确定圆的条件教案

合集下载

探究确定圆的条件优秀教案

探究确定圆的条件优秀教案

【教学设计】教学设计_确定圆的条件_数学_一、课标要求:知道三角形外心的概念.二、学习目标:1、经历确定圆的条件的探究过程,掌握作图方法,并能归纳出确定圆的条件2、通过自主学习,掌握相关概念,并探索外心的性质.三、教材分析1.教材的地位和作用本节课的内容是在学生掌握了"圆的对称性"等相关知识之后的延续学习,学生已积累了画一个圆的经验.基于以上两点,提出本课的具体学习任务:①动手操作,探究过一点、两点、三点能否作出圆?如果能,能做出几个?②了解三角形的外接圆、三角形的外心等概念,通过观察、实验、归纳、类比、推断获得的数学猜想,感受证明的必要性及结论的确定性,同时也应力图在学习中让学生体验成功.2.教学重点、难点:重点:通过探究过程,归纳确定圆的条件。

难点:通过探究过程,归纳确定圆的条件。

3.教法与学法:为了提高目标的达成度,本节课讲采用学生的自主探究和合作学习为主,教师的引导、追问为辅的方法. 教学内容的设计上采用由生活中问题导入,由浅入深、层层递进的方式;在活动方式上采用自主探究、合作交流、集中展示、归纳总结来帮助学生理解;在能力培养上,充分以学生为主体,给学生充分的探究时间和空间,引导学生反思. 整个教学过程中边启发,边探索,边归纳,突出以学生为主体的探索性学习活动.遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中.四、学情分析:学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识.同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”.学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法. 五、教学过程:第一环节:导入篇【师生活动】1.创设情境.这是一个破损的圆形镜片的一部分2.提出问题:请你还原出这个破损的圆形镜片所在的圆?3.交流困难:找不到圆心和半径4.引入新课:在找圆心的过程中咱们同学遇到了相同的困难,相信经历了本节课的学习你们一定会很快找到答案,带着你们的困惑我们一起认识本节课要学习的内容《确定圆的条件》(板书课题)【设计意图】.用生活中的一道学生暂时解决不了的问题开场,激发学生的兴趣,在短时间内集中学生的注意力,形成较高的课堂关注,同时引入课题第二环节:温故篇学习目标一:经历确定圆的条件的探究过程,掌握作图方法,并能归纳出确定圆的条件.类比联想,提出问题1.提问:确定直线的条件是什么?过一点能画多少条直线?过两点呢?2.类比确定直线的探究方法,设计“确定圆的条件”探究方案.3. 根据方案,探究要确定一个圆,需要满足的条件?4.学生交流自己设计的方案.【设计意图】“学生原有的知识和经验是教学活动的起点”通过复习确定直线的方法,启发学生用类比的方法探索确定圆的条件.【预设问题及应对】:估计学生不知道从何入手设计探究方案,教师要结合探究确定直线的条件的过程,引导学生总结探究思路,为探究过程提供思路.第三环节:探索篇探究一: (1)经过一个点A,是否可以作圆?如果能作,可以作几个?【师生活动】请学生到黑板作图(如图),并得出:经过一个点A作圆很容易,只要以点A 外的任意一点为圆心,以这一点与点A的距离为半径就可以作出,这样的圆有无数多个.其他学生在导学案上完成.【设计意图】:开门见山点明要研究目标,告诉学生从最简单的条件开始探究,为两个点及多个点探究埋下伏笔,也符合学生由简单到复杂循序渐进的学习规律.重点是让学生动手操作,在操作中学会画圆,知道圆心、半径都不确定,所以经过一点可作无数个圆,不能确定一个圆.【预设问题及应对】:可能会有同学以点A为圆心画圆,这样的圆不符合要求。

确定圆的条件(教学设计)

确定圆的条件(教学设计)

4.2确定圆的条件〖学习目标〗1.知识与技能:①理解不在同一直线上的三个点确定一个圆;②掌握过不在同一直线上的三个点作圆的方法;③了解三角形的外接圆、三角形的外心等概念,提高应用数学知识解决实际问题的能力。

