinder♦轴对齐/插入曲面.平面匹配/对齐或点对齐(径向)汪:即允许绕着指定的轴逬行旋转的连接•共1个自由度. 注:即允许绕着指定的轴迸行旋转和平移的连接,共2个 自由度.连接类型滑动杆连接 mdo\co nnections'slider♦轴对齐/插入曲面♦平面匹配/对齐或点对齐帥向) 注:即允许沿着指定的轴逬行平移的连接 总共1个自由度.平面连接 mdo\connections\plane♦平面匹配/对齐汪:即允许沿着1轴旋转和沿2轴方向平移 总共3个自由度.PTC Channel Advantoge••••W PTC*圆拄连接♦轴对齐/插入曲面平面连接销钉连接11拄连接滑块连接连接类型焊接连接两个坐标系对齐,元件自由度被完全消除。
连接后,元件与组件成为一 个主体■相互之间不再有自由度。
如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系按其原有自由度的作用。
总自由度 为0。
刚性连接使用一个或多个基本约束,将元件与组件连接到一起。
连接后,元件与 组件成为一个主体,相互之间不再有自由度.如果将一个子组件与组件 用刚性连接,子组件内各零件也将一起被"粘〃住,其原有自由度不起作 用。
总自由度为0。
PTC Channel Advanlogc•••••W PTC*连接类型 球连接点与点对齐注:即允许绕着任意方向旋转的连接,总3个自由度轴承连接点在轴/曲线上注:它与机械上的“轴承”不同,它是元件(或组件)上 的一个点对齐到组件(或元件)上的一条直边或轴线 上,因此元件可沿轴线平移并任意方向旋转,具有1 个平移自由度和3个旋转自由度,总自由度为4拖拽当机构连接好以后,可以通过拖拽功能,使元件间产生 相对运动. 使用快照使剃拖动“(Dfdg )对话框中的•快照气Snapshots )迭项卡可显示不同配 置组件的己保存快範的列表。
Proe如何使用3D接触进行仿真?
Proe如何使用3D接触进行仿真?
在两个属于不同的主体的零件之间,可以定义“3D接触”。
接触是位于第一个主体中的单个曲面或者顶点,以及第二个主体的一个或多个曲面或顶点之间。
主要目的是为了测量压力角、接触面积和滑动速度等分析项目。
以下面的正方体落入方框中的仿真简单介绍3D接触的仿真。
方法:1.装配。
将方框以缺省的方式进行放置,添加正方体,按住Ctrl+Alt+鼠标右键将其拖到上图中的位置,使得正方体可以落在方框中,点击勾号完成。
2.点击【拖动元件】,将正方体拖到几个不同的位置并进行拍照。
我们可以从不同的高度落下观察仿真过程。
3.点击【应用程序】-【机构】,点击右侧的3D接触,选择下图带有网格的平面作为接触参照1,激活接触参照2,按住Ctrl键选择正方体的8个顶点,如下图所示。
采用同样的方法继续创建3D接触,分别是正方体的8个顶点和方框的余下的四个面的接触。
4.点击【机构分析】,类型选择动态,点击【外部载荷】,勾选启用重力,点击运行,我们就可以看见整个仿真过程。
我们可以在定义3D接触时,点击【接触】,通过设置材料的属性来获得不同的碰撞结果。
结果如下。
PROE运动仿真分析
第1章运动仿真本章重点应力分析的一般步骤边界条件的创建查看分析结果报告的生成和分析本章典型效果图1.1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。
PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。
并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。
也可创建轨迹曲线和运动包络,用物理方法描述运动。
使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。
可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。
如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。
1.2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
Creo运动仿真实例 PPT
Creo运动仿真实例
39
17
Creo运动仿真实例
18
Creo运动仿真实例
19
Creo运动仿真实例
20
Creo运动仿真实例
21
Creo运动仿真实例
22
Creo运动仿真实例
23
Creo运动仿真实例
24
Creo运动仿真实例
25
Creo运动仿真实例
26
Creo运动仿真实例
27
Creo运动仿真实例
28
Creo运动仿真实例
3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。
八、绘制曲线
轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”—
—确定
Creo运动仿真实例
37
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
Creo运动仿真实例
38
Bye Bye
1、刚性:采用普 通装配的方式进行 约束;(自动)
2、焊接:采用坐 标系进行约束; (缺省)
Creo运动仿真实例
9
Creo运动仿真实例
10
Creo运动仿真实例
11
Creo运动仿真实例
12
Creo运动仿真实例
13
Creo运动仿真实例
14
Creo运动仿真实例
15
Creo运动仿真实例
16
Creo运动仿真实例
Creo运动仿真实例
1
Creo运动仿真实例
2
Creo运动仿真实例
3
Creo运动仿真实例
4
(装配模块)
(机构运动 仿真模块)
Creo运动仿真实例
Creo-2.0动态机构仿真操作手册
Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。
本标准适用于公司产品结构设计选用。
2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。
design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
图1-1 由装配环境进入机构环境图精选图1-2 机构模块下的主界面图图1-3 机构菜单图1-4 模型树菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。
凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。
3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。
齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。
伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。
执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。
Creo 动态机构仿真操作手册
Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。
本标准适用于公司产品结构设计选用。
2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。
design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
图1-1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1-3 机构菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:设置。
凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。
3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。
齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。
伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。
执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。
弹簧:打开“弹簧” 对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。
creo机构运动仿真
连接可绕3轴进行旋转和平移运动.它没有任何方向的约束,总自由度 为6个.若要定义6DOF连接,我们需要选取零件和组件上的坐标系.
