[2020理数]第七章 第三节 基本不等式

合集下载

基本不等式知识点

基本不等式知识点

基本不等式知识点基本不等式知识点探究导语:基本不等式作为数学中的一个重要知识点,广泛应用于数学中的各个领域。

掌握基本不等式的性质和运用方法,对于学生提高数学素养具有重要意义。

本文将就基本不等式的定义、证明、应用以及一些特殊情况进行介绍,帮助读者更好地理解和掌握这一知识点。

一. 基本不等式的定义基本不等式是指对于一般的实数x和y,有以下不等式成立:1. 数字不等式:若x > y,则有 x+a > y+a,其中a为任意实数。

2. 绝对值不等式:若x > a,则有 |x| > |a|,其中a为任意实数。

二. 基本不等式的证明基本不等式的证明可通过数学归纳法进行。

以数字不等式为例,我们可以将其分为两个步骤进行证明:1. 首先证明当a > 0时,x > y推出x+a > y+a。

根据a > 0,可知存在实数b,使得a = b^2。

将x、y分别加上b^2,得到 (x + b^2) - (y +b^2) > 0,即(x - y) + b^2 > 0。

由于b^2 > 0,因此(x - y) + b^2 > 0,即x + b^2 > y + b^2,即x+a > y+a。

2. 其次证明当a < 0时,x > y推出x+a > y+a。

与前一步骤相似,我们令a = -b^2,b为任意实数。

同样可以得到 (x - y) + (-b^2) > 0,即 (x + (-b^2)) - (y + (-b^2)) > 0,即x + (- b^2) > y + (- b^2),即x+a > y+a。

三. 基本不等式的应用基本不等式在数学中有广泛的应用,尤其在代数和不等式解题中常被使用。

以下列举几个典型的应用情况:1. 求绝对值不等式的解集:通过运用绝对值不等式可以求解关于绝对值的不等式,例如 |2x + 1| > 3,可以转化为2x + 1 > 3或2x + 1 < -3的形式,然后求出解集即可。

基本不等式全部公式

基本不等式全部公式

基本不等式全部公式1.三角不等式:对于任意实数a和b,有,a+b,≤,a,+,b2. Cauchy-Schwarz 不等式:对于任意实数 a1, a2,...,an 和 b1, b2,...,bn,有(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)3. 二次平均不等式:对于任意非负实数 x1, x2,...,xn,有√((x₁² + x₂² + ... + xn²)/n) ≥ ((x₁ + x₂ + ... + xn)/n)4. 广义平均不等式:对于任意非负实数 x1, x2,...,xn 和实数 p ≠ 0,有(x₁ᵖ + x₂ᵖ + ... + xnᵖ)/n ≥ ((x₁ + x₂ + ... + xn)/n)ᵖ5. AM-GM 不等式:对于任意非负实数 x₁, x₂,...,xn,有(x₁x₂...xn)^(1/n) ≤ (x₁ + x₂ + ... + xn)/n6. Jensen 不等式:设 f 是凸函数,则对于非负实数 x₁, x₂, (x)和非负实数权重 w₁, w₂,...,wn,有f(w₁x₁ + w₂x₂ + ... + wnxn) ≥ w₁f(x₁) + w₂f(x₂) + ... +wnfn(xn)7. Hessemberg 不等式:对于非负实数 x₁, x₂,...,xn,有(x₁ + t)ⁿ ≤ x₁ⁿ + nx₁ⁿ⁻¹t + n(n-1)x₁ⁿ⁻²t²/2 + ... + tⁿ8. Bernoulli 不等式:对于实数x ≥ -1 和正整数 n,有(1+x)ⁿ ≥ 1 + nx9. Muirhead 不等式:对于非负实数 a₁, a₂,...,an 和 b₁,b₂,...,bn 满足 a₁ + a₂ + ... + an = b₁ + b₂ + ... + bn,有a₁ᵖ₁a₂ᵖ₂...anᵖₙ + permutations ≥ b₁ᵖ₁b₂ᵖ₂...bnᵖₙ + permutations10. 反柯西不等式:对于任意非负实数 a₁, a₂,...,an,有(a₁/a₂ + a₂/a₃ + ... + an-₁/an + an/a₁) ≥ n以上是一些常见的基本不等式公式。

基本不等式

基本不等式

、柯西不等式等。
优化问题
02
在优化问题中,幂平均不等式可以用于寻找最优解或确定最优
解的范围。
统计学应用
03
在统计学中,幂平均不等式可以用于分析数据的分布和离散程
度。
24
06
排序原理与切比雪夫( Chebyshev)不等式
2024/1/26
25
排序原理简介
2024/1/26
01
排序原理是一种基本的数学原理,用于比较和排列一组数的大 小。
2024/1/26
因式分解法
将一元二次不等式因式分解,然后利用不等式的性质进行求解。
14
一元二次不等式组解法
2024/1/26
分别求解法
分别求出每个不等式的解集,然 后取它们的交集作为不等式组的 解集。
图像法
在同一坐标系中画出每个不等式 的图像,然后找出满足所有不等 式的区域作为不等式组的解集。
15
17
算术平均值-几何平均值(AM-GM)不等式
对于所有非负实数 $a_1, a_2, ldots, a_n$,有
$frac{a_1 + a_2 + cdots + a_n}{n} geq sqrt[n]{a_1a_2cdots a_n}$当且仅当 $a_1 = a_2 = ldots = a_n$ 时取等号。
2024/1/26
加权平均值不等式是AM-GM不等式的推广,具有更广泛的应用范围。
19
柯西-施瓦茨(Cauchy-Schwarz)不等式
对于任意实数 $a_1, a_2, ldots, a_n$ 和 $b_1, b_2, ldots, b_n$,有
2024/1/26
$(a_1^2 + a_2^2 + cdots + a_n^2)(b_1^2 + b_2^2 + cdots + b_n^2) geq (a_1b_1 + a_2b_2 + cdots + a_nb_n)^2$当且仅当 $a_i = kb_i (i = 1, 2, ldots, n)$ 时取等号,其中 $k$ 为常数。

不等式讲基本不等式及其应用课件pptx

不等式讲基本不等式及其应用课件pptx
经济领域
在经济学中,资源的分配和利用是核心问题,利用基本不等式可以确定最优 资源配置方案。
物理领域
在物理学中,能量的分配和转化是核心问题,利用基本不等式可以确定最优 能量分配方案。
04
基本不等式的推广
推广到多个变量的基本不等式
多个变量的基本不等式
对于任意实数 $x_1,x_2,\cdots,x_n$ 和 $y_1,y_2,\cdots,y_n$,有 $(x_1^2+x_2^2+\cdots+x_n^2)(\frac{y_1}{x_1}+\fr ac{y_2}{x_2}+\cdots+\frac{y_n}{x_n})\geqslant n^2(y_1+y_2+\cdots+y_n)$
积和的最值
对于正实数a,b,存在一个正数K,使得a + b >= K根号ab 在a=b时取等号。
基本不等式适用于复数范围。
对称性
对于任意实数x,y,有基本不等 式f(x,y) = f(y,x)。
传递性
若a>b,c>d,则ac>bd。
常用不等式技巧
常数代换
应用举例
在多个变量的情况下,可以使用该不等式来获得一些更 复杂的平均值不等式
基本不等式的广义形式
广义形式的证明
可以使用微积分中的极值方法,将基本不等式的条件进行推广,得到更广泛的不 等式形式
应用举例
在解决一些极值问题时,可以使用该不等式来寻找极值的范围
基本不等式的其他证明方法
利用琴生不等式证明
琴生不等式是微积分中的一个著名不等式,可以用来证明基本不 等式
利用柯西不等式证明
柯西不等式是概率论中的一个著名不等式,也可以用来证明基本 不等式