2.过程与方法:经历不在同一直线上的三个点确定一个圆的探索过程,体会归纳、类比以及由特殊到一般的数学思想方法。

3.情感态度与价值观:在探索活动中培养学生勇于探究的学习品质,体会解决问题的策略,学会数学地思考。

〖学习过程〗(一)创设情境激发兴趣Array问题1:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是哪一块?问题2:玻璃店里的师傅,要划出一块与原来大小一样的圆形玻璃,他只要知道圆的什么就可以了?为什么?问题3:如果店里师傅仅仅知道圆的半径,他可以画出多少个这样的圆?为什么?(二)操作探究归纳结论活动一:过定点A是否可以作圆?如果能作?可以作几个?活动二:过两个定点A、B是否可以作圆?如果能作,可以作几个?活动三:过三点,是否可以作圆,如果能,可以作几个?(分两种情况讨论)归纳结论:_______________________________________________________________(三)例题示范已知:△ABC,求作⊙O,使它经过A、B、C三点。

(四)知识拓展经过4个(或4个以上的)点是不是一定能作圆?(五)合作交流形成概念:三角形的外接圆、三角形的外心、圆的内接三角形。

自主探索:三角形的外心与三角形的位置关系。

(六)学以致用 发展能力1.直角三角形的两条直角边长分别为6和8,那么这个三角形的外接圆的半径等于 .2.①破镜重圆:利用所学知识,帮助玻璃店里的师傅找出残缺圆片所在的圆心,并把这个圆画完整.②实际操作:小明发现,店里师傅先在圆弧上顺次取三点A 、B 、C.(如图),使AB=BC.并测量得:AB=BC=5dm,AC=8dm,然后师傅计算了下,就很快划出与原来一样大小的圆形玻璃,你知道他计算的是什么?(七)回顾反思 交流收获本节课你学到了什么?(八)达标检测1.判断题:(1)三点确定一个圆 ( )(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆 ( )(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形( )(4)三角形的外心是三角形三边中线的交点 ( )(5)三角形的外心到三角形各顶点距离相等 ( )2.已知点O 是△ABC 的外心,∠A=500,则∠BOC 的度数是 ( )A.500B. 1000C.1150D. 650(九)作业习题4.2A组 1、2题A B C。

