带电粒子在电场中的偏转(含答案解析)

合集下载

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。

第10讲-【答案解析】带电粒子在电场中的运动

第10讲-【答案解析】带电粒子在电场中的运动

例7
答案: ACD
解答:
A
.由
qU1
=
1 2
mv02
可知,其他条件不变时,当 U1
变大,则电子进入偏转电场的速度变大,故
A
正确
B
.设偏转极板的长度为
L
,由
qU1
=
1 2
mv02
,t
=
L v0
,得 t
=
L
m 2eU1 ,其他条件不变,当U1 变
大时,运动时间变短,故 B 错误
C
.由
F
=
U2q d
可知, U 2
移相等,根据 y = 1 at 2 ,可知运动时间相等,所以在 b 飞离电场的同时, a 刚好打在负极板上.故 A 正 2
确.
B
、b
、 c 竖直方向上的位移不等,
yc
<
yb
.根据
y
=
1 2
at 2
可知, tc
<
tb
.则知 c
先飞离电
场.故 B 错误. C 、在垂直于电场方向即水平方向,三个粒子做匀速直线运动,则有: v = x .因 t
类比重力场,将电场力与重力的合力视为等效重力 mg′ ,大小为
7
_带电粒子在电场中的运动_参考答案
= mg′
= (qE )2 + (mg )2
2 3mg

3
tan=θ q= E 3 ,得θ = 30° , mg 3
等效重力的方向与斜面垂直指向右下方,小球在斜面上做匀速运动。因要使小球能安全通过圆轨道,在圆轨

m ,与比荷有关,故 C 错误。 q
例9
答案: AC

带电粒子在电场中的偏转大题

带电粒子在电场中的偏转大题

1、一带电粒子以一定的初速度垂直进入匀强电场,在电场中做类平抛运动。

下列说法正确的是:A. 粒子的电势能一直减小B. 粒子的动能一直增大C. 粒子的速度方向与电场力方向的夹角一直减小D. 粒子的加速度方向与电场力方向相反(答案:A)2、一个带正电的粒子,在电场中仅受电场力作用,从A点运动到B点。

在此过程中,粒子的速度大小随时间变化的图象可能是:A. 速度大小不变B. 速度大小均匀增大C. 速度大小先减小后增大D. 速度大小先增大后减小(答案:C,若粒子先做减速运动,电场力方向与初速度方向相反,后做加速运动,则可能出现此情况)3、带电粒子以相同的速度分别垂直进入水平方向的匀强电场和匀强磁场中,粒子将:A. 在电场和磁场中都做匀速圆周运动B. 在电场中做类平抛运动,在磁场中做匀速圆周运动C. 在电场和磁场中都做匀变速曲线运动D. 在电场中做匀变速直线运动,在磁场中做匀速直线运动(答案:B)4、一带电粒子在电场中运动,只受电场力作用,下列说法正确的是:A. 粒子的运动轨迹一定与电场线重合B. 粒子的速度方向一定与电场力方向相同C. 粒子的速度大小一定变化D. 粒子的动能可能不变(答案:D,如粒子在匀强电场中做匀速圆周运动,动能不变)5、一初速度为零的带电粒子,经过电压为U的加速电场后,垂直进入电势差为U的匀强偏转电场。

已知加速电场和偏转电场的宽度相同,下列说法正确的是:A. 偏转距离随着加速电压U的增大而增大B. 偏转距离与加速电压U无关C. 粒子从偏转电场射出时的速度随着加速电压U的增大而增大D. 粒子从偏转电场射出时的速度方向与加速电压U无关(答案:B)6、带电粒子在电场中偏转时,下列说法正确的是:A. 电场力对粒子一定做正功B. 电场力对粒子可能不做功C. 粒子的电势能可能增加D. 粒子的动能一定增加(答案:B,若粒子初速度与电场力方向垂直且向电场力反方向偏转,则电场力先做负功,电势能增加,动能减小)7、一带电粒子在匀强电场中运动,电场力与运动方向成某一角度,粒子只受电场力作用。

高考物理带电粒子在电场中的偏转运动解题方法

高考物理带电粒子在电场中的偏转运动解题方法
k-12mv20③ 设粒子第一次到达 G 时所用的时间为 t,粒子在水平方向的位移大小为 l,则 有 h=21at2④,l=v0t⑤
联立①②③④⑤式解得 Ek=12mv20+2dφqh⑥,l=v0 mqdφh。⑦ (2)若粒子穿过 G 一次就从电场的右侧飞出,则金属板的长度最短。由对称性
多维训练
3.(2019·全国Ⅱ卷,24)如图,两金属板P、Q水平放置,间距为d。两金属板正中间 有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为φ(φ>0)。 质量为m、电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸 面水平射入电场,重力忽略不计。
(1)电场强度的大小; (2)B 运动到 P 点时的动能。
答案
3mg (1) q
(2)2m(v20+g2t2)
小球做什么运动? 一般怎么处理? 还有其它方法吗?
转到解析
课堂互动
解析 (1)设电场强度的大小为 E,小球 B 运动的加速度为 a。根据牛顿第二定律、
运动学公式和题给条件,有 mg+qE=ma①
A.动能增加21mv2
一般用什么方法? B.机械能增加 2mv2
C.重力势能增加23mv2 D.电势能增加 2mv2 解析 动能变化量 ΔEk=12m(2v)2-21mv2=23mv2,A 错误;重力和电场力做功,机
械能增加量等于电势能减少量,带电小球在水平方向向左做匀加速直线运动,由运动 学公式得(2v)2-0=2qmEx,则电势能减少量等于电场力做的功 ΔEp 减=W 电=qEx=2mv2, B 正确,D 错误;在竖直方向做匀减速运动,到 N 点时竖直方向的速度为零,由-v2 =-2gh,得重力势能增加量 ΔEp 重=mgh=12mv2,C 错误。答案 B

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。

(完整版)带电粒子在电场中的偏转(含答案)

(完整版)带电粒子在电场中的偏转(含答案)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B错误;在相同的运动时间内,液滴c水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D正确;因为重力做功相同,而电场力对液滴c做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy所在平面与光滑水平面重合,电场方向与x轴正向平行,电场的半径为R= 2 m,圆心O与坐标系的原点重合,场强E=2 N/C.一带电荷量为q=-1×10-5 C、质量m=1×10-5 kg的粒子,由坐标原点O处以速度v0=1 m/s沿y轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间;(2)粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s(2)(-1 m,1 m)(3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0t x 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域内有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说法正确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为 mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2DR ,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12m v 2D -12m v 20 解得v 0= 103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR310、在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定的初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.由此可见()A.电场力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等答案AD解析设AC与竖直方向的夹角为θ,带电小球从A到C,电场力做负功,小球带负电,由动能定理,mg·AC·cos θ-qE·BC·cos θ=0,解得电场力为qE=3mg,选项A正确,B 错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。

