《全等三角形》课件完美版
人教版数学《三角形全等的判定》_课件-完美版
变形题:
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
已知AB=CD,AD=CB,求证:∠B=∠D
证明:连接AC, 在△ABC和△ ADC中 A
AB=CD(已知)
BC=AD(已知)
AC=AC(公共边)
B
∴ △ ABC≌ △ CDA(SSS)
D C
∴ ∠B=∠D(全等三角形对应角相等)
A
证明:在△ABC和△ADC中
B
D
AB=AD (已知)
BБайду номын сангаас=CD (已知)
AC = AC (公共边)
C
∴ △ABC ≌ △ADC(SSS)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
你能说明AB∥CD,AD∥BC吗?
• 证明:在△ABD和△CDB中 D
C
AB=CD(已知)
AD=CB(已知) A
BD=DB (公共边)
B
∴△ABD≌△ACD(SSS)
∴ ∠ A= ∠ C (全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
∴∠B=∠C(全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
1、如图,在四边形ABCD中,AB=CD,AD=CB, 求证:∠ A= ∠ C.
完整版-全等三角形总复习PPT教学课件
AC=BC
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
∴ BE=AD
2024/3/9
29
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
AB
=
DB
∠ABE = ∠ DBC
BE=BC ∴△ABE≌△DBC(SAS)
D
C
2
1
A
B
思路3: 已知一边一角(边与角相邻):
找夹这个角的另一边
AD=CB (SAS)
找夹这条边的另一角
∠ACD=∠CAB(ASA)
找边的对角
∠D=∠(B AAS)
15
如图,已知∠B= ∠E,要识别△ABC≌ △AED,需 要添加的一个条件是--------------
A
D
C
E
思路4:
找夹边
AB=AE (ASA)
∴ △ADC ≌ △EDB
D
C
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD 1 (AB AC) 2
2024/3/9
35
12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
离相等的点在角的平分线上)
2024/3/9
10
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等
全等三角形课件ppt
与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等
。
04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。
初中数学《全等三角形》课件PPT
知2-练
1 说出图12.1-2 (2)、图12.1-2 (3)中两个全等三角形 的 对应边、对应角.
(2)(3)图 1源自.1-2(来自教材)知2-练
解:在教材图12.12(2)中,AB和DB,BC和BC,AC和 DC是对应边;∠A和∠D,∠ABC和∠DBC, ∠ACB和∠DCB是对应角. 在教材图12.12(3)中,AB和AD,BC和DE,AC和 AE是对应边;∠BAC和∠DAE,∠B和∠D,∠C 和∠E是对应角.
知1-导
知1-讲
一个图形经过平移,翻折,旋转后,位置变化了, 但_形_状_和_大_小_都没有改变,即平移,翻折, 旋转前后的图形___完__全__重__合__ . 定义 形状、大小相同的图形放在一起能够完全重合.
能够完全重合 的两个图形叫做全等形.
(来自《教材》)
知1-讲
例1 下列图中是全等形是 ①和⑨、②和③、④和⑧、⑪和⑫ .
例2 如图,已知△ABD≌△CDB,∠ABD=∠CDB, 写出其对应边和对应角.
知2-讲
导引:在△ABD和△CDB中,∠ABD=∠CDB,则 ∠ABD,∠CDB所对的边AD与CB是对应边,公共 边BD与DB是对应边,余下的一对边AB与CD是对 应边.由对应边所对的角是对应角可确定其他两组 对应角.
(来自《典中点》)
知1-练
3 下列说法:①两个图形全等,它们的形状相同;
②两个图形全等,它们的大小相同;③面积相
等的两个图形全等;④周长相等的两个图形全
等.其中正确的个数为( B )
A.1个
B.2个
C.3个
D.4个
(来自《典中点》)
知识点 2 全等三角形及对应元素
知2-导
能够完全重合的两个三角形,叫做_全__等__三__角__形___.
人教版《三角形全等的判定》PPT全文课件
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
《全等三角形》数学教学PPT课件(6篇)
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
《全等三角形》ppt课件
12.1 全等三角形
教学环节
2
导入新课
观察与思考 问题1: 观察思考:每组中的两个图形有什么特点?
问题2: 观察思考:每组中的两个图形有什么特点?
3
知识讲解
全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形叫做全等图形.
全等图形的性质: 如果两个图形全等,它们的形状和大小一定都相同.