《确定圆的条件》 (第2课时) 教案 探究版

《确定圆的条件》 (第2课时) 教案 探究版

《确定圆的条件》(第2课时)教案探究版一、教学目标知识与技能1.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆.2.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题.过程与方法1.通过对圆的一般内接四边形的性质的探究,培养学生的观察、分析、概括能力.2.通过定理的证明过程,促进学生的发散思维;通过定理的应用,进一步提高学生的应用能力和解决问题的能力.3.在解决几何问题时,常常需要添加辅助线,以此构建定理所需的基本图形,运用相关图形的性质得到问题的解决.情感、态度1.体会几何定理学习的特点,培养科学的思维方法和良好的数学品质,引导学生欣赏几何图形的变化美和逻辑美,进一步体会几何定理的发现和论证的乐趣,形成严谨求实的科学态度.2.在教学中渗透事物普遍存在的相互联系、相互转化的观点,让学生体验到用运动的观点来研究图形的思想方法,同时,借助计算机技术培养学生在数学学习中的动手实践能力,通过让学生充分感受发现问题和解决问题带来的愉悦,培养学生的数学创新意识.二、教学重点、难点重点:圆内接四边形的性质的运用.难点:圆内接四边形的性质的灵活应用及如何添加辅助线.三、教学过程设计(一)复习引入上节课我们主要学习了哪些内容?师生活动:教师出示问题;学生复习,回答;教师订正.答:上节课我们主要学习了确定圆的条件:不在同一条直线上的三个点确定一个圆,及三角形的外接圆的概念、三角形的外心的概念、圆的内接三角形的概念.这节课我们将在这些知识的基础上来进一步探究圆内接四边形的性质.首先我们来学习圆内接四边形的概念.设计意图:通过教师提问的方式简单复习上节课所学知识,引出本节课所学内容. (二)探究新知如图,四边形ABCD 的四个顶点都在⊙O 上,我们说四边形ABCD 是⊙O 的内接四边形,⊙O 是四边形ABCD 的外接圆.一般地,如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.师生活动:教师给出圆内接四边形的概念及圆内接多边形的概念.议一议 (1)如图,在⊙O 的内接四边形ABCD 中,∠A 与∠C ,∠B 与∠D 分别是它的两组对角.∠A 所对的弧是哪条弧?∠C 所对的弧是哪条弧?(2)∠A 与∠C 所对的两条弧的度数之和是多少?由此你发现∠A 与∠C 有怎样的数量关系?∠B 与∠D 呢?师生活动:教师出示问题,学生思考、讨论、回答问题,教师分析,引导. 答:(1)∠A 所对的弧是︵BCD ,∠C 所对的弧是︵BAD .(2)∠A 与∠C 所对的两条弧的度数之和是360°,由此可得∠A +∠C =180°.同理可得∠B +∠D =180°.结论:圆内接四边形的对角互补.想一想 如图,延长BC 到点E ,得∠DCE .∠DCE 是四边形ABCD 的一个外角,∠A 称为∠DCE 的内对角.∠DCE 与∠A 的大小有什么关系?为什么?师生活动:教师出示问题,学生思考并回答问题,最后教师总结.答:∠DCE=∠A;理由:∵∠A+∠BCD=180°(圆内接四边形的对角互补),∠BCD+∠DCE=180°,∴∠DCE=∠A(同角的补角相等).结论:圆内接四边形的任何一个外角都等于它的内对角.设计意图:让学生亲自动手,进行探究、得出结论,激发学生的求知欲望,进而培养学生的实践能力.(三)典例精析例如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE.试判断BE与CE是否相等,并说明理由.师生活动:教师出示例题并分析、引导,学生尝试完成,最后教师给出规范的解题过程.解:BE=CE.理由如下:如上图,∵∠EAM是圆内接四边形AEBC的外角,∴∠EAM=∠EBC.∵∠ECB=∠EAB,∠EAM=∠EAB,∴∠ECB=∠EBC.∴EB=EC.设计意图:培养学生正确应用所学知识解决问题的能力,增强应用意识.(四)课堂练习如图,在⊙O 中,∠BOD =80°,求∠BAD 和∠BCD 的度数.师生活动:教师先找几名学生板演,然后讲解出现的问题. 参考答案解:∵∠BOD =80°,∴∠BAD =12∠BOD =40°(圆周角的度数等于它所对弧上的圆心角度数的一半).∴∠BCD =180°-∠BAD =180°-40°=140°.设计意图:通过本环节的学习,让学生巩固所学知识,加深对所学知识的理解. (五)课堂小结1.圆内接多边形及相关概念一般地,如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.2.圆内接四边形的性质 (1)圆内接四边形的对角互补;(2)圆内接四边形的任何一个外角都等于它的内对角. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过总结使学生梳理本节课所学内容,掌握本节课的核心内容. (六)布置作业1.如图,AB 为半圆的直径,点C ,D 在半圆上,且AD =CD ,∠B =50°,求∠A ,∠C 的度数.ODCBA2.如图,分别延长圆内接四边形ABCD 的两组对边,延长线相交于点E ,F ,若∠E =40°,∠F =60°,求∠A 的度数.参考答案1.∠A =65°,∠C =115°.2.∠A =40°. 四、课堂检测设计1.如图,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ).A .36°B .56°C .72°D .144°2.如图,四边形ABCD 是圆内接四边形,AB 是圆的直径,若∠BAC =20°,则∠ADC 等于( ).DCBAA .110°B .100°C .120°D .90°3.如图,在圆内接四边形ABCD 中,∠C =110°,则∠BOD 的度数为( ).A .140°B .70°C .80°D .60°4.如图,四边形ABCD 内接于圆O ,若∠BOD =130°,则∠DCE =________.5.如图所示,已知AB 是半圆O 的直径,∠BAC =32°,点D 是︵AC 的中点,则∠DAC 的度数是____________.6.已知:如图,∠EAD 是圆内接四边形ABCD 的一个外角,并且BD =DC . 求证:AD 平分∠EAC .参考答案1.D.2.A.3.A.4.65°.5.29°.6.证明:∵∠EAD是圆内接四边形ABCD的一个外角,∴∠EAD=∠DCB.∵BD=DC,∴∠DBC=∠DCB.又∵∠DBC=∠DAC,∴∠EAD=∠DAC,即AD平分∠EAC.。

北师大版数学九年级下册3.5《确定圆的条件》教案

北师大版数学九年级下册3.5《确定圆的条件》教案

北师大版数学九年级下册3.5《确定圆的条件》教案一. 教材分析《确定圆的条件》这一节主要让学生掌握确定一个圆的条件,包括圆心坐标和半径,以及如何根据这些条件来确定一个圆。

同时,通过实例让学生理解圆的方程的意义和应用。

二. 学情分析学生在学习这一节之前,已经学习了坐标系和方程的基础知识,对几何图形也有一定的认识。

但是,对于圆的方程的理解可能还需要进一步的引导和培养。

三. 教学目标1.让学生掌握确定一个圆的条件,包括圆心坐标和半径。

2.让学生理解圆的方程的意义和应用。

3.培养学生的空间想象能力和问题解决能力。

四. 教学重难点1.圆的方程的意义的理解和应用。

2.如何引导学生从实际问题中抽象出圆的方程。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解圆的方程的意义和应用,然后通过练习让学生进一步巩固所学知识。