高考物理《带电粒子在电场中的加速和偏转》真题练习含答案

高考物理《带电粒子在电场中的加速和偏转》真题练习含答案

高考物理《带电粒子在电场中的加速和偏转》真题练习含答案1.下列粒子(不计重力)从静止状态开始经过电压为U 的电场加速后,速度最小的是( )A .氚核(31 H )B .氘核(21 H )C .α粒子(42 He )D .质子(11 H ) 答案:A解析:设粒子的质量为m ,电荷量为q ,从静止状态经过电压为U 的电场加速后获得的速度大小为v ,根据动能定理有qU =12mv 2,解得v =2qUm,由上式可知粒子的比荷越小,v 越小,四个选项中氚核的比荷最小,所以氚核的速度小,B 、C 、D 错误,A 正确.2.[2024·江西省临川一中期中考试](多选)如图为某直线加速器简化示意图,设n 个金属圆筒沿轴线排成一串,各筒相间地连到正负极周期性变化的电源上,带电粒子以一定的初速度沿轴线射入后可实现加速,则( )A .带电粒子在每个圆筒内都做匀速运动B .带电粒子只在圆筒间的缝隙处做加速运动C .直线加速器电源可以用恒定电流D .从左向右各筒长度之比为1∶3∶5∶7… 答案:AB解析:由于同一个金属筒所在处的电势相同,内部无场强,故粒子在筒内必做匀速直线运动;而前后两筒间有电势差,故粒子每次穿越缝隙时将被电场加速,A 、B 正确;粒子要持续加速,电场力要对其做正功,所以电源正负极要改变,C 错误;设粒子进入第n 个圆筒中的速度为v n .则第n 个圆筒的长度为L =v n T 2 ,根据动能定理得(n -1)qU =12 mv 2n -12 mv 20 ,联立解得L =T 2v 20 +2(n -1)qUm,可知从左向右各筒长度之比不等于1∶3∶5∶7…,D 错误.3.[2024·湖南岳阳市三模]示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′和YY′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案:A解析:U XX′和U YY′均为正值,电场强度方向由X指向X′,Y指向Y′,电子带负电,电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.4.[2024·广东省广州市一中期中考试](多选)如图,质量相同的带电粒子P、Q以相同的速度沿垂直于电场方向射入匀强电场中,P从平行板间正中央射入,Q从下极板边缘处射入,它们都打到上极板同一点,不计粒子重力.则()A.它们运动的时间不同B.Q所带的电荷量比P大C.电场力对它们做的功一样大D.Q的动能增量大答案:BD解析:两粒子在电场中均做类平抛运动,运动的时间为t =xv 0,由于x 、v 0相等,可知它们运动的时间相同,A 错误;根据y =12 at 2可得a =2yt 2 ,知Q 的加速度是P 的两倍;再根据牛顿第二定律有qE =ma ,可知Q 的电荷量是P 的两倍,B 正确;由W =qEd 知,静电力对两粒子均做正功,由前分析知Q 的电荷量是P 的两倍,Q 沿电场方向上的位移y 是P 的两倍,则静电力对Q 做的功是P 的4倍.根据动能定理,静电力做的功等于动能变化量,可知Q 的动能增量大,C 错误,D 正确.5.如图所示,含有大量11 H 、21 H 、42 He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.不计粒子重力和阻力,下列说法正确的是( )A .荧光屏上出现两个亮点B .三种粒子同时到达荧光屏C .三种粒子打到荧光屏上动能相同D .三种粒子打到荧光屏上速度方向相同 答案:D解析:加速过程使粒子获得速度v 0,由动能定理得qU 1=12mv 20 ,解得v 0= 2qU 1m.偏转过程经历的时间t =l v 0 ,偏转过程加速度a =qU 2md ,所以偏转的距离y =12 at 2=U 2l 24U 1d ,可见经同一电场加速的带电粒子在同一偏转电场中的偏移量,与粒子q 、m 无关,只取决于加速电场和偏转电场.偏转角度θ满足tan θ=U 2l2U 1d ,三种粒子出射速度方向相同,也与g 、m 无关,D 正确;三种粒子都带正电,所以出现一个亮点,A 错误;根据y =12 at 2,时间跟q 、m 有关,B 错误;根据动能定理和W =qU ,可知动能跟q 有关,C 错误.6.如图所示,在竖直向上的匀强电场中,A 球位于B 球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断不正确的是( )A .如果A 球带电,则A 球一定带负电B .如果A 球带电,则A 球的电势能一定增加C .如果B 球带电,则B 球一定带正电D .如果B 球带电,则B 球的电势能一定增加 答案:B解析:两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,水平方向做匀速直线运动,则有x =v 0t ,可知两球下落时间相同;两小球下落高度不同,根据公式h =12at 2,A 球的加速度大于B 球加速度,故若A 球带电,必定带负电,受到向下的电场力作用,电场力做正功,电势能减小;若B 球带电,必定带正电,受到向上的电场力作用,电场力做负功,电势能增加.本题选择错误的,故选B .7.(多选)如图所示,两实线所围成的环形区域内有一径向电场,场强方向沿半径向外,电场强度大小可表示为E =ar ,r 为电场中某点到环心O 的距离,a 为常量.电荷量相同、质量不同的两粒子在半径r 不同的圆轨道运动.不考虑粒子间的相互作用及重力,则( )A .两个粒子均带负电B .质量大的粒子动量较小C .若将两个粒子交换轨道,两个粒子仍能做匀速圆周运动D .若去掉电场加上垂直纸面的匀强磁场,两个粒子一定同时做离心运动或向心运动 答案:AC解析:两个粒子做圆周运动,则所受电场力指向圆心,可知两粒子均带负电,A 正确;根据Eq =a r q =m v 2r ,可得mv 2=aq ,与轨道半径无关,则若将两个粒子交换轨道,两个粒子仍能做匀速圆周运动,C 正确;粒子的动量p =mv =2mE k =maq ,质量大的粒子动量较大,B 错误;若撤去电场加上垂直纸面的匀强磁场,若能做匀速圆周运动,则满足qvB =m v 2r ,qB =mv r =p r ,两粒子电荷量相等,则qB 相等;若qB >pr粒子做向心运动;当qB <p r 时粒子做离心运动,但是与pr 的关系不能确定,即两个粒子不一定能同时做离心运动或向心运动,D 错误.8.如图所示,xOy 为竖直平面内的一个直角坐标系,在y 1=0.5 m 的直线的上方有沿y轴正方向范围足够大的匀强电场,电场强度大小E =9.3×10-7 V /m ,在y 轴上y 2=1.0 m 处有一放射源S ,x 轴上有一个足够大的荧光屏,放射源S 在如图180°范围内,向x 轴发射初速度v 0=200 m /s 的电子,电子质量为9.3×10-31 kg ,电量为1.6×10-19 C ,整个装置放在真空中,不计重力作用.求:(1)从放射源S 发射的每个电子打到荧光屏上的动能;(2)水平向右射出的电子在离开电场时沿x 轴方向前进的距离; (3)从放射源S 发射的电子打到荧光屏上的范围.答案:(1)9.3×10-26 J (2)0.5 m (3)-0.75 m ≤x ≤0.75 m解析:(1)所有电子达到荧光屏上的动能相同,由动能定理得 eEL =E k -12mv 20 其中L =y 2-y 1得每个电子打到荧光屏上的动能:E k =9.3×10-26 J(2)平行x 轴方向的粒子在电场中运动的时间最长,沿x 轴方向运动距离最大,设电子在电场中加速运动时间为t ,沿场强方向加速,eE =may 2-y 1=12at 2在离开电场时沿x 轴方向前进的距离x 1=v 0t解得水平向右射出的电子在离开电场时沿x 轴方向前进的距离:x 1=0.5 m (3)平行x 轴方向发射的粒子射出电场时沿y 轴的速度大小为v y =at 射出电场后匀速运动,沿x 方向前进的距离为x 2,x 2y 1 =v 0v y解得Δx =x 1+x 2=0.75 m由对称性可知,水平向左射出的电子到达荧光屏时的坐标值:x′=-0.75 m故荧光屏接收到电子的范围:-0.75 m ≤x ≤0.75 m .9.[2024·福建省福州一中期中考试]如图建立竖直平面内坐标系,α射线管由平行金属板A 、B 和平行于金属板(场强的方向竖直向下)的细管C 组成.放置在第Ⅱ象限,细管C 离两板等距,细管C 开口在y 轴上.放射源P 在A 极板左端,可以沿特定方向发射某一速度的α粒子(带正电).若极板长为L ,间距为d ,当A 、B 板加上某一电压时,α粒子刚好能以速度v 0(已知)从细管C 水平射出,进入位于第Ⅰ象限的静电分析器并恰好做匀速圆周运动.静电分析器中电场的电场线为沿半径方向指向圆心O ,场强大小为E 0.已知α粒子电荷量为q ,质量为m ,重力不计.求:(1)α粒子在静电分析器中的运动半径r ; (2)A 、B 极板间所加的电压U.答案:(1)r =mv 20 E 0q (2)U =mv 20 d2qL 2解析:(1)α粒子在静电分析器中运动时满足 E 0q =m v 20r解得r =mv 20E 0q(2)粒子在两板间的逆过程为类平抛运动,则12 d =12 Uq 2dmt 2,L =v 0t解得A 、B 极板间所加的电压U =mv 20 d2qL 210.如图所示,水平虚线MN 和水平地面之间有水平向右的匀强电场,MN 到地面的距离为h =3 m ,光滑绝缘长木板PQ 直立在地面上,电场与木板表面垂直,一个质量为m =0.1kg ,带电量为q =+1×10-3 C 的物块贴在长木板右侧的A 点由静止释放,物块做初速度为零的加速直线运动,刚好落在地面上的C 点,已知A 点离地面的高度h 1=1.8 m ,C 点离木板的距离为L =2.4 m ,重力加速度g 取10 m /s 2,不计物块的大小,木板足够长,求:(1)匀强电场的电场强度E 的大小;(2)改变物块贴在木板右侧由静止释放的位置,使物块由静止释放后仍能落在C 点,则改变后的位置离地面的高度为多少.答案:(1)1.33×103 N /C (2)3.2 m解析:(1)物块在A 点由静止释放,做初速度为零的匀加速直线运动,设运动的时间为t 1则在水平方向L =12 at 21根据牛顿第二定律qE =ma 在竖直方向h 1=12 gt 21解得E =1.33×103 N /C(2)要使物块改变位置后由静止释放也能到达C 点,这个位置必须在电场外,设物块进电场后在电场中运动的时间为t 2,则L =12 at 22设物块刚进电场时的速度为v ,则h =vt 2+12 gt 22解得v =2 m /s设释放的位置离地面的高度为H ,则H =h +v 22g =3.2 m .。