4
找一找
下面哪些图形是全等图形?
大小、形状
完全相同
(1)
(3)
(2)
(5) (9)
(6)
(7)
(10)
(11)
(12)
5
全等三角形的定义及性质
A
B
E
F
像上图一样,把△DEF叠到△ABC上,能够完
全重合的两个三角形,叫作全等三角形,
把两个全等的三角形重叠到 一起时,重合的顶点叫作对 应顶点,重合的边叫作对应 边,重合的角叫作对应角.
“全等”用符号“≌ ”表示,读作“全等于”
A
F
B
CD
E
C≌ FDE
注意: 记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
9
全等三角形的性质
思考:下图中△ABC≌△DEF , 对应边有什么关系? 对应角呢?
B
D
E
全等三角形的对应边相等; 全等三角形的对应角相等.
10
◆全等三角形的性质的几何语言
∵△ABC ≌△FDE ∴A B=FD,A C=FE,BC=DE
∠A=∠F,∠B=∠D,∠Cபைடு நூலகம்∠E
(全等三角形对应边相等) (全等三角形对应角相等)
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
全等三角形的判定PPT课件共34张
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
《全等三角形》_课件-完美版
如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
B
证明:∵C是BF中点,
∴BC=CF.
C
A
在△ABC 和△DCF中,
AB = DC,(已知)
F
D
AC = DF,(已知)
BC = CF,(已证)
∴ △ABC ≌ △DCF (SSS).
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
知识要点
“边边边”判定方法
u文字语言:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”) A u几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
B
C
D
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
想一想:
如果只满足这些条件中的一部分,那么能保证 △ABC≌△DEF吗?
一 三角形全等的判定(“边边边”定理)
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形 不一定全等 (2)有一个角相等的两个三角形 不一定全等
结论:有一个条件相等不能保证两个三角形全等.
探究活动2:两个条件可以吗?
【获奖课件ppt】《全等三角形》_课 件-完美 版1-课 件分析 下载
典例精析
例2 如图, △ABC是一个钢架,AB=AC,AD是连接A与
BC中点D的支架,试说明:∠B=∠C.
解:∵D是BC的中点,
A
∴BD=CD.
在△ABD与△ACD中, B AB=AC(已知),
D
C
《三角形全等的判定》-完整版课件
你能再举出生活中的一些类似例子吗?
请同学们把一块三角尺按在纸板上, 画下图形后,比较观察这两个三角形 有何关系?从同一张底片冲洗出来的 两张尺寸相同的照片上的图形,放在 一起也能够完全重合吗?
全等三角形的概念
全等三角形: 能够完全重合的两个三角
全等三角形对应角相等.
B
C
请说出目前判定三角形全 等的4种方法:
SAS,ASA,AAS,SSS
问题 任意画一个Rt△ABC,使∠C =90°,再画 一个Rt△A'B'C',使∠C'=90°,B'C'=BC, A'B'=AB,然后把画好的Rt△A'B'C'剪下来放到 Rt△ABC上,你发现了什么?
F
C
B
E
L
从上面的图形中可以看出,若已知 ∠A=60°,∠B=80°,相信你一 定可以求出△ABC的各个角的大小: ∠D=__6_0_°_,∠E=_8_0_°_, 40° ∠F=___.
已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm ; (2)若∠A =100°,则:
C1
比眼力:找全等.
8
Ⅰ 30o
9
8Ⅱ 30o
5
8 30o
8Ⅲ
5 30o
Ⅴ 8
8Ⅵ 30o8
8 Ⅶ
30o 9
Ⅳ8 5
8 Ⅷ
5
如图,有一池塘,为测量池塘两端A、B的距
离,设计了如下方案:如图,先在平地上取 一个可直接到达A、B的点C,再连结AC、
BC并分别延长AC至D、BC至E,使CD=CA,
CE=CB,最后测得DE的距离即为AB的 长.你知道其中的道理吗?
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)
练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
全等三角形ppt课件
∴ △ABD≌△ACD(全__等__三__角__形__的__定__义__)_________
解:∵∠A=50°,∠B=48°, ∴∠C=180°-50°-48°=82°. 又∵△ABC≌△DEF, ∴∠C=∠F,∴∠F=82°. ∵DE的对应边为AB,所以DE=AB, ∴AB=10 cm.