六. 教学准备1.准备相关的实例和练习题。

2.准备课件和黑板。

七. 教学过程1.导入(5分钟)通过一个实际问题引导学生思考如何确定一个圆。

例如,给出一个圆的三个点,让学生思考如何确定这个圆。

2.呈现(15分钟)通过课件或者板书,呈现圆的方程。

解释圆的方程的意义,包括圆心坐标和半径。

让学生理解圆的方程是如何表示一个圆的。

3.操练(15分钟)让学生通过练习题来巩固对圆的方程的理解。

可以给出一些具体的圆的方程,让学生求解圆心坐标和半径,或者给出圆心坐标和半径,让学生写出对应的圆的方程。

4.巩固(10分钟)通过一些实际问题,让学生应用圆的方程来解决问题。

例如,给出一个圆的方程,让学生求解圆与直线的交点,或者求解圆的面积。

5.拓展(10分钟)可以让学生思考一些拓展问题,例如,如何确定一个圆的位置和大小,如何求解两个圆的交点等。

6.小结(5分钟)通过小结,让学生回顾所学知识,加深对圆的方程的理解。

7.家庭作业(5分钟)布置一些相关的练习题,让学生在家里完成。

8.板书(5分钟)在黑板上写出圆的方程,以及解题的关键步骤。

2.3 确定圆的条件 教案-苏科版九年级数学上册

2.3 确定圆的条件 教案-苏科版九年级数学上册

2.3 确定圆的条件教案-苏科版九年级数学上册
一、教学目标
1.了解圆的定义和性质;
2.掌握圆的常识和圆的元素的特点;
3.能够根据给定的条件确定圆。

二、教学重点
1.圆的定义和性质;
2.圆的元素的特点。

三、教学难点
1.根据给定的条件确定圆。

四、教学准备
1.教学课件和投影仪;
2.学生作业本和练习题。

五、教学过程
1. 导入
首先通过展示多种圆形的图片,引出本课的话题——圆。

让学生讨论圆的形状、特点和应用领域。

2. 引入
在第一部分中,我们了解到如果在平面上取一个点,并以该点为圆心,以一定的长度为半径作圆,那么这个平面范围内的所有点与圆心的距离都相等。

这个几何图形就是圆。

3. 圆的定义和性质
1.请同学们读一读关于圆的定义。

圆是平面上的一个点到另一个点的距离固定且小于这个固定值的所有点的集合。

2.根据定义可知,圆有以下性质:
–圆的边界叫做圆周;
–圆周上任意两点与圆心的距离相等;
–圆周的中心即为圆心。

4. 圆的元素
1.圆心:圆的中心点,用字母。

初中数学_《确定圆的条件》教学设计学情分析教材分析课后反思

初中数学_《确定圆的条件》教学设计学情分析教材分析课后反思

第三章圆五《确定圆的条件》教学设计九年级数学下册一、学情分析学生的知识技能基础通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识.同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”.学生活动经验基础在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法.二、教材分析本节课的内容是第一节内容的延续,学生已积累了画一个圆的经验.基于以上两点,提出本课的具体学习任务:①经过一点、两点、三点能否作出圆、能作出几个圆.②了解三角形的外接圆、三角形的外心等概念,但本课内容从属于“空间与图形”的教学目标:认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满探索性和创造性,感受证明的必要性及结论的确定性.同时也应力图在学习中逐步达成学生的有关情感态度目标.知识与技能1. 了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法;2.了解三角形的外接圆、三角形的外心等概念.过程与方法1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.情感态度与价值观形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.教学重点:确定圆的条件.教学难点:确定圆的条件.三、教学过程分析本节课设计了七个教学环节:知识回顾;情景引入;实践探究;数学乐园;拓展延伸;课堂小结;达标测试。

第一环节:知识回顾活动内容:布置学生在课前复习,回答如下的问题:(1)经过一点、两点、三点你能否画出一条直线吗?若能,可以画出几条直线?(2)通过以上问题的回答,你有什么体会?(3)已知线段AB,求作线段AB的中垂线?活动目的:通过问题(3),希望学生复习线段中垂线的尺规作法,为本课作圆作知识的铺垫.通过问题(1)(2)的复习回答,为本课的探索“经过三点能否确定一个圆”作一个探索策略上的铺垫,进一步培养了学生分类讨论的数学思想.实际教学效果:在课始的提问中,学生对中垂线的尺规作法、经过一点可以画无数条直线、经过两点可以画一条直线的回答较好,但在回答“经过三点能否画直线”问题上出现分歧,部分回答“不能画出直线”或“可以画一条直线”或“以上两种情况都有可能”等.通过对问题的争论、回答,达到了预期目标,培养了学生学会与人合作,能与他人交流思维的过程和结果.第二环节:情景引入活动内容:学生小组讨论如下问题:将一个圆形玻璃碎片,你能帮助这位妈妈将这个圆形玻璃碎片复原,以便进行深入的研究吗?活动目的:①通过问题的思考讨论,有承上启下的作用。