高一物理电荷在电场中的偏转试题答案及解析

高一物理电荷在电场中的偏转试题答案及解析

高一物理电荷在电场中的偏转试题答案及解析1.(12分)两平行金属板A、B水平放置,两板间距cm,板长cm,一个质量为kg的带电微粒,以m/s的水平初速度从两板间正中央射入,如图所示,取m/s2。

(1)当两板间电压V时,微粒恰好不发生偏转,求微粒的电量和电性。

(2)要使微粒不打到金属板上,求两板间的电压的取值范围?【答案】(1) C ,微粒带负电(2)-600V<UAB<2600V【解析】(1)微粒恰好不偏转时有:(2分)解得 C (1分)微粒带负电(1分)(2)粒子能穿过电场需用时间(1分)设粒子偏转的最大加速度,则最大侧移量解得m/s2(2分)当粒子恰好打在下极板边缘时,两板间的电压为U1则,解得V(2分)当粒子恰好打在上极板边缘,两极板间的电压为解得V(1分)则微粒不能打到金属板上的电压范围为-600V<UAB<2600V(2分)【考点】考查了带电粒子在电场中的偏转2.如图,板间距为d、板长为4d的水平金属板A和B上下正对放置,并接在电源上.现有一质量为m、带电量+q的质点沿两板中心线以某一速度水平射入,当两板间电压U=U,且A接负时,该质点就沿两板中心线射出;A接正时,该质点就射到B板距左端为d的C处.取重力加速度为g,不计空气阻力.求(1)质点射入两板时的速度;(2)当A接负时,为使带电质点能够从两板间射出,两板所加恒定电压U的范围.【答案】(1)(2)【解析】:(1)当两板加上电压且A板为负时,有:…①A板为正时,设带电质点射入两极板时的速度为v,向下运动的加速度为a,经时间t射到C点,有:…②又水平方向有…③竖直方向有…④由①②③④得:…⑤(2)要使带电质点恰好能从两板射出,设它在竖直方向运动的加速度为a1、时间为t1,应有:…⑥…⑦由⑥⑦⑧得:…⑧若的方向向上,设两板所加恒定电压为,有:…⑨若的方向向下,设两板所加恒定电压为,有:…⑩⑧⑨⑩解得:,所以,所加恒定电压范围为:【考点】考查了带电粒子在电场中的偏转3.如图所示,静止的电子在加速电压为U1的电场作用下从O经P板的小孔(位于P板的中点)射出,又垂直进入平行金属板间的电场,在偏转电压为U2的电场作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该 ()A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的倍D.使U2变为原来的【答案】A【解析】电子先经过加速电场加速,后经偏转电场偏转,根据结论,分析要使U1加倍,想使电子的运动轨迹不发生变化时,两种电压如何变化。