2020年高考天津版高考理科数学 7.2 基本不等式

2020年高考天津版高考理科数学          7.2 基本不等式

备战 2020 高考
9
9
A.0 B.8 C.2 D.4
答案 C 3.(2015 重庆,14,5 分)设 a,b>0,a+b=5,则 ������ + 1+ ������ + 3的最大值为 . 答案 3 2 4.(2014 浙江,16,4 分)已知实数 a,b,c 满足 a+b+c=0,a2+b2+c2=1,则 a 的最大值是 .
A 组 自主命题·天津卷题组
{ | | ������2 - x + 3,x ≤ 1,
������
1.(2017 天津文,8,5 分)已知函数 f(x)=
2
������ + ������,x > 1.
设 a∈R,若关于 x 的不等式 f(x)≥ 2 + a 在 R 上
恒成立,则 a 的取值范围是( )
6
答案 3
124
5.(2014 辽宁,16,5 分)对于 c>0,当非零实数 a,b 满足 4a2-2ab+b2-c=0 且使|2a+b|最大时,������+������+������的最小值 为 . 答案 -1 考点二 不等式的综合应用
{ (2013
山东文,16,4 分)定义“正对数”:ln+x=
( )
A.0 B.1 C.2 D.3
答案 B 二、填空题(每小题 5 分,共 50 分)
41
6.(2018 天津和平一模,13)已知 a>0,b>0,a+b=m,其中 m 为常数,则 y=������+������的最小值为 .
9
答案 ������

基本不等式完整版

基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。

2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。

3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。

2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4.求最值的条件:“一正,二定,三相等”。

5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。

2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。

3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。

4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。

5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。

基本不等式ppt课件

基本不等式ppt课件
对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明

基本不等式 课件

基本不等式 课件

[解析] (1)因为 a>2,所以 a-2>0,又因为 m=a+a-1 2=
(a-2)+a-1 2+2,所以 m≥2 a-2·a-1 2+2=4,由 b≠0, 得 b2≠0,所以 2-b2<2,n=22-b2<4,综上可知 m>n.
(2)因为 a>b>1,所以 lg a>lg b>0, 所以 Q=12(lg a+lg b)> lg a·lg b=P; Q=12(lg a+lg b)=lg a+lg b=lg ab<lg a+2 b=R. 所以 P<Q<R. [答案] (1)A (2)P<Q<R
∴xy+9yx+10≥2 xy·9yx+10=16, 当且仅当3x, 由1x+9y=1,
得xy==142,,
即当 x=4,y=12 时,x+y 取得最小值 16.
(1)应用基本不等式需注意三个条件:即一正、二定、三相 等.在具体的题目中,“正数”条件往往易从题设中获得解决,“相 等”条件也易验证确定,而要获得“定值”条件却常常被设计为一 个难点,它需要一定的灵活性和变形技巧.因此,“定值”条件决 定着基本不等式应用的可行性,这是解题成败的关键.
2 时,等号成立.
(3)变形:ab≤a+2 b2≤a2+2 b2,a+b≥2 ab(其中 a>0,b >0,当且仅当 a=b 时等号成立).
[点睛] 基本不等式成立的条件:a>0 且 b>0;其中等
号成立的条件:当且仅当 a=b 时取等号,即若 a≠b 时,
则 ab≠a+2 b,即只能有 ab<a+2 b.
求实际问题中最值的解题 4 步骤 (1)先读懂题意,设出变量,理清思路,列出函数关系式. (2)把实际问题抽象成函数的最大值或最小值问题. (3)在定义域内,求函数的最大值或最小值时,一般先考虑 基本不等式,当基本不等式求最值的条件不具备时,再考虑函数 的单调性. (4)正确写出答案.

2020届高考理科数学一轮复习讲义:第七章§7.3 基本不等式及不等式的应用_PDF压缩

2020届高考理科数学一轮复习讲义:第七章§7.3 基本不等式及不等式的应用_PDF压缩

( ) ∴ 1 + 1 = mn
1+1 mn

m+n)=
2+
n m

m n
≥2+2
n · m = 4, mn
当且仅当
n m

m n

m+n = 1(m>0,n>0),即
m=n=
1 2
时,取
得等号,

1+ m
1 n 的最小值为 4.
答案 4
1-1 (2019 安徽江南十校第二次大联考,10) 已知实数 x
对应学生用书起始页码 P112
利用基本不等式求最值
1.利用基本不等式解决条件最值问题的关键是构造和为定
值或乘积为定值,主要有三种思路:①对条件使用基本不等式,
建立相应的不等式求解.②对条件变形,以进行“1” 的代换,从而
利用基本不等式求最值.③针对待求最值的式子,可以通过添项、
分离常数、平方等方法使之能运用基本不等式.
>A 的解集为 D; 不等式 f(x) <B 恰在区间 D 上成立⇔f(x) <B 的解集为 D.
8 5 年高考 3 年模拟 B 版( 教师用书)
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������1
(2) 如果和 x+y 是定值 s,那么当且仅当 x = y 时,xy 有 最大
值,是
s2 4
.( 简记:和定积最大)

知识讲解_基本不等式_基础

知识讲解_基本不等式_基础

基本不等式编稿:张希勇 审稿:李霞【学习目标】1. 理解基本不等式的内容及其证明.2. 能应用基本不等式解决求最值、证明不等式、比较大小求取值范围等问题.【要点梳理】要点一、基本不等式1.对公式222a b ab +≥及2a b +≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等”.2.由公式222a b ab +≥和2a b +≥ ①2b a a b+≥(,a b 同); ②2b a a b+≤-(,a b 异);③20,0)112a b a b a b +≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.a +b 2的证明 方法一:几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形.设直角三角形的两条直角边长为a 、b.这样,4个直角三角形的面积的和是2ab ,正方形ABCD 的面积为22a b +.由于4个直角三角形的面积小于正方形的面积,所以:222a b ab +≥.当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有222a b ab +=.得到结论:如果+,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等“=”)特别的,如果0a >,0b >,分别代替a 、b ,可得:如果0a >,0b >,则a b +≥a b =时取等“=”).通常我们把上式写作:如果0a >,0b >2a b +≤,(当且仅当a b =时取等“=”) 方法二:代数法∵2222()0a b ab a b +-=-≥,当a b ≠时,2()0a b ->;当a b =时,2()0a b -=.所以22()2a b ab +≥,(当且仅当a b =时取等“=”).要点诠释:特别的,如果0a >,0b >,分别代替a 、b ,可得:如果0a >,0b >,则a b +≥a b =时取等“=”).通常我们把上式写作:如果0a >,0b >2a b +≤,(当且仅当a b =时取等“=”).2a b +≤的几何意义 如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =. 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等成立.要点诠释:1.在数学中,我们称2b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.如果把2b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.2a b +≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等.① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.要点诠释:1.两个不等式:222a b ab +≥与2a b +≥a ,b 都是实数,后者要求a ,b 都是正数.如22(3)(2)2(3)(2)-+-≥⨯-⨯-是成立的,而(3)(2)2-+-≥的.2.两个不等式:222a b ab +≥与2a b +≥都是带有等的不等式,对于“当且仅当……时,取“=”这句话的含义要有正确的理解.当a=b 取等,其含义是2a b a b +=⇒=;仅当a=b 取等,其含义是2a b a b +==.综合上述两条,a=b 是2a b +=的充要条件. 3.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.4.利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③各项能取得相等的值.5.基本不等式在解决实际问题中有广泛的应用,在应用时一般按以下步骤进行:①先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;②建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;③在定义域内,求出函数的最大或最小值;④写出正确答案.【典型例题】类型一:对公式222a b ab +≥及2a b +≥ 例1.下列结论正确的是( )A .当x >0且x ≠1时,1lg 2lg x x +≥ B .当x >02≥ C .当x ≥2时,1x x+的最小值为2 D .当0<x ≤2时,1x x-无最大值 【思路点拨】利用基本不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可。