3.5确定圆的条件(教案)

3.5确定圆的条件(教案)
五、教学反思
在今天的教学过程中,我发现学生们对确定圆的条件的理解存在一些困难。在导入新课环节,当我问到大家在日常生活中是否遇到过需要确定圆的情况时,大部分同学能够联想到一些实际例子,但只有少数同学能够准确描述如何确定圆心和半径。这让我意识到,我们需要在课堂上加强基础知识的教学。
在新课讲授环节,我尝试通过理论介绍和案例分析来帮助学生理解确定圆的条件。从学生的反馈来看,这种方法还是有效的。然而,我也注意到,对于圆的方程推导这个难点,部分同学仍然感到困惑。在今后的教学中,我需要更加注重逐步引导,让学生能够循序渐进地掌握这个知识点。
1.培养学生的空间观念:通过学习确定圆的条件,使学生能够直观想象出圆在平面直角坐标系中的位置,提高对几何图形的认识和理解。
2.提升学生的逻辑推理能力:在教学过程中,引导学生运用逻辑推理方法,从圆的定义出发,推导出确定圆的条件,培养学生严密的逻辑思维。
3.增强学生的数学应用意识:通过解决实际例题,让学生将所学知识应用于实际问题中,培养学生在现实生活中发现数学问题、运用数学知识解决问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“确定圆的条件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点解释:学生需要能够从实际问题中抽象出数学信息,并建立相应的数学模型。
-举例:提供实际问题背景,指导学生如何提取关键信息,建立数学关系式。
(3)逻辑推理能力的培养。
-难点解释:在推导圆的方程过程中,需要学生运用逻辑推理,理解每一步的推导依据。

九年级数学上册《确定圆的条件》教案、教学设计

九年级数学上册《确定圆的条件》教案、教学设计
2.选做题(拓展提高):
(1)已知圆心坐标为(3,-4),半径为5cm,求圆的方程。
(2)已知圆上三个点A(1,2)、B(3,-2)、C(-1,6),求圆的方程。
3.思考题:
(1)为什么确定圆需要三个条件?两个条件或四个条件可以吗?
(2)在实际生活中,你能举出圆的三个确定条件的应用实例吗?
4.小组合作任务:
4.小组合作任务要求组内成员积极参与,共同完成任务,并在课堂上进行分享。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组讨论以下问题:
(1)如何通过三个点确定一个圆?
(2)如何通过两个点和一条直线确定一个圆?
(3)如何通过一个点和一条直线确定一个圆?
2.学生在小组内进行讨论,教师巡回指导,解答学生的疑问。
3.每个小组派代表分享讨论成果,教师点评并总结。
(四)课堂练习,500字
2.教学过程:
(1)导入:通过展示生活中的圆形物体,引导学生回顾圆的基本概念,为新课的学习做好铺垫。
(2)新知探究:引导学生通过观察、实践、思考,发现确定圆的条件,并学会推导圆的方程。
(3)例题讲解:精选典型例题,讲解解题思路,强调数形结合的方法,帮助学生掌握解题技巧。
(4)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
1.教师通过几何画板或实物展示,引导学生发现确定圆的三个条件:圆心、半径、直径。
2.教师详细讲解圆心、半径、直径的定义,以及它们之间的关系,如半径是直径的一半,圆心在圆上等。
3.教师引导学生通过画图、计算、推理等方法,推导出圆的标准方程和一般方程。
4.教师强调数形结合的思想,让学生明白方程与图形之间的联系。
(一)导入新课,500字

《确定圆的条件》 学历案

《确定圆的条件》 学历案

《确定圆的条件》学历案一、学习目标1、理解不在同一直线上的三个点确定一个圆。

2、掌握过不在同一直线上的三个点作圆的方法。

3、了解三角形的外接圆、三角形的外心等概念。

二、学习重难点1、重点(1)不在同一直线上的三个点确定一个圆。

(2)过不在同一直线上的三个点作圆。

2、难点(1)理解不在同一直线上的三个点确定一个圆的原理。

(2)三角形外心的性质及应用。

三、学习过程(一)知识回顾1、圆的定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2、圆的相关概念:圆心、半径、直径等。