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。

M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。

带电粒子在电场中运动题目及标准答案(分类归纳经典)

带电粒子在电场中运动题目及标准答案(分类归纳经典)

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。

带电粒子在电场运动规律经典例题及典型习题(附答案)

带电粒子在电场运动规律经典例题及典型习题(附答案)

带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。

2用功能观点分析:电场力对带电粒子动能的增量。

2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。

②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。

右极板电势随时间变化的规律如图所示。

电子原来静止在左极板小孔处。

(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。

……直到打在右极板上。

电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。

从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。

即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。

子在第一次向右运动过程中就有可能打在右极板上。

从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。

带电粒子在匀强电场中的偏转(解析版)

带电粒子在匀强电场中的偏转(解析版)

带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。

现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。

【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。

(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。

【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。

第8章 第4讲 带电粒子在电场中的偏转 2023年高考物理一轮复习(新高考新教材)

第8章 第4讲 带电粒子在电场中的偏转    2023年高考物理一轮复习(新高考新教材)

第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动 (1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿静电力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22md v 02③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 021.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷(带电荷量与质量的比值)之比是( )A .1∶2B .2∶1C .1∶8D .8∶1 答案 D解析 粒子在水平方向上做匀速直线运动,a 、b 两粒子的水平位移大小之比为1∶2,根据x =v 0t ,知时间之比为1∶2.粒子在竖直方向上做匀加速直线运动,根据y =12at 2,y 之比为2∶1,则a 、b 的加速度之比为8∶1.根据牛顿第二定律知,加速度a =qEm ,加速度大小之比等于比荷之比,则两电荷的比荷之比为8∶1,故D 正确,A 、B 、C 错误.例2 如图所示,一电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,方向竖直向上,P 、Q 两点间的电势差为U (U >0),不计粒子重力,P 点的电势为零.则下列说法正确的是( )A .粒子带负电B .带电粒子在Q 点的电势能为qUC .P 、Q 两点间的竖直距离为d2D .此匀强电场的电场强度为23U3d答案 D解析 由题图可知,带电粒子的轨迹向上弯曲,则粒子受到的静电力方向竖直向上,与电场方向相同,所以该粒子带正电,故A 错误;粒子从P 点运动到Q 点,静电力做正功,为W =qU ,则粒子的电势能减少了qU ,P 点的电势为零,可知带电粒子在Q 点的电势能为-qU ,故B 错误;Q 点速度的反向延长线过水平位移的中点,则y =d 2tan 30°=32d ,电场强度大小为E =U y =23U 3d ,故D 正确,C 错误.考向2 带电粒子在组合场中的运动例3 如图所示,虚线左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L ,电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏.现将一电子(电荷量e ,质量为m )无初速度放入电场E 1中的A 点,最后打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角的正切值; (3)电子打到屏上的点B 到O 点的距离. 答案 (1)3mLEe(2)2 (3)3L 解析 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1, 由牛顿第二定律得:a 1=E 1e m =EemL 2=12a 1t 12 电子进入电场E 2时的速度为:v 1=a 1t 1从进入电场E 2到打到屏上,电子水平方向做匀速直线运动,时间为:t 2=2Lv 1电子从释放到打到屏上所用的时间为: t =t 1+t 2 解得:t =3mL Ee(2)设粒子射出电场E 2时平行电场方向的速度为v y ,由牛顿第二定律得:电子在电场E 2中的加速度为:a 2=E 2e m =2Eemv y =a 2t 3 t 3=Lv 1电子刚射出电场E 2时的速度方向与AO 连线夹角的正切值为tan θ=v yv 1解得: tan θ=2(3)带电粒子在电场中的运动轨迹如图所示:设电子打到屏上的点B 到O 点的距离为x ,由几何关系得:tan θ=x32L ,联立得:x =3L .考点二 带电粒子在重力场和电场复合场中的偏转例4 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).例5 (多选)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.重力加速度为g .由此可见( )A .带电小球所受静电力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等 答案 AD解析 带电小球从A 到C ,设在进入电场前后两个运动过程水平分位移分别为x 1和x 2,竖直分位移分别为y 1和y 2,经历的时间分别为t 1和t 2,在电场中的加速度为a ,从A 到B 过程小球做平抛运动,则有x 1=v 0t 1,从B 到C 过程,有x 2=v 0t 2,由题意有x 1=2x 2,则得t 1=2t 2,即小球从A到B是从B到C运动时间的2倍,y1=12gt12,将小球在电场中的运动看成沿相反方向的类平抛运动,则有y2=12at22,根据几何知识有y1∶y2=x1∶x2,解得a=2g,根据牛顿第二定律得F-mg=ma=2mg,解得F=3mg,C错误,A正确;由于在电场中轨迹向上弯曲,加速度方向必定向上,合力向上,说明静电力方向向上,所以小球带负电,B错误;根据速度变化量Δv=at,则得AB过程速度变化量大小为Δv1=gt1=2gt2,BC过程速度变化量大小为Δv2=at2=2gt2,所以小球从A到B与从B到C的速度变化量大小相等,D正确.考点三带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等.3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件.4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例6图甲是一对长度为L的平行金属板,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直.在t=0时刻,一带电粒子沿板间的中线OO′垂直电场方向射入电场,2t0时刻粒子刚好沿下极板右边缘射出电场.不计粒子重力.则()A.粒子带负电B.粒子在平行板间一直做曲线运动C.粒子射入电场时的速度大小为L2t0D.若粒子射入电场时的速度减为一半,射出电场时的速度垂直于电场方向答案 C解析 粒子向下偏转,可知粒子带正电,选项A 错误;粒子在平行板间在0~t 0时间内做曲线运动;在t 0~2t 0时间内不受任何力,则做直线运动,选项B 错误;粒子在水平方向一直做匀速运动,可知射入电场时的速度大小为v 0=L2t 0,选项C 正确;若粒子射入电场时的速度减为一半,由于粒子在电场中受向下的静电力,有向下的加速度,射出电场时有沿电场方向的速度,则射出电场时的速度不可能垂直于电场方向,选项D 错误.例7 在图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m ,电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能从OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子从OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k ·T2(k =0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d 4, 解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( )A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小 答案 BC解析 对小球受力分析,小球受重力、静电力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A 错误,B 正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,选项C 正确,D 错误.2.