7
© 2006 PTC
拖拽
点拖动
主体拖动
拖拽 当机构连接好以后,可以通过拖拽功能,使元件间产生 相对运动.
8
© 2006 PTC
拖拽
9
© 2006 PTC
拖拽
动态图元 关于力/扭矩 力/扭矩定义
43
© 2006 PTC
动态图元
44
© 2006 PTC
机构分析与测量 机构分析
分析 回放分析 测量
45
© 2006 PTC
机构分析
46
© 2006 PTC
机构分析
47
© 2006 PTC
机构分析
48
© 2006 PTC
机构分析
关于力平衡分析
力平衡分析可求出要是机构在特定形态中保持固定不动所需的力.
定义齿轮 副属性
35
© 2006 PTC
齿轮连接范例
Large_gear.prt
Small_gear.prt
机构仿真
Gear_base.prt
操作演示
36
© 2006 PTC
动态图元
动态图元:包括伺服电机、执行电机、弹簧、重力、阻尼、力\扭矩、
定义伺服电机
定义重力 定义执行电机 定义弹簧 定义阻尼器 定义力/扭矩
27
7定义轮廓
选择速度 输入速度值
© 2006 PTC
凸轮连接的范例 8点击工具按扭
9定义分析
输入终止时间
运动
28
© 2006 PTC
Creo 2.0动态机构仿真操作手册
Creo2。
0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。
本标准适用于公司产品结构设计选用。
2 Creo2。
0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Creo Parametric 2。
0中“机构”模块是专门用来进行运动仿真和动态分析的模块。
design(机械设计) 和Mechanism dynamics(机械动态)两个方面的分析功能。
在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1—1所示。
系统进入机构模块环境,呈现图1—2所示的机构模块主界面:菜单栏增加如图所示的“机构"下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标.下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作.也可以直接点击快捷工具栏图标进行操作.图1—1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1—3 机构菜单图1-4 模型树菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置"对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。
凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。
3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。
齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。
伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。
执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。
利用Creo Parametric的机构分析对装配中的碰撞关系进行精确求解
利用Creo Parametric的机构分析对装配中的碰撞关系进行
精确求解
曾显顺
【期刊名称】《武汉工程职业技术学院学报》
【年(卷),期】2016(028)003
【摘要】利用Creo Parametric软件的机构功能,通过"碰撞检测设置"选项,对元件运动过程中发生的碰撞作出警告提示.建立机构分析,设置合理的运动参数,并对运动进行动画回放,找到元件碰撞接触时的准确位置.
【总页数】3页(P28-30)
【作者】曾显顺
【作者单位】武汉工程职业技术学院湖北武汉:430080
【正文语种】中文
【中图分类】TP391.72
【相关文献】
1.Creo中装配约束关系的逻辑分析 [J], 郭艳艳
2.SolidWorks中零件的精确建模及装配配合关系的实现 [J], 陈锦昌;詹伟杰;陈绚
3.测井约束反演中利用声波测井进行精确时深转换 [J], 厉波
4.虚拟装配中基于精确模型的碰撞检测算法 [J], 侯伟伟;宁汝新;刘检华
5.非线性方程组解集边界求解方法及其在并联机构分析中的应用 [J], 叶佩青;李铁民;郑浩峻
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动