(二)问题引入思考:经过一个点 A 能不能作圆?如果能,可以作几个圆?经过两个点 A、B 能不能作圆?如果能,可以作几个圆?(三)探究活动1、经过一个点 A 作圆因为圆上的点到圆心的距离都等于半径,所以以点 A 以外的任意一点为圆心,以这一点到点 A 的距离为半径,就可以作出一个圆。

这样的圆有无数个。

2、经过两个点 A、B 作圆连接点 A 和点 B,作线段 AB 的垂直平分线。

这条垂直平分线上任意一点到点 A 和点 B 的距离都相等,所以以垂直平分线上任意一点为圆心,以这一点到点 A 或点 B 的距离为半径,就可以作出一个圆。

这样的圆也有无数个。

3、经过不在同一直线上的三个点 A、B、C 作圆连接点 A、B、C,分别作线段 AB 和线段 BC 的垂直平分线,这两条垂直平分线相交于一点 O。

以点 O 为圆心,以 OA 为半径作圆,则圆 O 经过点 A、B、C。

因为 OA = OB = OC,所以点 A、B、C 在以点 O 为圆心,以 OA 为半径的圆上。

即经过不在同一直线上的三个点 A、B、C 可以确定一个圆。

(四)定理总结不在同一直线上的三个点确定一个圆。

(五)例题讲解例 1:已知不在同一直线上的三个点 A(2,0),B(0,2),C (1,1),求经过这三个点的圆的方程。

解:设圆的方程为$(x a)^2 +(y b)^2 = r^2$因为点 A(2,0),B(0,2),C(1,1)在圆上,所以$\begin{cases}(2 a)^2 + b^2 = r^2 \\ a^2 +(2 b)^2 =r^2 \\(1 a)^2 +(1 b)^2 = r^2\end{cases}$解方程组得:$a = 1$,$b = 1$,$r =\sqrt{2}$所以圆的方程为$(x 1)^2 +(y 1)^2 = 2$例 2:在△ABC 中,AB = 6,AC = 8,BC = 10,求△ABC 的外接圆的半径。

2.3 确定圆的条件 教学设计-苏科版九年级数学上册

2.3 确定圆的条件 教学设计-苏科版九年级数学上册

2.3 确定圆的条件教学设计-苏科版九年级数学上册1. 教学目标•理解圆的定义和性质;•掌握确定圆的条件;•能够利用圆的条件进行解题。

2. 教学准备•教材:苏科版九年级数学上册;•板书工具:黑板/白板、彩色粉笔/挂画;•教具:圆规、直尺。

3. 教学过程3.1 导入新课教师出示圆规和直尺,引导学生回顾并复习圆的定义和性质。

通过提问,帮助学生回忆圆的特点,如圆是由一条弧线围成的,圆上任意两点的距离相等等。

3.2 确定圆的条件教师通过板书或展示教材上的相关内容,向学生介绍确定圆的条件。

这些条件包括:3.2.1 半径相等的条件•定理1:如果一个平面上的两条线段的长度相等,且它们的一个端点和中点重合,那么这两条线段所在的直线和中线所确定的装置是圆。