(多选)如图,竖直放置的平行金属板带等量异种电荷,一不计重力的带电粒子从两板中间以某一初速度平行于两板射入,打在负极板的中点,以下判断正确的是( )A .该带电粒子带正电B .该带电粒子带负电C .若粒子初速度增大到原来的2倍,则恰能从负极板边缘射出D .若粒子初动能增大到原来的2倍,则恰能从负极板边缘射出 答案 AC解析 粒子向右偏转,故粒子受向右的静电力,所以粒子带正电,选项A 正确,B 错误;若粒子初速度增大到原来的2倍,由于水平方向的加速度不变,可知粒子运动时间不变,由x =v t 可知竖直位移变为2倍,则恰能从负极板边缘射出,选项C 正确,D 错误.3.如图所示,平行板电容器上极板带正电,从上极板的端点A 点释放一个带电荷量为+Q (Q >0)的粒子,粒子重力不计,以水平初速度v 0向右射出,当它的水平速度与竖直速度的大小之比为1∶2时,恰好从下端点B 射出,则d 与L 之比为( )A .1∶2B .2∶1C .1∶1D .1∶3 答案 C解析 设粒子从A 到B 的时间为t ,粒子在B 点时,竖直方向的分速度为v y ,由类平抛运动的规律可得L =v 0t ,d =v y2t ,又v 0∶v y =1∶2,可得d ∶L =1∶1,选项C 正确.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.(多选)质子和α粒子(氦核)分别从静止开始经同一加速电压U 1加速后,垂直于电场方向进入同一偏转电场,偏转电场电压为U 2.两种粒子都能从偏转电场射出并打在荧光屏MN 上,粒子进入偏转电场时速度方向正对荧光屏中心O 点.下列关于两种粒子运动的说法正确的是( )A .两种粒子会打在屏MN 上的同一点B .两种粒子不会打在屏MN 上的同一点,质子离O 点较远C .两种粒子离开偏转电场时具有相同的动能D .两种粒子离开偏转电场时具有不同的动能,α粒子的动能较大 答案 AD解析 两种粒子在加速电场中做加速运动,由动能定理得qU 1=12m v 02-0,偏转电场中,设板长为L ,平行于极板方向:L =v 0t ,垂直于极板方向:a =qE m =qU 2md ,y =12at 2,离开偏转电场时速度的偏转角为α,有tan α=v y v 0=at v 0,联立以上各式得y =U 2L 24dU 1,tan α=U 2L2dU 1,偏移量y和速度偏转角α都与粒子的质量m 、电荷量q 无关,所以偏移量y 相同,速度方向相同,则两种粒子打在屏MN 上同一点,故A 正确,B 错误;对两个粒子先加速后偏转的全过程,根据动能定理得qU 1+qU 2′=E k -0,因α粒子的电荷量q 较大,故离开偏转电场时α粒子的动能较大,C 错误,D 正确.6.(多选)如图所示,在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A 、B (均可视为质点)处在同一水平面上.现将两球以相同的水平速度v0向右抛出,最后落到水平地面上,运动轨迹如图所示,两球之间的静电力和空气阻力均不考虑,则()A.A球带正电,B球带负电B.A球比B球先落地C.在下落过程中,A球的电势能减少,B球的电势能增加D.两球从抛出到各自落地的过程中,A球的动能变化量比B球的小答案AD解析两球在水平方向都做匀速直线运动,由x=v0t知,v0相同,则A运动的时间比B的长,竖直方向上,由h=12at2可知,竖直位移相等,运动时间长的加速度小,则A所受的合力比B 的小,所以A所受的静电力向上,带正电,B所受的静电力向下,带负电,故A正确.A运动的时间比B的长,则B球比A球先落地,故B错误.A所受的静电力向上,静电力对A 球做负功,A球的电势能增加.B所受的静电力向下,静电力对B球做正功,B球的电势能减少,故C错误.A所受的合力比B的小,A、B沿合力方向位移相同,则A所受的合力做功较少,由动能定理知两球从抛出到各自落地过程中A球的动能变化量小,故D正确.7.如图,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab 和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于()A.s22qEmh B.s2qEmh C.s42qEmh D.s4qEmh答案 B解析两粒子轨迹恰好相切,根据对称性,两粒子的轨迹相切点一定在矩形区域的中心,并且两粒子均做类平抛运动,根据运动的独立性和等时性可得,在水平方向上:s2=v 0t ,在竖直方向上:h 2=12at 2=12Eq m t 2,两式联立解得:v 0=s2qEmh,故B 正确,A 、C 、D 错误. 8.(2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受静电力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动. 水平方向做匀速直线运动,有x =v 0t竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2yx=tan 45° 联立解得t =2m v 0qE ,故A 错误.v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =xcos 45°=22m v 02qE,故C 正确.9.如图所示,一种β射线管由平行金属板A 、B 和平行于金属板的细管C 组成.放射源O 在A 极板左端,可以向各个方向发射不同速度、质量为m 的β粒子(电子).若极板长为L ,间距为d ,当A 、B 板加上电压U 时,只有某一速度的β粒子能从细管C 水平射出,细管C 离两板等距.已知元电荷为e ,则从放射源O 发射出的β粒子的这一速度为( )A.2eUmB.L d eU mC.1deU (d 2+L 2)mD.L deU 2m答案 C解析 从细管C 水平射出的β粒子反方向的运动为类平抛运动,水平方向有L =v 0t ,竖直方向有d 2=12at 2,且a =qU md .从A 到C 的过程有-12qU =12m v 02-12m v 2,q =e ,以上各式联立解得v=1deU (d 2+L 2)m,选项C 正确. 10.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行金属板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示:则两次偏转的加速度大小相等,根据牛顿第二定律得qE -mg =ma ,mg =ma ,解得E =2mg q ,由U =Ed 得两极板间电压为U =2mgdq ,故A 错误,B 正确;质点在电场中向上偏转的距离y=12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间场强不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误.11.如图所示,圆心为O 、半径为R 的圆形区域内有一个匀强电场,场强大小为E 、方向与圆所在的面平行.PQ 为圆的一条直径,与场强方向的夹角θ=60°.质量为m 、电荷量为+q 的粒子从P 点以某一初速度沿垂直于场强的方向射入电场,不计粒子重力.(1)若粒子到达Q 点,求粒子在P 点的初速度大小v 0.(2)若粒子在P 点的初速度大小在0~v 0之间连续可调,则粒子到达圆弧上哪个点电势能变化最大?变化了多少? 答案 (1)3qER 2m (2)圆弧上最低点 -3qER2解析 (1)粒子做类平抛运动,设粒子从P 点运动到Q 点的时间为t ,加速度为a , 则水平方向有:2R sin θ=v 0t 竖直方向有:2R cos θ=12at 2由牛顿第二定律得qE =ma 联立解得v 0=3qER2m(2)粒子到达圆弧上最低点电势能变化最大 ΔE p =-qEd d =R +R cos θ解得ΔE p =-3qER2,负号表示电势能减少.12.如图所示,板长L =30 cm 的两金属板A 、B 平行正对,板间距离d =2 cm ,A 、B 间接u =91sin (100πt ) V 交流电源.持续均匀的电子束以速度v 0=3×107 m/s 沿着A 板射入电场,若电子与金属板接触会被吸收,但对板间电压的影响可忽略.已知电子质量m =0.91×10-30kg ,电子电荷量q =1.6×10-19C ,不计重力.求:(1)交流电源的周期和电子穿过板间的时间; (2)电子从B 板边缘飞出电场时的板间电压; (3)求飞出电场的电子占飞入电场的电子的百分比. 答案 (1)0.02 s 10-8 s (2)45.5 V (3)16.7%解析 (1)交流电源电压的变化周期T =2πω=2π100π=0.02 s电子沿极板方向的分速度不变,穿过板间的时间t =L v 0=0.303×107s =10-8 s(2)穿过板间的时间远远小于交流电源电压的变化周期,可以认为电子穿过板间时两板之间为匀强电场,电子从B 板边缘飞出电场, 有E =U dF =qE a =F m d =12at 2 联立解得U =45.5 V(3)电子有半个周期向上偏转,被金属板A 吸收,另外半个周期内部分电子能飞出电场 由于45.591=12,arcsin 12=π6所以这半个周期内有13时间内有电子飞出电场,在一个完整的周期内,有16的电子飞出电场,占比16.7%.13.如图甲所示,两水平平行金属板A 、B 间距为d ,在两板右侧装有荧光屏MN (绝缘),O 为其中点.在两板A 、B 上加上如图乙所示的电压,电压最大值为U 0.现有一束带正电的离子(比荷为k ),从两板左侧中点以水平初速度v 0连续不断地射入两板间的电场中,所有离子均能打到荧光屏MN 上,已知金属板长L =2v 0t 0,忽略离子间相互作用和荧光屏MN 的影响,则在荧光屏上出现亮线的长度为( )A .kdU 0t 02B.kU 0t 022dC.kU 0t 02dD.3kU 0t 022d答案 C解析 离子在两板间运动,沿水平方向做匀速运动,运动时间t =Lv 0=2t 0,所有离子运动时间都等于电场变化的周期,作出各个时刻射入电场的离子在板间沿静电力方向上运动的v y -t 图像,如图所示,由图像可知,离子离开两板间时沿电场方向的速度v y 均相同,v y -t 图像中图线与t 轴围成的面积表示沿电场方向的位移,由图像可知0时刻进入电场的离子沿电场方向的位移最大,t 0时刻进入电场的离子沿电场方向的位移最小.电压为U 0时,离子在电场中运动的加速度a =qU 0md =kU 0d ,离子离开两板间时沿电场方向的速度为v y =at 0=kU 0t 0d ,由图像面积可得,离子沿电场方向运动的最大位移y max =12(t 0+2t 0)at 0=3kU 0t 022d ,离子沿电场方向运动的最小位移为y min =12t 0·at 0=kU 0t 022d ,屏上亮线的长度为Δy =y max -y min =kU 0t 02d,C 正确.。