2020高考理科数学一轮复习 第七章 4 第4讲 基本不等式

2020高考理科数学一轮复习 第七章 4 第4讲 基本不等式
以上不等式等号成立的条件均为 a=b.
第七章 不等式
第七章 不等式
3.算术平均数与几何平均数
a+b
设 a>0,b>0,则 a,b 的算术平均数为___2___,几何平均数为
__a_b_,基本不等式可叙述为:两个正实数的算术平均数不小于
它们的几何平均数.
第七章 不等式
导师提醒 关注应用基本不等式的两个易错点
=91++3yy2=3(1+y)2-1+6(y 1+y)+12 =3(1+y)+11+2y-6≥2 3(1+y)·11+2y-6 =12-6=6. 当且仅当 3(1+y)=11+2y, 即 y=1 时等号成立. 所以 x+3y 的最小值为 6.
第七章 不等式
第七章 不等式
角度四 多次利用基本不等式求最值
即 x=3,y=1 时取等号, (x+3y)2+12(x+3y)-108≥0. 令 x+3y=t, 则 t>0 且 t2+12, 得 x=91-+3yy, 所以 x+3y=9-3y+3y=9-3y+3y(1+y)
第七章 不等式
若 a,b∈R,ab>0,则a4+4abb4+1的最小值为________. 【解析】 因为 ab>0,所以a4+4abb4+1≥2 4aa4bb4+1=4a2ba2b+1
=4ab+a1b≥2
4ab·a1b=4,当且仅当aa2b==212b2,时取等号,
故a4+4abb4+1的最小值是 4.
第七章 不等式
【解析】 若每批生产 x 件产品,则每件产品的生产准备费用 是80x0元,仓储费用是x8元,总的费用是80x0+x8≥2 80x0·x8= 20,当且仅当80x0=x8,即 x=80 时取等号,故选 B. 【答案】 B
第七章 不等式

高中理数课件第七章 第三节 基本不等式

高中理数课件第七章 第三节 基本不等式

∴f(x)=x+x-1 2=(x-2)+x-1 2+2≥2· x-2·x-1 2+2
=2+2=4,
当且仅当 x-2=x-1 2,即(x-2)2=1 时等号成立,
解得 x=1 或 3.又∵x>2,∴x=3,
即 a 等于 3 时,函数 f(x)在 x=3 处取得最小值,故选 C. [答案] (1)B (2)C
基本不等式的实际应用问题 [例 1] 某房地产开发公司计划在一楼区内建造一个长方形 公园 ABCD,公园由形状为长方形 A1B1C1D1 的休闲区和环公园 人行道(阴影部分)组成.已知休闲区 A1B1C1D1 的面积为 4 000 平 方米,人行道的宽分别为 4 米和 10 米(如图所示).
(1)若设休闲区的长和宽的比||BA11CB11||=x(x>1),求公园 ABCD 所占面积 S 关于 x 的函数 S(x)的解析式;
(2)由(1)知,S(x)=80 102 x+ 5x+4 160
≥80 10×2 2 x× 5x+4 160
=1 600+4 160=5 760.
当且仅当 2
x=
5, x
即 x=2.5 时,等号成立,
此时 a=40,ax=100.
所以要使公园所占面积最小,休闲区 A1B1C1D1 应设计为长 100 米,宽 40 米.
=6,故1a+4b=161a+4b·(a+b)=165+ba+4ba≥165+2
ba×4ba
=32,当且仅当ba=4ba,即 b=4,a=2 时等号成立. [答案] B
考法(二) 基本不等式与函数的交汇问题
[例 3] (2018·北京海淀模拟)已知 f(x)=32x-(k+1)3x+2,
通过常数代换法利用基本不等式求最值

基本不等式完整版(非常全面)[整理]

基本不等式完整版(非常全面)[整理]

基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。

它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。

基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。

以下是一些基本的不等式定义。

1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。

例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。

2、加法不等式:加法不等式表示两个数相加时的结果。

例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。

一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。

基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。

它们对于熟悉数学理论和解决数学问题都极其重要。

《基本不等式》 知识清单

《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当 a = b 时,等号成立。

其中,\(\frac{a + b}{2}\)叫做正数 a,b 的算术平均数,\(\sqrt{ab}\)叫做正数 a,b 的几何平均数。

基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。

二、基本不等式的推导对于正数 a,b,有:\((\sqrt{a} \sqrt{b})^2 \geq 0\)\(a 2\sqrt{ab} + b \geq 0\)\(a + b \geq 2\sqrt{ab}\)\(\frac{a + b}{2} \geq \sqrt{ab}\)当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。

三、基本不等式的几何解释以长为 a + b 的线段为直径作圆,在直径 AB 上取点 C,使 AC = a,CB = b。

过点 C 作垂直于直径 AB 的弦 DE,连接 AD,DB。

根据圆的性质,可得\(CD =\sqrt{ab}\),而半径\(\frac{a+ b}{2}\)。

因为半径不小于弦长的一半,所以\(\frac{a + b}{2} \geq \sqrt{ab}\),当且仅当 C 为圆心时,等号成立,即 a = b 。

四、基本不等式的变形1、\(a^2 + b^2 \geq 2ab\)(当且仅当 a = b 时,等号成立)推导:\(a^2 + b^2 2ab =(a b)^2 \geq 0\),所以\(a^2 +b^2 \geq 2ab\)2、\(ab \leq (\frac{a + b}{2})^2\)(当且仅当 a = b 时,等号成立)推导:由基本不等式\(\frac{a + b}{2} \geq \sqrt{ab}\),两边平方可得\(ab \leq (\frac{a + b}{2})^2\)3、\(\frac{b}{a} +\frac{a}{b} \geq 2\)(a,b 同号且不为 0,当且仅当 a = b 时,等号成立)推导:\(\frac{b}{a} +\frac{a}{b} \geq 2\sqrt{\frac{b}{a} \times \frac{a}{b}}= 2\)五、用基本不等式求最值1、若两个正数的和为定值,则当这两个数相等时,它们的积取得最大值。