今天我们来讲一下接触碰撞运动的仿真(这个恐怕是坛子里对凸轮连接最详细的教程)
之前很多人pm还有在qq群问我说做模具顶出件运动怎么做,
我直接回答用凸轮连接对设置连接,启用升离,再启用重力就可以了,这样还是有很多人不太明白,其这个东西听着很简单,里面还有很多的窍门和方法
再加上一些经验,只要你看过了本教程,再加上平时多联系,相信接触碰撞这里,一般的问题都可以解决了,我们来看一下,以前的2001版本以前方针分
析里面比较简单,简单的方针都可以做到,但是到了野火版本以后,功能提升了好多,在野火中有三种特殊的连接,可以设置特殊连接后进行各种分析,
这三种连接分别为凸轮副连接,槽连接,齿轮运动副连接,今天讲的是接触碰撞的仿真,主要用到的是凸轮的链接,所以只讲凸轮,齿轮和槽连接以后再
讲。
顶针顶出件运动仿真,其实就是在顶针头部和接触的件之间建立一个凸轮连接,有人会问,顶针和件是两个平面与平面相碰,怎么建立凸轮,在凸轮连接
时,里面有一些技巧,尤其是建立曲面和选择曲面时,技巧性比较强,相信很多高手有些时候都那凸轮连接因没有选择好曲面或是没有建立好曲面,导致
仿真多次失败。
我们先看一下凸轮的链接设置
1 “凸轮1”选项卡:定义第一个凸轮
(1)“曲面/曲线”:单击箭头选取曲线或曲面定义凸轮工作面,在选取曲面时若钩选自动
选取复选框则系统自动选取与所选曲面相邻的任何曲面,凸轮与另一凸轮相互作用的
一侧由凸轮的法线方向指示。
如果选取开放的曲线或曲面,会出现一个洋红色的箭头,
从相互作用的侧开始延伸,指示凸轮的法向。
选取的曲线或边是直的,“机械设计模块”会提示选取同一主体上的点、顶点、平面实
体表面或基准平面以定义凸轮的工作面。
所选的点不能在所选的线上。
工作面中会出现
一个洋红色箭头,指凸轮法向。
3“属性选项卡”
(1)升离:启用升离允许凸轮从动机构连接在拖动操作或分析运行期间分离
e在0-1之间
(2)摩擦:Us静摩擦系数
Uk 动摩擦系数
静摩擦系数应大于动摩擦系数
举例:1.建立连个立方体和一个平板
2.建立一个组件,平板默认装配,立方体A平面约束,front面和平板的front面,A的下表面和板的上表面,再装配C,C的front面和平板的front面设置平面约束,然后用手鼠标拖动C,让C的
下表面大体能够贴在平板的上表面即可,让A和C有点距离。
3.在进入机构仿真之前,我现在对A和C进行重新的加入几何,也就是曲面。
3-1. 大家看到立方体A没有什么曲面,其实曲面看不到我们零件现实按钮设置隐藏线或线框,
就能看到里面有一个粉红色的圆柱面,这个就是将
来要选取的凸轮的连接面。
如果不影响仿真效果,尽量吧曲面建立成圆形的,不出错。
3-2. 大家看到立方体C 里面有两个曲面,实际上一个曲面也能够完成,但是我尽量避免仿真时出错,麻烦点就建立两个曲面,那个圆形的曲面要
和立方体A的曲面进行凸轮的连接,下面那个类似于椭圆的曲面要和平板相连接,平板是平的,这个椭圆的下面也是平的,这样连接起来,立方体C才不至
于被A 撞到之后翻到。
4. 进入仿真机构,设置电动机,电动机设置为平面连接的A的向C运动的方向,选择速度,A 的值为10;
设置凸轮连接1,在凸轮1中,点选“自动选取”,选取A的圆柱面,点确定,选取凸轮2,点选“自动选取”选取C的圆柱面,点确定,点选属性
,点选启用升离,升离系数为0.8,静摩擦系数为0.02,动摩擦系数为0.001,(大家可以试着把摩擦
力增大,谈后在取消摩擦力,看看有什么效果,很好玩的,哈哈)点确定。
5设置凸轮连接2,在凸轮1中,点选“自动选取”,选取C的椭圆柱面,点确定,选取凸轮2,点选“自动选取”选取平面的外表面,点确定,点选
属性,点选启用升离,升离系数为0.5。
ok
6 6-1建立一个快照,存为snapshot1。
6-2设置初始条件,选取snapshot1。
6-3设置分析,把分析的初始条件设置为Initcond1,分析的类型选择动态,时间设置为13,
6-4电动机默认从开始到结束。
6-5点选外部载荷,启用重力,启用摩擦力。
6-6点击运行,就可以看到立方体A运动,运动过程中撞到C,推着C一起向右运动,但是C 有摩擦力,所以A的速度变慢,推着推着,C离
开了平板,掉了下去,这个就是仿真的整个过程。
6-7点击回放,播放当前结果,吧结果保存起来以便以后用到,或者生成个视频文件,直接传到网上去玩玩。
当然,这个碰撞运动比较简单,模具顶出件仿真也就是和这个类似,主要是模具的东西看着比较多,设置连接设置连个连接就可以了,就这么简单,简单
的东西掌握好了,复杂的也就不难了,万丈高楼平地起,很多复杂的东西都是有简单的东西构成,如果各位兄弟看了这个教程,能够对你有些帮助或者一
些启迪,对凸轮连接或者说是对仿真有帮助的话,就回个贴吧,踩个脚印吧。
不设置隐藏了,设置隐藏的东西,别人回答贴都不真实。