专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动(解析版)

专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动(解析版)

高二物理期末综合复习(特训专题+提升模拟)专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动一、带电粒子在匀强电场中的偏转1.如图所示,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,间距为d =0.125L 。

质子由静止开始经加速电场加速后。

沿平行于极板的方向射入偏转电场,并从另一侧射出。

已知质子的比荷为k ,加速电场电压为U 0,忽略质子所受重力。

质子射入偏转电场时的初速度v 0和从偏转电场射出时沿垂直板面方向的偏转距离Δy 分别是( )A2ULU B 04ULU C2ULU D 04ULU 【答案】C【详解】质子在加速电场中,根据动能定理有20012mv qU = ①解得0v =②根据牛顿第二定律可得质子在偏转电场中的加速度大小为qUa md= ③根据运动学规律可得质子在偏转电场中的运动时间为0L t v = ④并且21Δ2y at = ⑤由题意知d =0.125L ⑥联立①③④⑤⑥解得2ΔULy U =⑦故选C 。

2.示波器是一种多功能电学仪器,如图所示。

大量电性相同的带电粒子在电压为U 1的电场中由静止开始加速,从M 孔射出,然后水平射入电压为U 2的平行金属板间的电场中,在满足带电粒子能射出平行板电场区域的条件下(不计粒子重力和粒子之间的相互作用),下列说法正确的是( )A .若电荷量q 相等,则带电粒子在偏转场板间的加速度大小相等B .若电荷量q 相等,则带电粒子从M 孔射出的动能不相等C .无论比荷qm是否相等,全过程中电场力做功均相同 D .无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出 【答案】D【详解】A .根据牛顿第二定律得带电粒子在偏转电场中的加速度大小2qU qE a m md==知电荷量相等,质量未知,则带电粒子在偏转电场中的加速度大小不一定相等,故A 错误;B .带电粒子在加速度电场中加速过程,根据动能定理得21k 012qU E mv ==解得0v =电粒子电荷量相等,则带电粒子从M 孔射出的动能相等,故B 错误;D .带电粒子进入平行金属板间做类平抛运动,设极板长度为L ,板间距离为d ,粒子在水平方向做匀速直线运动,则有0L v t =得0Lt v =粒子射出电场时偏转角度正切值00tan y v at v v θ==结合0v =2qU a md =;0L t v =联立得21tan 2U L U d θ=可知tan θ与q m 无关,因为位移偏转角的正切值总为速度偏转角正切值的二分之一,即tan 2tan θα=可得无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出,故D 正确;C .由D 选项可知,所有带电粒子在电场偏转电场中沿着电场方向的位移相等设为y ,则电场力对带电粒子所做的功为21qU yW qU d=+知只有电荷量相等时,电场力做功相等,故C 错误。

带电粒子在电场中的偏转(题_详细)

带电粒子在电场中的偏转(题_详细)

l 2
强化练习
5、如图所示,有一电子(电量为e、质量为 m)经电压U0加速后,沿平行金属板A、B中 心线进入两板,A、B板间距为d、长度为L, A、B板间电压为U,屏CD足够大,距离A、 B板右边缘2L,AB板的中心线过屏CD的中 心且与屏CD垂直。试求电子束打在屏上的 位置到屏中心间的距离。
1、三个电子在同一地点沿同一直线垂直飞 入偏转电场,如图所示。则由此可判断 ( ) BCD A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
√ √ √
强化练习 2、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( B ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
1.9 带电粒子在电场中的运动