不等式基本性质讲义

不等式基本性质讲义

d≤c.二.例题剖析:[例1]指出下面变形是根据不等式的哪一条基赋性质. (1)由2a>5,得a>(2)由a-7>,得a>7 (3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1.[例2]设a>b;用">"或"<"号填空:(1)(2)a-5 b-5 (3) ab (4)6a 6b (5)-(6)-a -b变式演习:1.设a<b,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;(5)-a2_____-b2;(6)a2____b2.2.根据不等式的基赋性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;(4)若-2a>-2b,则a___b.3.若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;(5)am____bm;(6)an_____bn;4.下列说法不准确的是()A.若a>b,则ac2>bc2(c 0)B.若a>b,则b<aC.若a>b,则-a>-bD.若a>b,b>c,则a>c[例3]不等式的简略变形根据不等式的基赋性质,把下列不等式化为x>a 或x>a 的情势:(1)x -3>1;(2)132->-x ;(3)3x<1+2x;(4)2x>4. [例4][学科分解]1.已知实数a.b.c 在数轴上对应的点如图13-2-1所示,则下列式子中准确的是( )A .bc>abB .ac>abC .bc<abD .c+b>a+b2.已知关于x 的不等式(1-a )x>2变形为a x -<12,则1-a 是____数.[例5]如图所示,一个已竖直的天平双方放有重物,其质量分离为a 和b,假如在天平双方的盘内分离加上相等的砝码c,看一看,盘子仍然像本来那样竖直吗?趣味数学(1)A.B.C 三人去公园玩跷跷板,如图13-2-3①中,试断定这三人的轻重. (2)P.Q.R.S 四人去公园玩跷跷板,如图13-2-3②,试断定这四人的轻重.三.基本过关练习:1.假如m <n <0,那么下列结论中错误的是( ) A .m -9<n -9 B .-m >-n C .11n m > D .1mn> 2.若a -b <0,则下列各式中必定准确的是( )A .a >bB .ab >0C .0ab< D .-a >-b(4)yx<0中,准确的序号为________. 13.知足-2x >-12的非负整数有________________________. 14.若ax >b,ac 2<0,则x________. 15.假如x -7<-5,则x;假如-2x>0,那么x . 16.当x 时,代数式2x -3的值是正数. 三.才能晋升17.根据不等式的基赋性质,把下列不等式化成“x >a ”或“x <a ”的情势: (1)4x >3x+5 (2)-2x<17 (3)0.3x <-0.9 (4)x <21x -4 【课内演习】1. (1)用“>”号或“<”号填空,并简说来由.① 6+2-3+2; ② 6×(-2)-3×(-2); ③ 6÷2-3÷2; ④ 6÷(-2)-3÷(-2) (2)假如a >b ,则2.应用不等式的基赋性质,填“>”或“<”: (1)若a >b ,则2a+12b+1;(2)若y45 <10,则y-8;(3)若a <b ,且c >0,则ac+cbc+c; (4)若a >0,b <0, c <0,(a-b )c0.3. 按照下列前提,写出仍能成立的不等式,并解释根据.(1)a >b 双方都加上-4; (2)-3a <b 双方都除以-3; (3)a ≥3b 双方都乘以2; (4)a ≤2b 双方都加上c;4. 根据不等式的性质,把下列不等式化为x >a 或x <a 的情势(a 为常数):5.比较下列各题两式的大小:6.【摸索与创新】(1)用恰当的符号填空①∣3∣+∣4∣∣3+4∣; ②∣3∣+∣-4∣3+(-4)∣; ③∣-3∣+∣4∣∣-3+4∣; ④∣-3∣+∣-4∣∣ -3+(-4)∣; ⑤∣0∣+∣4∣∣0+4∣;(2)不雅察后你能比较∣a ∣+∣b ∣和∣a +b ∣的大小吗?四.检测题 1.当x 取何值时,不等式3x <5x+1成立( ) A.- 2.下列不等式的变形中,准确的是( ) A.若2x <-3,则x <-, B.若- x <0,则x >0 C.若-,则x >y. D.若- ,则x <-6 3.若关于x 的不等式ax >b (a ≠0),有x<,那么a 必定是( ) 4.若a >b 且a≠0,b ≠0,则( ) A. B. C.a >b >0时,b <a <0时,, D.ab 同号时, ,a.b 异号时,5.已知a >b ,用“>”或“<”号填空.(1)a -2b -2; (2)3a 3b ;(3)41a 41b ; (4)-32a -32b ;(5)-10a -10b ; (6)ac 2bc 2.6.若x >y ,则ax >ay ,那么a 必定为 ( ). (A )a ≥0 (B )a ≤0 (C )a >0 (D )a <07.若m <n ,则下列各式中准确的是 ( ). (A )m -3>n -3 (B )3m >3n(C )-3m >-3n (D )13-m >13-n8.下列各题中,结论准确的是 ( ).(A )若a >0,b <0,则a b>0 (B )若a >b ,则a -b >0(C )若a <0,b <0,则ab <0 (D )若a >b ,a <0,则a b<09.下列变形不准确的是 ( ). (A )若a >b ,则b <a (B )若-a >-b ,则b >a (C )由-2x >a ,得x >a21-(D )由21x >-y ,得x >-2y10.下列不等式必定能成立的是 ( ).(A )a +c >a -c (B )a 2+c >c (C )a >-a (D )10a<a 11.鄙人列空格中填上不等号,并注明来由:(1)若5+x >8,则x3,根据是. (2)若6x >3,则x,根据是. (3)若>1,则x-3,根据是 . (4)若x >y,则- -,根据是.12.假如a <b,用"<"或">"填空. (1)a-1b-1 (2)-2a-2b (3)(4)1-a1-b13.若-,则c 0(填">"或"<"号)14.列出暗示下列各数目关系的不等式: (1)m 的2倍与3的和大于7; (2)x 的与4的差是负数;(3)a 的一半与b 的3倍的和不大于1; (4)y 的立方长短负数.15.将下列不等式化成“x >a ”或“x <a ”的情势:(1)x -17<-5; (2)x 21->-3;(3)x 327->11; (4)351+x >354--x .16.a 必定大于-a 吗?为什么?17.已知将不等式mx >m 的双方都除以m ,得x <1,则m 应知足什么前提? 18.设 a >b,用“>”或“<”号填空:(1)a+3 ______ b+3; (2)5a ______ 5b;(5)ma______ mb(m ≠0). 30分钟检测 一、选择题a>-2a,则a 的取值规模是( )A .a>0B .a<0C .a ≤0 C .a ≥0 2.已知实数a,b,c 在数轴上对应的点如图所示,则下列关系中,准确的是(•)A .ab>bcB .ac>abC .ab<bcD .c+b>a+b3.中心电视台2套“高兴辞典”栏目中,有一期的标题如图所示,两个天平都均衡,则三个球体的重量等于( )个正方体的重量.4.下列四个断定:①若ac 2>bc 2,则a>b;②若a>b,则a │c │>b │c │;③若a>b,则ba <•1;④若a>0,则b -a<b .个中准确的有( )A .1个B .2个C .3个D .4个5.李博从一个文具店买了3只笔,每支m 元,又从另一文具店买了2只笔,每只n 元,后来他以平均每只2m n+元的价钱把笔全体卖给了胜昔,成果他赔了钱,原因是( )A .m>nB .m<nC .m=nD .与m 和n 的大小无关 6.假如a>b,那么下列结论中,错误的是( )A .a -3>b -3B .3a>3bC .33a b >D .-a>-b7.已知a <b,下列式子不成立的是( ) A . a+1<b+1 B . 3a <3b C . ﹣a >﹣ b D . 假如c <0,那么<8.若a >b >0,则下列不等式不必定成立的是( )A . ac >bcB . a+c >b+cC .D . ab >b 29.若a >b,则下列不等式成立的是( ) A . a ﹣3<b ﹣3 B . ﹣2a >﹣2b C .D . a >b ﹣110.下列各式中,成立的是( ) A . 2x <3x B . 2﹣x <3﹣xC . ﹣2x >﹣3xD .11.已知a >b,下列关系式中必定准确的是( ) A . ﹣a >﹣b B . 2a <2b C . 2﹣a <2﹣b D . a 2>ab12.已知0<m <1,则m.m 2.( ) A . m 2>m > B . m 2>>m C . >m >m 2 D . >m 2>m二.填空题13.若a<b,c ≠0,则ac 2_____bc 2.14.若-3x>-2,则x_____6.15.由(a -5)x<a -5,得x>1,则a 的取值规模是______. 16设a<b,用“<”或“>”填空.(1)a+6_____b+6; (2)4a____4b; (3)-8a_____-8b .17.已知实数a.b.c 在数轴上对应的点如图所示,请断定下列不等式的准确性. (1)bc >ab (2)ac >ab (3)c ﹣b <a ﹣b(4)c+b >a+b (5)a ﹣c >b ﹣c (6)a+c <b+c .18.一罐饮料净重500克,罐上标注脂肪含量≤0.5%,则这罐饮估中脂肪含量最多克.19.某日最低气温为零下6℃,记为﹣6℃,最高气温为零上2℃,则这日气温x (℃)的取值规模是.20.k 的值大于﹣1且不大于3,则用不等式暗示 k 的取值规模是.(应用形如a ≤x ≤b 的相似式子填空.)21.已知a >b,则﹣a+c ﹣b+c (填>.<或=). 22.若x >y,则x+cy+c,5﹣2x5﹣2y . 23.若y <x,则﹣2x+1﹣2y+1. 三.解答题24.说出下列不等式的变形是根据不等式的哪一条性质:(1)由12x >-3,得x >-6;___________________________;(2)由3+x ≤5,得x ≤2;______________________________; (3)由-2x <6,得x >-3;____________________________; (4)由3x ≥2x -4,得x ≥-4.___________________________;25.根据不等式的性质解下列不等式,并说出每一步的根据:(1)x-9<1 (2)312 4x ->26.求不等式1+x>x-1成立的x取值规模.27.同桌的甲.乙两名同窗,争辩着一个问题:甲同窗说:“5a>4a”,乙同窗说:“这不成能”,请你评说一下两名同窗的不雅点毕竟哪个准确?为什么?举例解释.四.拓展探讨28.若a<b<0,则下列式子:①a+1<b+2;②1ab>;③a+b<ab;④11a b<中,准确的有()A.1个 B.2个 C.3个 D.4个。