【点悟】利用全等三角形的对应角相等、对应边相等解决问 题时,应注意不要将对应边(对应角)弄错,也就是要求在表 示两个三角形全等时书写规范.
寻找对应边、角的规律:
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,最小的边是对应边; (5)两个全等三角形最大的角是对应角,最小的角是对应角;
例2 如图,AD平分∠BAC,AB=AC.△ABD与△ACD全等吗?
起可以重合
能够完全重合的 两个图形叫做全
等图形
A
B′
A′
B
C
C′
1.它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A′、B和 B′、C和C′; 2.互相重合的边叫做全等三角形的对应边:如AB和A′B′、BC和B′C′、CA和C′A′; 3.互相重合的角叫做全等三角形的对应角:如∠A和∠A′、 ∠B和∠B′、 ∠C和 ∠C′.
怎样判断两个图形是不是全等图形?
确定两个图形全等要符合两个条件: ①形状相同,②大小相同; 是否是全等图形与位置无关. 判断两个图形是否全等还可以通过平移、旋转、翻折等方法把两 个图形叠合在一起,看它们能否完全重合,即用叠合法判断.
全等三角形的判定ppt课件完整版
注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不一定全等
300
60o
300
60o
3cm
300 6cm 30o
6cm
结论:有两个条件对应相等不能保证三角形全等.
探究活动3:三个条件可以吗?
(1)有三个角对应相等的两个三角形
《全等三角形》课件完美版(PPT优秀 课件)
典例精析
例2 如图, △ABC是一个钢架,AB=AC,AD是连接A与
BC中点D的支架,试说明:∠B=∠C.
解:∵D是BC的中点,
A
∴BD=CD.
在△ABD与△ACD中, B AB=AC(已知),
D
C
BD=CD(已证),
AD=AD(公共边),
∴△ABD≌△ACD(SSS),
AB=AC, BD=CD, AD=AD,
AB=AC, BH=CH, AH=AH, BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS)
△ABH≌△ACH(SSS)
B
△BDH≌△CDH(SSS)
A
D HC
《全等三角形》课件完美版(PPT优秀 课件)
课堂小结 《全等三角形》课件完美版(PPT优秀课件)
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
边边边 应用
思路分析 结合图形找隐含条件和 现有条件,证准备条件
书写步骤 四步骤
注意
1. 说明两三角形全等所需的条 件应按对应边的顺序书写. 2. 结论中所出现的边必须在所 证明的两个三角形中.
《全等三角形》课件完美版(PPT优秀 课件)
∴∠B=∠C.
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
二 用尺规作一个角等于已知角 例3 用尺规作一个角等于已知角.
已知:∠AOB.求作: ∠A′O′B′=∠AOB.
B D
B′ D′
O
《全等三角形》课件完美版(PPT优秀 课件)
C
A O′
C′
A′
《全等三角形》课件完美版(PPT优秀 课件)
AD =AD (公共边)
C D 写出结
∴ △ABD ≌ △ACD ( SSS ).
论
(2)∠BAD = ∠CAD.
由(1)得△ABD≌△ACD ,
∴ ∠BAD= ∠CAD.
(全等三角形对应角相等)
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
证明的书写步骤: ①准备条件:证全等时要用的条件要先证好; ②指明范围:写出在哪两个三角形中; ③摆齐根据:摆出三个条件用大括号括起来; ④写出结论:写出全等结论.
想一想:
如果只满足这些条件中的一部分,那么能保证 △ABC≌△DEF吗?
一 三角形全等的判定(“边边边”定理)
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形 不一定全等 (2)有一个角相等的两个三角形 不一定全等
结论:有一个条件相等不能保证两个三角形全等.
探究活动2:两个条件可以吗?
文字语言:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”) A 几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
B
C
D
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
典例精析
例1 如图,有一个三角形钢架,AB =AC ,AD 是
连接点A 与BC 中点D 的支架.求证:(1)△ABD
3.已知:如图 ,AB=AE,AC=AD,BD=CE,
求证:△ABC≌△AED.
证明:∵BD=CE, ∴BD-CD=CE-CD . ∴BC=ED . 在△ABC和△ADE中, AC=AD(已知), AB=AE(已知), BC=ED(已证),
=× × =
∴△ABC≌△AED(SSS).
《全等三角形》课件完美版(PPT优秀 课件)
300
60o
300
60o
结论:三个内角对应相等的三角形不一定全等.