辛集市第一中学
仪器名称:示波器 型 号:COS5100
北京正负电子对撞机加速器的 起点
系统运行时,数以10亿计的电子就 将从这条加速管中以接近光速冲进 储存环中发生碰撞
1.9 带电粒子在电场 中的运动
电场中的带电粒子一般可分为两类:
1、带电的基本粒子:如电子,质子,α粒子,正负 离子等。这些粒子所受重力和电场力相比小得多,除 非有说明或明确的暗示以外,一般都不考虑重力。 (但并不能忽略质量)。
二. 带电粒子在电场中的偏转
+ + + + + + + + +

二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)

二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)

2023届二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)本专题主要讲解带电粒子(带电体)在电场中的直线运动、偏转,以及带电粒子在交变电场中运动等相关问题,强调学生对于直线运动、类平抛运动规律的掌握程度。

高考中重点考查学生利用动力学以及能量观点解决问题的能力,对于学生的相互作用观、能量观的建立要求较高。

探究1带电粒子在电场中的直线运动典例1:(2021湖南联考)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P。

现有甲电子以速率v0从O点沿OP方向运动,恰能运动到P点。

若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0训练1:(2022四川联考题)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。

质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。

离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。

设实验所用离子的电荷量均为q,不计离子重力。

(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。

探究2 带电粒子在电场中的偏转典例2:(2022北京月考)让氕核(1H)和氘核(21H)以相同的动能沿与电场垂直的方向1从ab边进入矩形匀强电场(方向沿a→b,边界为abcd,如图所示)。

高二物理电荷在电场中的偏转试题答案及解析

高二物理电荷在电场中的偏转试题答案及解析

高二物理电荷在电场中的偏转试题答案及解析1.如图所示,一带电粒子以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场. 电场强度大小为E,方向竖直向上. 当粒子穿出电场时速度大小变为原来的倍. 已知带电粒子的质量为m,电量为q,重力不计. 粒子进入磁场前的速度与水平方向成60°角,如图. 试解答:(1)粒子带什么电?(2)带电粒子在磁场中运动时速度多大?(3)该圆形磁场区域的最小面积为多大?【答案】(1)负电(2)(3)S=【解析】(1)已知磁场垂直纸面向里,粒子在磁场中向右偏转600垂直进入电场,由左手定则判断:粒子一定带负电---------------2分(2)粒子在电场中做类平抛运动,水平方向: ----------1分竖直方向: ---------1分其中,; ---------2分解得: -------------------2分(3) 粒子在磁场中做匀速圆周运动,由洛伦兹力完全提供向心力:,即:将v代入,得: ----------------2分已知速度偏向角为600,磁场面积最小值是以R为直径的圆:整理得: S= ------------------2分【考点】考查了带电粒子在电磁场中的运动2.(12分)如图所示,水平放置的两块长直平行金属板a、b相距为d,b板下方整个空间存在着磁感应强度大小为B、方向垂直纸面向里的匀强磁场.今有一质量为m、电荷量为+q的带电粒子(不计重力),从a板左端贴近a板处以大小为v的初速度水平射入板间,在匀强电场作用下,刚好从b板的狭缝P处穿出,穿出时的速度方向与b板所成的夹角为θ=30°,之后进入匀强磁场做圆周运动,最后粒子碰到b板的Q点(图中未画出)。