《基本不等式》 知识清单

《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么$\sqrt{ab} \leq \frac{a + b}{2}$,当且仅当 a = b 时,等号成立。

我们把$\frac{a + b}{2}$称为正数 a,b 的算术平均数,把$\sqrt{ab}$称为正数 a,b 的几何平均数,所以基本不等式也可以表述为:两个正数的算术平均数不小于它们的几何平均数。

二、基本不等式的推导对于正数 a,b,有:$(a b)^2 \geq 0$ ,展开得到:$a^2 2ab + b^2 \geq 0$ ,即$a^2 + b^2 \geq 2ab$ 。

两边同时加上 2ab ,得到:$(a + b)^2 \geq 4ab$ ,因为 a,b 为正数,所以$a + b > 0$ ,两边同时除以 4,得到:$\frac{a + b}{2} \geq \sqrt{ab}$,当且仅当 a = b 时,等号成立。

三、基本不等式的几何解释以直角三角形为例,设直角三角形的两条直角边长度分别为 a,b,那么它的斜边长为$\sqrt{a^2 + b^2}$,而三角形的面积为$\frac{1}{2}ab$ 。

根据勾股定理有$a^2 + b^2 = c^2$ (c 为斜边长),而直角三角形的面积还可以表示为$\frac{1}{2}ch$ (h 为斜边上的高)。

因为同一个三角形面积相等,所以$\frac{1}{2}ab =\frac{1}{2}ch$ ,即$ab = ch$ 。

又因为$c \geq h$ ,所以$\sqrt{ab} \leq \frac{a + b}{2}$。

四、基本不等式的变形1、$a^2 + b^2 \geq 2ab$ (当且仅当 a = b 时,等号成立)2、$ab \leq (\frac{a + b}{2})^2$ (当且仅当 a = b 时,等号成立)3、$\frac{b}{a} +\frac{a}{b} \geq 2$ (a,b 同号,当且仅当 a = b 时,等号成立)五、基本不等式的应用1、求最值(1)如果积 xy 是定值 P,那么当 x = y 时,和 x + y 有最小值$2\sqrt{P}$。

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,abc d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥--- 5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a bc ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