3.2.2 直径和弦的关系•定理2:如果一个弦和一个直径相等,那么这个弦是这个圆的直径。

3.2.3 垂直弦的关系•定理3:如果一条弦垂直于另一条弦,那么这两条弦所在的圆是一个直径垂直于第一条弦的圆。

3.3 实例讲解教师通过练习题的方式,给出几个具体的实例进行讲解。

例如:例1已知平面上的四个点A、B、C、D,且AC = BD = 5cm,并且AD ⊥ BC。

问:ABCDE 是否能确定一个圆?解:首先,根据定理1,当AC = BD且AD ⊥ BC时,可以确定一个圆。

其次,根据定理3,如果一条弦垂直于另一条弦,那么这两条弦所在的圆是一个直径垂直于第一条弦的圆。

由于AD ⊥ BC,所以AC 和 BD 所在的圆的直径应该与AC 和 BD垂直。

综上所述,根据所给条件,可以确定一个圆。

例2已知ABCD 是一个正方形,AC 直线上的一点E 满足AE = BC,连接BE,求证:BCED 能确定一个圆。

解:首先,根据定理1,当AC = BD且AD ⊥ BC时,可以确定一个圆。

其次,根据定理2,如果一个弦和一个直径相等,那么这个弦是这个圆的直径。

由已知条件可知AE = BC,所以BCED 中的BE 是AC上的弦,且BE = AC,根据定理2,可以得出BCED 能确定一个圆。

确定圆的条件教学设计

确定圆的条件教学设计

确定圆的条件导学案授课时间_______________4、已知一个破损的轮胎,要求在原轮胎的基础上补一个完整的轮胎.总结得出:1、确定一个圆;2、经过三角形各项点的圆叫做三角形的______ ,外接圆的圆心叫做三角形的______,这个三角形叫做这个圆的_________三角形.探究2思考:如何确定三角形的外心呢?试一试:请分别画锐角三角形、直角三角形、钝角三角形的外接圆;分别指出三角形的外心所在的位置;并总结规律.三、考点突破练习1:按图填空:(1)△ABC是⊙O的___三角形;(2)⊙O是△ABC的_________圆.练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各项点距离相等.()练习3:钝角三角形的外心在三角形()A .内部 B. 一边上C. 外部D. 可能在内部也可能在外部练习4:如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.题图答图解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O 就是此残片所在的圆,如答图.(2)连接OA,设OA=x,AD=12 cm,OD=(x-8) cm,则根据勾股定理列方程:x²=122+(x-8)²,解得:x=13.∴圆的半径为13 cm.。

北师大版九年级数学下册:3.5《确定圆的条件》说课稿1

北师大版九年级数学下册:3.5《确定圆的条件》说课稿1

北师大版九年级数学下册:3.5《确定圆的条件》说课稿1一. 教材分析《确定圆的条件》这一节内容是北师大版九年级数学下册第三单元“圆”的一部分。

在此之前,学生已经学习了圆的定义、性质和简单的几何关系。

通过这一节内容的学习,学生将掌握确定一个圆的三大要素:圆心、半径和直径,并能够运用这些知识解决实际问题。

教材通过丰富的实例和练习,引导学生探索和发现圆的条件,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析九年级的学生在数学学习方面已经具备了一定的基础,对于几何图形的认识和理解也有一定的积累。

但是,学生在学习圆的相关知识时,可能会觉得较为抽象,难以理解。

因此,在教学过程中,我将以学生为主体,关注学生的学习需求,通过引导和启发,帮助学生理解和掌握圆的条件。

三. 说教学目标1.知识与技能:学生能够理解圆的三大要素,即圆心、半径和直径,并能够运用这些知识解决实际问题。

2.过程与方法:学生通过观察、操作和思考,探索和发现确定圆的条件,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:学生体验数学学习的乐趣,增强对数学学科的兴趣,培养学生的团队协作能力和自主学习能力。

四. 说教学重难点1.教学重点:学生能够理解和掌握圆的三大要素,并能够运用这些知识解决实际问题。

2.教学难点:学生对于圆的条件的学习,可能会觉得较为抽象,难以理解。

如何引导学生理解和掌握圆的条件,将是我教学过程中的关键。

五. 说教学方法与手段在教学过程中,我将采用问题驱动法、启发式教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣。

同时,我还将运用多媒体教学手段,如课件、图片和动画等,帮助学生直观地理解和掌握圆的条件。

六. 说教学过程1.导入:通过展示一些与圆相关的实例,如圆形桌面、圆形的车轮等,引导学生思考:什么是圆?圆有哪些特征?2.探究:引导学生通过观察和操作,探索和发现确定圆的条件。

学生可以分组进行讨论,分享自己的发现和体会。

初中数学九年级下册《确定圆的条件》教案设计

初中数学九年级下册《确定圆的条件》教案设计
8.对于三角形的外心,下列说法错误的是()
A.它到三角形三个顶点的距离相等
B.它与三角形三个顶点的连线平分三内角
C.它到任一顶点的距离等于这三角形的外接圆半径
D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点
9.下列说法错误的是()
A.过直线上两点和直线外一点,可以确定一个圆
B.任意一个圆都有无数个内接三角形
探究二:过两点作圆.
作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
处理方式:学生在教师的指导下画图,两分钟后教师实物投影并请学生说明原因:已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离 相等.根据前面学到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点 的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,有无数个圆心,作出的 圆有无数个.如图(2).
【例1】下面四个命题中真命题的个数是()
①经过三点一定可以做圆;
②任意一个三角形一定有一个外接圆,而且只有一个外接圆;
③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;
④三角形的外心到三角形三个顶点的距离相等.
A.4个B.3个C.2个D.1个
【例2】在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.
(1)点P在⊙O外 ______;(2)点P在⊙O上 ______;(3)点P在⊙O内 ______.