求:(1)a、b板之间匀强电场的电场强度E和狭缝P与b板左端的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电场中的偏转、基础知识1 、带电粒子在电场中的偏转(1) 条件分析:带电粒子垂直于电场线方向进入匀强电场. (2) 运动性质:匀变速曲线运动.(3) 处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间la.能飞出电容器: t = .v 01 qU 2mdyy=2at=2mdt, t =qU②沿电场力方向,做匀加速直线运动F qE Uq加速度: a = = =m m md1Uql 2离开电场时的偏移量: y = at 2= 22 2mdv 2v y Uql离开电场时的偏转角: tan θ= = 2v 0 mdv 20特别提醒 带电粒子在电场中的重力问题(1) 基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外, 考虑重力 (但并不忽略质量 ).b.不能飞出电容器:般都不(2) 带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2 、带电粒子在匀强电场中偏转时的两个结论(1) 不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.1证明:由 qU 0=2mv 0211 qU 1 ly =2at 2=2·md ·(v 0)2(2) 粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点 O 为粒子水平位移l的中点,即 O 到偏转电场边缘的距离为 2.3 、带电粒子在匀强电场中偏转的功能关系U中 U y =d y ,指初、末位置间的电势差.二、练习题1 、如图,一质量为 m ,带电量为+ q 的带电粒子,以速度 v 0 垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是 ( )tanqU 1lmdv 20 U 1l 2U 1l得:y =4U 0dtan θ=2U 0d当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解:1qU y =2mv 21 mv 220,其A.粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B.粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C.分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D.分析该运动,有时也可用动能定理确定其某时刻速度的大小答案BCD2 、如图所示,两平行金属板 A、B长为 L=8 cm ,两板间距离 d=8 cm ,A板比 B板电势高300 V ,一带正电的粒子电荷量为 q=1.0×10-10 C,质量为 m = 1.0 ×10 -20 kg,沿电场中心线 RO垂直电场线飞入电场,初速度 v0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS间的无电场区域,然后进入固定在O 点的点电荷 Q 形成的电场区域(设界面 PS右侧点电荷的电场分布不受界面的影响).已知两界面 MN 、PS相距为12 cm ,D 是中心线 RO与界面 PS的交点, O 点在中心线上,距离界面 PS为9 cm ,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k=9.0 ×109 N·m 2/C2,粒子的重力不计)(1) 求粒子穿过界面 MN 时偏离中心线 RO的距离多远?到达 PS界面时离 D 点多远?(2) 在图上粗略画出粒子的运动轨迹.(3) 确定点电荷 Q 的电性并求其电荷量的大小.解析(1)粒子穿过界面 MN 时偏离中心线 RO的距离(侧向位移):1y= at22F qU a==m dmL=v0t1 qU L则y=2at2=2md(v0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与 PS 交于 H,设 H 到中心线的距离为 Y,则有1L2y=,解得 Y=4y=12 cm1YL+12 cm2(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略)(3) 粒子到达 H 点时,其水平速度 v x= v0 =2.0 ×10 6 m/s竖直速度 v y= at= 1.5 ×10 6 m/s则 v 合=2.5 ×10 6 m/s该粒子在穿过界面 PS后绕点电荷 Q 做匀速圆周运动,所以 Q带负电根据几何关系可知半径 r=15 cmqQ v2合k2=mr2r解得 Q≈1.04 ×10 -8 C答案(1)12 cm (2)见解析(3)负电 1.04 ×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L、电场强度为 E 的匀强电场,在与右侧虚线相距也为 L 处有一与电场平行的屏.现有一电荷量为+q 、质量为 m 的带电粒子(重力不计),以垂直于电场线方向的初速度 v0 射入电场中, v0 方向的延长线与屏的交点为 O.试求:(1) 粒子从射入电场到打到屏上所用的时间;(2) 粒子刚射出电场时的速度方向与初速度方向间夹角的正切值(3) 粒子打在屏上的点 P到 O 点的距离 x.2L qEL 3qEL2答案(1) (2) 2 (3) 2v0 mv 022mv20tan α;解析(1) 根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入场中的加速度为: a = E m qmL qEL 所以 v y = a = v 0 mv 0(3) 解法一 设粒子在电场中的偏转距离为 y ,则又 x = y + L tan α,4 、如图所示,虚线 PQ 、 MN 间存在如图所示的水平匀强电场,一带电粒子质量为 m = 2.0×10 -11 kg 、电荷量为 q =+ 1.0 ×10 -5 C ,从 a 点由静止开始经电压为 U =100 V 的 电场加速后, 垂直于匀强电场进入匀强电场中, 从虚线 MN 的某点 b (图中未画出 )离开 匀强电场时速度与电场方向成 30 °角.已知PQ 、MN 间距为 20 cm ,带电粒子的重力 忽略不计.求:电场到打到屏上所用的时间 2Lt = .v 0(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tanv y α=v 0qELmv 021 qEL 22·mv 2解得: x = 3qEL 22mv 20解法Lx =v y · + y = v 03qEL 2 2mv 20 解法三L L + x 2 由= 得: yLx =3y = 3qEL 22mv 201L(1) 带电粒子刚进入匀强电场时的速率 v1 ;(2) 水平匀强电场的场强大小;(3) ab 两点间的电势差.答案(1)1.0 ×104 m/s (2)1.732 ×103 N/C(3)400 V1解析(1)由动能定理得: qU =2mv 21代入数据得 v1= 1.0 ×10 4 m/s(2) 粒子沿初速度方向做匀速运动: d=v1t粒子沿电场方向做匀加速运动: v y= atv1由题意得:tan 30 °=v y由牛顿第二定律得: qE= ma联立以上各式并代入数据得:E=3×103 N/C ≈1.732 ×103 N/C1(3) 由动能定理得: qU ab= m(v21+v y2)-0联立以上各式并代入数据得: U ab=400 V .5 、如图所示,一价氢离子(11H) 和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点 D .先后到达屏上不同点答案B解析一价氢离子(1 H)和二价氦离子(24He) 的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选 B.6 、如图所示,六面体真空盒置于水平面上,它的 ABCD 面与 EFGH 面为金属板,其他面为绝缘材料. ABCD 面带正电, EFGH 面带负电.从小孔 P沿水平方向以相同速率射入三个质量相同的带正电液滴 a、b 、 c,最后分别落在1、2、3 三点.则下列说法正确的A .三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴 c 所带电荷量最多答案D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项 A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项 B 错误;在相同的运动时间内,液滴 c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项 D 正确;因为重力做功相同,而电场力对液滴 c 做功最多,所以它落到底板时的速率最大,选项 C 错误.7 、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中 xOy 所在平面与光滑水平面重合,电场方向与 x 轴正向平行,电场的半径为 R= 2 m ,圆心 O 与坐标系的原点重合,场强 E=2 N/C. 一带电荷量为 q=-1×10 -5 C、质量 m =1 ×10 -5 kg 的粒子,由坐标原点 O 处以速度 v0=1 m/s 沿 y 轴正方向射入电场(重力不计),求:(1) 粒子在电场中运动的时间;(2) 粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s (2)( - 1 m,1 m) (3)2.5 ×10-5 J解析(1) 粒子沿 x 轴负方向做匀加速运动,加速度为a,则有:1 Eq=ma ,x=2at2沿 y 轴正方向做匀速运动,有y=v0tx2+y2=R2解得 t=1 s.(2) 设粒子射出电场边界的位置坐标为(-x1,y1),则有1 x1= at2=1 m ,y1=v0t=1 m ,即出射点的位置坐标为(-1 m,1 m) .1(3) 射出时由动能定理得 Eqx1=E k- mv 20代入数据解得 E k=2.5 ×10 -5 J.8 、如图所示,在正方形 ABCD 区域内有平行于 AB 边的匀强电场, E、F、G、H 是各边中点,其连线构成正方形,其中P 点是 EH 的中点.一个带正电的粒子( 不计重力) 从 F点沿 FH 方向射入电场后恰好从 D 点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形 ABCD 区域D.若将粒子的初速度变为原来的一半,粒子恰好由 E 点射出正方形 ABCD 区域答案BD解析粒子从 F 点沿 FH 方向射入电场后恰好从 D 点射出,其轨迹是抛物线,则过 D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过 P 点,所以粒子轨迹一定经过 PE之间某点,选项 A 错误, B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项 C 错误,D 正确.9 、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道 AB部分为倾角为30 °的斜面,AC 部分为竖直平面上半径为 R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为 m 的小球,带正电荷量为 q =E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,mg ′,大小为类比重力场,将电场力与重力的合力视为等效重力效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点” (D 点 )满足等效重力刚好提112mg ′R= mv 2D - mv 222 因此要使 小球安 全通过圆轨道, 初速度应满足 v ≥10 、在空间中水平面 MN 的下方存在竖直向下的匀强电场,质量为 m 的带电小球由 MN上方的 A 点以一定的初速度水平抛出,从 B 点进入电场,到达 C 点时速度方向恰好水 平, A 、B 、 C 三点在同一直线上,且 AB =2BC ,如图所示.由此可见 ( )mv 2D供向心力,即有:mg ′= ,因 θ=30 °与斜面的倾角相等,由几何关系可知 ADR2R ,令小球以最小初速度v 0 运动,由动能定理知:3,得 θ=30°,等3qE, tan θ=mgmg ′ = qE 2+ mgA.电场力为3mgB.小球带正电C.小球从 A 到 B 与从 B 到 C 的运动时间相等D.小球从 A到 B与从 B到 C的速度变化量的大小相等答案AD解析设 AC 与竖直方向的夹角为θ,带电小球从 A 到 C,电场力做负功,小球带负电,由动能定理,mg ·AC·cos θ-qE·BC·cos θ=0 ,解得电场力为 qE =3 mg ,选项 A 正确,B错误.小球水平方向做匀速直线运动,从 A到 B的运动时间是从B到 C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从 A到 B 与从 B到 C 竖直方向的速度变化量的大小相等,水平方向速度不变,小球从 A到 B与从B到 C的速度变化量的大小相等,选项 D 正确.。

相关文档
最新文档