2020版高考理科数学(人教版)一轮复习讲义:第七章+第三节+基本不等式和答案

2020版高考理科数学(人教版)一轮复习讲义:第七章+第三节+基本不等式和答案

第三节基本不等式1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 注:(1)此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.(2)连续使用基本不等式时,牢记等号要同时成立.[小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( ) (2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (3)x >0且y >0是x y +yx ≥2的充要条件.( ) (4)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( ) 答案:(1)√ (2)× (3)× (4)× 二、选填题1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82答案:C2.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2D.ab <a <a +b2<b 解析:选B 因为0<a <b ,所以a -ab =a (a -b )<0,故a <ab ;b -a +b 2=b -a2>0,故b >a +b 2;由基本不等式知a +b 2>ab ,综上所述,a <ab <a +b2<b ,故选B.3.函数f (x )=x +1x 的值域为( )A .[-2,2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .R 解析:选C 当x >0时,x +1x ≥2x ·1x=2. 当x <0时,-x >0. -x +1-x ≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x 的值域为(-∞,-2]∪[2,+∞).4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 答案:2 2 5.若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5考点一 利用基本不等式求最值[全析考法过关] (一) 拼凑法——利用基本不等式求最值[例1] (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.[解析] (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43,当且仅当3x =4-3x ,即x =23时,取等号.故所求x 的值为23.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x=1时,取等号.故f (x )=4x -2+14x -5的最大值为1.(3)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,取等号.[答案] (1)23 (2)1 (3)23+2[解题技法]通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.(二) 常数代换法——利用基本不等式求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________. [解析] 因为a +b =1,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+⎝⎛⎭⎫b a +a b ≥2+2 b a ·a b =2+2=4.当且仅当a =b =12时,取等号.[答案] 4 [变式发散]1.(变条件)将条件“a +b =1”改为“a +2b =3”,则1a +1b 的最小值为________.解析:因为a +2b =3,所以13a +23b =1.所以1a +1b =⎝⎛⎭⎫1a +1b ⎝⎛⎭⎫13a +23b =13+23+a 3b +2b3a≥1+2 a 3b ·2b 3a=1+223.当且仅当a =2b 时,取等号.答案:1+2232.(变设问)保持本例条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 解析:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 答案:9[解题技法]通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. (三) 消元法——利用基本不等式求最值[例3] 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. [解析] 法一(换元消元法):由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0.令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 法二(代入消元法):由x +3y +xy =9, 得x =9-3y 1+y,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y-6=12-6=6.即x +3y 的最小值为6. [答案] 6 [解题技法]通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.(四) 利用两次基本不等式求最值 [例4] 已知a >b >0,那么a 2+1b (a -b )的最小值为________.[解析] 由a >b >0,得a -b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24.∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a2=4, 当且仅当b =a -b 且a 2=4a 2,即a =2,b =22时取等号.∴a 2+1b (a -b )的最小值为4.[答案] 4 [解题技法]两次利用基本不等式求最值的注意点当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性.[过关训练]1.(2019·常州调研)若实数x 满足x >-4,则函数f (x )=x +9x +4的最小值为________.解析:∵x >-4,∴x +4>0, ∴f (x )=x +9x +4=x +4+9x +4-4≥2(x +4)·9x +4-4=2,当且仅当x +4=9x +4,即x =-1时取等号.故函数f (x )=x +9x +4的最小值为2.答案:22.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是________. 解析:因为正数x ,y 满足x 2+6xy -1=0, 所以y =1-x 26x.由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x>0解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x≥22x 3·13x =223, 当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.答案:223考点二 利用基本不等式解决实际问题[师生共研过关][典例精析]某厂家拟定在2019年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家利润最大? [解] (1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-2m +1,每件产品的销售价格为1.5×8+16xx (元), 所以2019年的利润y =1.5x ×8+16xx-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0).(2)因为m ≥0时,16m +1+(m +1)≥216=8,所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.[解题技法]利用基本不等式解决实际问题的3个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[过关训练]1.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 解析:设一边长为x m ,则另一边长可表示为(10-x )m ,由题知0<x <10,则面积S =x (10-x )≤⎝ ⎛⎭⎪⎫x +10-x 22=25,当且仅当x =10-x ,即x =5时等号成立,故当矩形的长与宽相等,且都为5 m 时面积取到最大值25 m 2.答案:252.(2019·孝感模拟)经测算,某型号汽车在匀速行驶的过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最低?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],当x =65时,y 有最小值,为175×675=9,当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 有最小值,为10,因为9<10,所以该型号汽车的速度为65 km/h 时,每小时耗油量最低.(2)设总耗油量为l ,由题意可知l =y ·120x ,当x ∈[50,80)时,l =y ·120x =85⎝⎛⎭⎫x +4 900x -130≥85⎝⎛⎭⎫2x ×4 900x -130=16,当且仅当x =4 900x ,即x =70时,l 取得最小值,最小值为16.当x ∈[80,120]时,l =y ·120x =1 440x -2为减函数,故当x =120时,l 取得最小值,最小值为10,因为10<16,所以当速度为120 km/h 时,总耗油量最少.考点三 基本不等式的综合应用[师生共研过关][典例精析](1)已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2(2)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.[解析] (1)把圆x 2+y 2-2y -5=0化成标准方程为x 2+(y -1)2=6,所以圆心为C (0,1). 因为直线ax +by +c -1=0经过圆心C ,所以a ×0+b ×1+c -1=0,即b +c =1.又b >0,c >0,因此4b +1c =(b +c )⎝⎛⎭⎫4b +1c =4c b +b c +5≥2 4c b ·bc +5=9.当且仅当b =2c ,且b +c =1, 即b =23,c =13时,4b +1c 取得最小值9.(2)由题意a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12⎝⎛⎭⎫n +16n +1≥12⎝⎛⎭⎫2 n ·16n +1=92, 当且仅当n =4时取等号. 所以S n +8a n 的最小值是92.[答案] (1)A (2)92[解题技法]利用基本不等式解题的策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.[过关训练]1.已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( )A.12 B.32 C .1D .2解析:选C 由题意可得a >0, ①当x >0时,f (x )=x +ax +2≥2a +2, 当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax +2≤-2a +2,2020版高考理科数学(人教版)一轮复习讲义:第七章+第三节+基本不等式和答案 - 11 - / 11 当且仅当x =-a 时取等号,所以⎩⎪⎨⎪⎧2-2a =0,2a +2=4,解得a =1,故选C. 2.