(2)三边对应相等的两个三角形会全等吗?
3cm
4cm
6cm
6cm 4cm
4c画 出 一 个 △ ABC , 再 画 出 一 个
△A′B′C′ ,使A′B′= AB ,B′C′ =BC, A′ C′ =AC.把画好的
∴ △ABC ≌ △DCF (SSS).
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
已知: 如图,点B、E、C、F在同一直线上 , AB = DE ,
AC = DF ,BE = CF . 求证: (1)△ABC ≌ △DEF;(2)∠A=∠D.
证明:(1)∵ BE = CF,
B
∴ BE+EC = CF+CE,
E
∴ BC = EF.
C
在△ABC 和△DEF中,
A
AB = DE,(已知)
F
D
AC = DF,(已知)
BC = EF,(已证)
∴ △ABC ≌ △DEF ( SSS ).
(2)∵ △ABC ≌ △DEF(已证),
∴ ∠A=∠D(全等三角形对应角相等).
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
4.已知:如图 ,AC=FE,AD=FB,BC=DE.
求证:(1)△ABC≌△FDE; (2) ∠C= ∠E.
证明:(1)∵ AD=FB,
A
。 ?C
∴AB=FD(等式性质). 在△ABC和△FDE 中, AC=FE(已知),
D = E?
=
B
。
F
BC=DE(已知),
所画的弧交于点D′;
什么?
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
《全等三角形》课件完美版(PPT优秀 课件)
当堂练习 《全等三角形》课件完美版(PPT优秀课件)
1.如图,D、F是线段BC上的两点,AB=CE,AF=DE,
要使△ABF≌△ECD ,还需要条件 BF=CD___
(填一个条件即可).
第十二章
八年级数学上(RJ) 教学课件
全等三角形
12.2三角形全等的判定
第1课时 “边边边”
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.探索三角形全等条件.(重点)
情境引入
2.“边边边”判定方法和应用.(难点)
3.会用尺规作一个角等于已知角,了解图形的作法.
导入新课
情境引入
为了庆祝国庆节,老师要求同学们回家制作三 角形彩旗(如图),那么,老师应提供多少个数据 了,能保证同学们制作出来的三角形彩旗全等呢? 一定要知道所有的边长和所有的角度吗?
≌△ACD .
解题思路:
A
先找隐含条件 公共边AD
再找现有条件 AB=AC
最后找准备条件
B
D
C
BD=CD
D是BC的中点
《全等三角形》课件完美版(PPT优秀 课件)
证明:∵ D 是BC中点, 准备条件
指明范 ∴ BD =DC.
围
在△ABD 与△ACD 中,
A
摆齐根
AB =AC (已知)
据
BD =CD (已证) B
在△ABD和△BAC中,
AD=BC, BD=AC, AB=BA, ∴△ABD≌△BAC(SSS)
D
C
O
A
B
∴∠D=∠C.
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
思维拓展
6.如图,AB=AC,BD=CD,BH=CH,图中有几组
全等的三角形?它们全等的条件是什么?
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
B
证明:∵C是BF中点,
∴BC=CF.
C
A
在△ABC 和△DCF中,
AB = DC,(已知)
F
D
AC = DF,(已知)
BC = CF,(已证)
作图总结
用尺规作一个角等于已知角
已知:∠AOB.求作:∠A′O′B′=∠AOB. 作法:
(1)以点O 为圆心,任意长为半径画弧,分别交OA,
OB 于点C、D;
(2)画一条射线O′A′,以点O′为圆心,OC 长为半
径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中
依据是
AB=FD(已证),
∴△ABC≌△FDE(SSS);
(2)∵ △ABC≌△FDE(已证).
∴ ∠C=∠E(全等三角形的对应角相等).
《全等三角形》课件完美版(PPT优秀 课件)
《全等三角形》课件完美版(PPT优秀 课件)
5.如图,AD=BC,AC=BD.求证:∠C=∠D .(提示:
连结AB)
证明:连结AB两点,
A
E
= ×× =
B D FC
A×
D
=
=
O
B
×C
2.如图,AB=CD,AD=BC, 则下列结论:
①△ABC≌△CDB;②△ABC≌△CDA;③△ABD
≌△CDB;④BA∥DC. 正确的个数是
( C)
A . 1个 B. 2个 C. 3个 D. 4个