已知向量a =(m,1),b =(4-n,2),m >0,n >0,若a ∥b ,则1m +8n 的最小值为________.解析:∵a ∥b ,∴4-n -2m =0,即2m +n =4.∵m >0,n >0,∴1m +8n =14(n +2m )⎝⎛⎭⎫1m +8n =14×⎝⎛⎭⎫10+n m +16m n ≥14×⎝⎛⎭⎫10+2 n m ·16m n =92,当且仅当4m =n =83时取等号.∴1m +8n 的最小值是92. 答案:92。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[基本知识]1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式⎭⎪⎬⎪⎫(1)a 2+b 2≥2ab ,a ,b ∈R ;(2)b a +ab ≥2,ab >0;(3)ab ≤⎝⎛⎭⎫a +b 22,a ,b ∈R ;(4)a 2+b 22≥⎝⎛⎭⎫a +b 22,a ,b ∈R 当且仅当a =b 时等号成立.3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)[基本能力]一、判断题(对的打“√”,错的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值为4.( ) (3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( )答案:(1)× (2)× (3)× (4)× 二、填空题1.当x >0时,函数f (x )=2xx 2+1的最大值为________. 答案:12.已知a ,b ∈(0,+∞),若ab =1,则a +b 的最小值为________;若a +b =1,则ab 的最大值为________.解析:由基本不等式得a +b ≥2ab =2,当且仅当a =b =1时取到等号;ab ≤⎝⎛⎭⎫a +b 22=14,当且仅当a =b =12时取到等号. 答案:2143.若a ,b ∈R,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:∵a ,b ∈R,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.答案:44.已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.解析:由a +2b =3得13a +23b =1,所以2a +1b =⎝⎛⎭⎫13a +23b ⎝⎛⎭⎫2a +1b =43+a 3b +4b 3a ≥43+2 a 3b ·4b 3a =83.当且仅当a =2b =32时取等号. 答案:83[全析考法]考法一通过拼凑法利用基本不等式求最值利用基本(均值)不等式解题一定要注意应用的前提“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本(均值)不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.[例1] (1)(2019·泉州检测)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B .12C.34D .23(2)(2019·南昌调研)已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________. [解析] (1)∵0<x <1,∴x (3-3x )=3x (1-x )≤3⎣⎡⎦⎤x +(1-x )22=34. 当且仅当x =1-x ,即x =12时等号成立.(2)∵x >2,m >0,∴y =x -2+mx -2+2≥2(x -2)·mx -2+2=2m +2,当且仅当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,∴2m +2=6,解得m =4. [答案] (1)B (2)4 [方法技巧]通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提. 考法二 通过常数代换法利用基本不等式求最值[例2] (1)(2019·青岛模拟)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3(2)(2019·齐齐哈尔八校联考)若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.[解析] (1)因为lg 2x +lg 8y =lg 2,所以x +3y =1,所以1x +13y =⎝⎛⎭⎫1x +13y (x +3y )=2+3y x +x 3y ≥4当且仅当3y x =x 3y ,即x =12,y =16时取等号. (2)∵x >0,y >0,x +2y =1,∴2x +1y =(x +2y )·⎝⎛⎭⎫2x +1y =2+2+4y x +x y≥4+24y x ·xy =8,当且仅当x =12,y =14时取等号,∴2x +1y 的最小值为8,又2x +1y ≥m 恒成立,∴m ≤8,即m 的最大值为8.[答案] (1)C (2)8 [方法技巧]通过常数代换法利用基本不等式求最值的步骤常数代换法适用于求解条件最值问题.通过此种方法利用基本不等式求最值的基本步骤为:(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值.[集训冲关]1.[考法一]已知x <0,则函数y =4x +x 的最大值是( ) A .-18 B .18 C .16D .-4解析:选D ∵x <0,∴y =-⎣⎡⎦⎤4-x +(-x )≤-4,当且仅当x =-2时取等号.2.[考法二]正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.解析:因为a >0,b >0,1a +9b =1.所以a +b =(a +b )·⎝⎛⎭⎫1a +9b =10+b a +9a b ≥10+29=16.由题意.得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,又x 2-4x -2=(x -2)2-6的最小值为-6,所以-6≥-m ,即m ≥6.答案:[6,+∞)突破点二 基本不等式的综合问题关于基本不等式的考题,涉及的知识点较多,常融合于函数、数列、立体几何、解析几何及实际问题中,此类问题一般难度较大,需要较强的分析问题、解决问题的能力.[全析考法]考法一基本不等式的实际应用问题[例1] 如图,一个铝合金窗分为上、下两栏,四周框架和中间隔挡的材料为铝合金,宽均为6 cm,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28 800 cm 2,设该铝合金窗的宽和高分别为a cm,b cm,铝合金窗的透光部分的面积为S cm 2.(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? [解] (1)∵铝合金窗宽为a cm,高为b cm,a >0,b >0, ∴ab =28 800.①设上栏框内高度为h cm,则下栏框内高度为2h cm,则3h +18=b ,∴h =b -183, ∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×(b -18)3=(a -16)(b -18)=ab -2(9a +8b )+288=28 800-2(9a +8b )+288=29 088-2(9a +8b ).(2)∵9a +8b ≥29a ·8b =29×8×28 800=2 880,当且仅当9a =8b 时等号成立,此时b=98a ,代入①式得a =160,从而b =180,即当a =160,b =180时,S 取得最大值. ∴铝合金窗的宽为160 cm,高为180 cm 时,可使透光部分的面积最大. [方法技巧]利用基本不等式求解实际应用题的方法(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.考法二基本不等式与其他知识的交汇问题考向一 基本不等式与函数的交汇问题[例2] (2019·北京西城区期末)已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)[解析] 设A (x 1,y 1),B (x 2,y 2),不妨设x 1<x 2.函数y =2x 为单调增函数,若点A ,B 到直线y =12的距离相等,则12-y 1=y 2-12,即y 1+y 2=1,即2x 1+2x 2=1.由基本不等式得1=2x 1+2x 2≥22x 1·2x 2,当且仅当x 1=x 2=-1时取等号,则2x 1+x 2≤14,解得x 1+x 2<-2(因为x 1≠x 2,等号取不到),故选B.[答案] B考向二 基本不等式与数列的交汇问题[例3] (2019·济宁期末)已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为( )A .16B .9C .5D .4[解析] ∵1a ,12,1b 成等差数列,∴1a +1b =1,∴a +9b =(a +9b )⎝⎛⎭⎫1a +1b =10+a b +9b a ≥10+2a b ·9b a =16,当且仅当a b =9b a 且1a +1b =1,即a =4,b =43时等号成立,故选A. [答案] A考向三 基本不等式与解析几何的交汇问题[例4] (2019·邢台月考)当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为( )A .y =±2xB .y =±22xC .y =±2xD .y =±12x[解析] 由题意得m >0,e =1+m 2+4m =1+m +4m ≥1+2m ·4m =5,当且仅当m =4m ,即m =2时等号成立,所以双曲线的方程为x 22-y 28=1,所以渐近线方程为y =±2x ,故选A.[答案] A [方法技巧]求与其他知识交汇的最值问题的类型及策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.[集训冲关]1.[考法二·考向一]已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为( )A .3-2 2B .5C .3+2 2D .3+ 2解析:选C 令x +3=1,得x =-2,故A (-2,-1).又点A 在直线mx +ny +1=0上,∴-2m -n +1=0,即2m +n =1,则1m +1n =⎝⎛⎭⎫1m +1n (2m +n )=3+n m +2m n ≥3+2 n m ·2mn =3+2 2.当且仅当m =12+2,n =12+1时等号成立,所以1m +1n 的最小值为3+22,故选C.2.[考法二·考向二]已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( )A .3B .4C .5D .6解析:选B 由题意知ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时取等号.3.[考法二·考向三]两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R,n ∈R,且mn ≠0,则4m 2+1n 2的最小值为( ) A .1 B .2 C .3D .4解析:选D 由题意可知两圆内切,x 2+y 2-2my +m 2-1=0化为x 2+(y -m )2=1,x 2+y 2-4nx +4n 2-9=0化为(x -2n )2+y 2=9,故4n 2+m 2=3-1=2,即4n 2+m 2=4,4m 2+1n 2=14⎝⎛⎭⎫4m 2+1n 2(4n 2+m 2)=2+4n 2m 2+m 24n 2≥2+24n 2m 2·m 24n 2=4. 4.[考法一]某品牌行车记录仪支架销售公司从2018年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是多少万元?解:由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎡⎦⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.[课时跟踪检测][A 级 基础题——基稳才能楼高]1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1解析:选B 显然x ≥0.当x =0时,f (x )=0;当x >0时,x +1≥2x ,∴f (x )≤12,当且仅当x=1时取等号,f (x )max =12.2,若a ,b ∈R,则下列恒成立的不等式是( ) A.|a +b |2≥|ab |B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22D .(a +b )⎝⎛⎭⎫1a +1b ≥4解析:选C 由于a ,b ∈R,所以A 、B 、D 项不能直接运用基本不等式考察,先考虑C 项. ∵a 2+b 22-⎝⎛⎭⎫a +b 22=2(a 2+b 2)-(a 2+2ab +b 2)4=a 2-2ab +b 24=(a -b )24≥0,∴a 2+b 22≥⎝⎛⎭⎫a +b 22.3.(2018·东北三省四市一模)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B 由题意可得4y +1x =1,则x +y =(x +y )·⎝⎛⎭⎫4y +1x =5+4x y +y x ≥5+24x y ×yx =9,当且仅当4x y =yx ,即x =3,y =6时等号成立,故x +y 的最小值为9.4.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是( ) A .3 B .3.5 C .4D .4.5解析:选C 因为x +y +1x +1y =x +y +x +y xy ≥x +y +x +y ⎝⎛⎭⎫x +y 22=x +y +4x +y ,所以x +y +4x +y≤5.令x +y =t .则t 2-5t +4≤0,解得1≤t ≤4. 5.(2019·西藏林芝期中)若x ,y 均为正数,则3x y +12yx +13的最小值是( )A .24B .28C .25D .26解析:选C 因为x ,y 均为正数,所以由基本不等式得3x y +12yx +13≥23x y ·12yx +13=25,当且仅当x =2y 时等号成立,故3x y +12yx +13的最小值是25,故选C.[B 级 保分题——准做快做达标]1.(2019·郑州外国语学校月考)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R = lga +b2,则( ) A .R <P <Q B .Q <P <R C .P <Q <RD .P <R <Q解析:选C ∵a >b >1,∴lg a >lg b >0,12(lg a +lg b )>lg a ·lg b ,即Q >P .∵a +b 2>ab ,∴lg a +b 2>lg ab =12(lg a +lg b ),即R >Q ,∴P <Q <R . 2.(2019·湖北稳派教育联考)若x >0,y >0,则“x +2y =22xy ”的一个充分不必要条件是( )A .x =yB .x =2yC .x =2且y =1D .x =y 或y =1解析:选C ∵x >0,y >0,∴x +2y ≥22xy ,当且仅当x =2y 时取等号.故“x =2且y =1”是“x +2y =22xy ”的充分不必要条件,故选C.3.(2019·豫西南联考)已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为( )A .1B .12C.34D .32解析:选C 由题意知a m a n =a 212m+n -2=4a 2122=a 2124,∴m +n =6,则2m +12n = 16⎝⎛⎭⎫2m +12n (m +n )=16( 52+2n m +m 2n )≥16×⎝⎛⎭⎫52+2=34,当且仅当m =2n 时取等号,∴2m +12n 的最小值为34,故选C.4.(2019·岳阳一中模拟)已知a >b >0,则2a +4a +b +1a -b的最小值为( ) A .6 B .4 C .2 3D .3 2解析:选A 因为4a +b +1a -b =12a ( 4a +b +1a -b )·[](a +b )+(a -b )=12a [ 5+a +b a -b+4(a -b )a +b ]≥12a (5+4)=92a (当且仅当a =3b 时取等号),所以2a +4a +b +1a -b ≥2a +92a ≥6(当且仅当a =32时后一个不等式取等号),故选A.5.(2019·甘肃诊断)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( )A.53 B .83C .8D .24解析:选C 因为a ∥b ,故3(y -1)=-2x ,整理得2x +3y =3,所以3x +2y =13(2x +3y )⎝⎛⎭⎫3x +2y =13( 12+9y x +4x y )≥13⎝⎛⎭⎫12+2 9y x ·4x y =8,当且仅当x =34,y =12时等号成立,所以3x +2y 的最小值为8,故选C.6.若实数a ,b ,c 满足a 2+b 2+c 2=8,则a +b +c 的最大值为( ) A .9 B .2 3 C .3 2D .2 6解析:选D (a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =8+2ab +2ac +2bc . ∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴8+2ab +2ac +2bc ≤2(a 2+b 2+c 2)+8=24,当且仅当a =b =c 时取等号, ∴a +b +c ≤2 6.7.(2019·林州一中模拟)已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为( )A .10B .15C .20D .25解析:选C 由题意可得a 9+a 10+a 11+a 12=S 12-S 8,由S 8-2S 4=5可得S 8-S 4=S 4+5,由等比数列的性质可得S 4,S 8-S 4,S 12-S 8成等比数列,则S 4(S 12-S 8)=(S 8-S 4)2,综上可得:a 9+a 10+a 11+a 12=S 12-S 8=(S 4+5)2S 4=S 4+25S 4+10≥2S 4×25S 4+10=20,当且仅当S 4=5时等号成立.故a 9+a 10+a 11+a 12的最小值为20.8.(2019·赣州月考)半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA ―→+PB ―→)·PC ―→的最小值是( )A .2B .0C .-1D .-2解析:选D ∵O 为AB 的中点,∴PA ―→+PB ―→=2PO ―→,从而(PA ―→+PB ―→)·PC ―→=2PO ―→·PC ―→=-2|PO ―→ |·|PC ―→|.又|PO ―→|+|PC ―→|=|OC ―→|=12AB =2≥2|PO ―→|·|PC ―→|,∴|PO ―→|·|PC ―→|≤1,∴-2|PO ―→|·|PC ―→|≥-2,∴当且仅当|PO ―→|=|PC ―→|=1,即P 为OC 的中点时,(PA ―→+PB ―→)·PC ―→取得最小值-2,故选D.9.(2019·玉溪月考)在△ABC 中,若a 2+b 2=2c 2,则内角C 的最大值为( ) A.π6 B .π4C.π3 D .2π3解析:选C∵a 2+b 2=2c 2,∴由余弦定理得cos C =a 2+b 2-c 22ab ≥a 2+b 2-c 2a 2+b 2=2c 2-c 22c 2=12,当且仅当a =b 时取等号.∵C 是三角形的内角,∴角C 的最大值为π3,故选C. 10.(2019·淮安学情调研)已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________. 解析:∵x >0,y >0,x +2y =3,∴y x +1y =y x +x +2y3y =y x +x 3y +23≥2y x ·x 3y +23=23+23,当且仅当y x =x 3y 即x =63-9,y =6-33时等号成立,∴y x +1y 的最小值为23+23.答案:23+2311.(2019·嘉兴基础测试)若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________. 解析:由2m +n +6=mn ,m >0,n >0,得22mn +6≤2m +n +6=mn ,令2mn =t (t >0),则2t +6≤t 22,即t 2-4t -12≥0,解得t ≤-2(舍)或t ≥6,即2mn ≥6,mn ≥18,则mn 的最小值是18.答案:1812.(2019·张掖月考)设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.解析:∵a >0,b >1,a +b =2, ∴3a +1b -1=⎝⎛⎭⎫3a +1b -1(a +b -1)=3+3(b -1)a +ab -1+1=4+3(b -1)a +a b -1≥4+23,当3(b -1)a =ab -1, 即a =3-32,b =3+12时取等号,故最小值为4+2 3. 答案:4+2 313.(2019·石家庄高三一检)已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.解析:因为直线l 经过点(2,3),所以2a +3b -ab =0,所以b =2aa -3>0,所以a -3>0,所以a +b =a +2a a -3=a -3+6a -3+5≥5+2(a -3)·6a -3=5+26,当且仅当a -3=6a -3,即a =3+6,b =2+6时等号成立.答案:5+2 614.(2018·唐山二模)已知a >0,b >0,c >0,d >0,a 2+b 2=ab +1,cd >1. (1)求证:a +b ≤2;(2)判断等式ac +bd =c +d 能否成立,并说明理由.解:(1)证明:由题意得(a +b )2=3ab +1≤3⎝⎛⎭⎫a +b 22+1,当且仅当a =b 时取等号. 解得(a +b )2≤4,又a ,b >0, 所以a +b ≤2. (2)不能成立.理由:由均值不等式得ac +bd ≤a +c 2+b +d2,当且仅当a =c 且b =d 时等号成立. 因为a +b ≤2, 所以ac +bd ≤1+c +d2. 因为c >0,d >0,cd >1, 所以c +d =c +d 2+c +d 2≥c +d 2+cd >c +d2+1≥ac +bd ,故ac +bd =c +d 不能成立.15.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675], 所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少. (2)设总耗油量为l L,由题意可知l =y ·120x ,①当x ∈[50,80)时,l =y ·120x =85⎝⎛⎭⎫x +4 900x -130≥85⎝⎛⎭⎫2 x ×4 900x -130=16,当且仅当x =4 900x ,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x -2为减函数,所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.。

相关文档
最新文档