确定圆的条件教案

确定圆的条件教案

确定圆的条件教案确定圆的条件教案本节课的教学内容是确定圆的条件,即探索经过一个点、两个点、三个点分别能否作出圆、能作出几个圆的问题,归纳总结出不在同一条直线上的三点作圆的问题,得出重要结论“不在同一条直线上的三个点确定一个圆”.从而培养学生的探索精神,同时可以使学生体会在这一过程中所体现的归纳思想.在教学中,教师应指导学生自己去探索,与作直线类比,引出确定圆的条件问题,由易到难让学生经历作圆的过程,从中探索确定圆的条件.通过学生自己的亲身体验,再加上同学间的合作与交流,最后师生共同归纳总结便可轻松愉悦地完成教学内容.教学目标(一)教学知识点了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)能力训练要求1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.(三)情感与价值观要求1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果.教学重点1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.2.掌握过不在同一条直线上的三个点作圆的方法.3.了解三角形的外接圆、三角形的外心等概念.教学难点经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.教学方法教师指导学生自主探索交流法.教具准备投影片三张第一张:(记作§ 3.4 A)第二张:(记作§ 3.4 B)第三张:(记作§ 3.4 C)教学过程Ⅰ.创设问题情境,引入新课 [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线,那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.Ⅱ.新课讲解1.回忆及思考投影片(§ 3.4 A)1.线段垂直平分线的性质及作法.2.作圆的关键是什么?[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.作法:如右图,分别以A、B为圆心,以大于 AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段AB的垂直平分线,直线CD上的任一点到A与B的距离相等.[师]我们知道圆的定义是:平面上到定点的'距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径,根据定义大家觉得作圆的关键是什么?[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片§3.4 B)(1)作圆,使它经过已知点A,你能作出几个这样的圆?(2)作圆,使它经过已知点A、B。

确定圆的条件教学设计

确定圆的条件教学设计

确定圆的条件教学设计一、教学目标:1.知识与技能目标:了解圆的定义,能正确区分圆和其他图形,学习圆的常见术语及相关性质,掌握圆的周长和面积的计算方法。

2.过程与方法目标:培养学生的观察、分析和推理能力,鼓励学生合作探讨,提升学生对几何知识的掌握和应用能力。

3.情感态度与价值观目标:培养学生对几何知识的兴趣和热爱,了解几何在现实生活中的应用价值。

二、教学内容:1.圆的定义与特点;2.圆的术语解释与例题讲解;3.圆的周长的计算方法;4.圆的面积的计算方法;5.圆的应用实例。

三、教学重点与难点:1.初步理解圆的定义与特点;2.掌握圆的相关术语及其应用;3.掌握圆的周长和面积的计算方法。

四、教学准备:1.教学课件;2.圆规、直尺等绘图工具;3.与圆相关的实物图片或教具。

五、教学过程:Step 1:导入(5分钟)1.出示一张圆的图片,请学生观察并用自己的语言描述这个图形。

2.引导学生思考:你觉得这个图形有什么特点?有没有什么与其他图形不同之处?Step 2:引入圆的定义与特点(15分钟)1.解释圆的定义:圆是由平面上任意一点到另一点的距离恒定的点的集合。

将其与其他图形如正方形、三角形进行比较。

2.解释圆的特点:a.圆上任意两点之间的距离相等;b.圆内任意两点与圆心的距离相等;c.圆心到圆上任意一点的线段称为半径;d.圆上任意两点与圆心的连线称为直径,直径的长度是半径的两倍。

Step 3:引入圆的术语解释与例题讲解(20分钟)1.出示圆的术语图示,包括圆心、半径、直径、弦、弧、切线等,解释每个概念的定义和特点。

2.讲解并解析几个关于圆的例题,鼓励学生积极思考,提问和回答。

Step 4:圆的周长的计算方法(20分钟)1.解释周长的定义:圆的周长是指圆的边界上的长度。

2.讲解圆的周长计算方法:C=2πr(π取约等于3.14),其中C表示周长,r表示半径。

3.通过一些具体的例题进行练习和巩固,让学生熟练掌握计算方法。

初中数学《确定圆的条件》教案

初中数学《确定圆的条件》教案

初中数学《确定圆的条件》教案4.2确定圆的条件教学过程一、类比联想,提出问题1.提问:确定一条直线的条件是什么?学生回答:两点确定一条直线.2.我们知道,两点确定一条直线,那么,对于圆来讲,是否也存在由几点确定一个圆的问题呢?提出问题,让学生思考,并进一步讨论:(1)经过一个点A,是否可以作圆?如果能作,可以作几个?学生讨论回答后,请一名学生上黑板作图(如图),并得出:经过一个点A作圆很容易,只要以点A外的任意一点为圆心,以这一点与点A的距离为半径就可以作出,这样的圆有无数多个(2)经过两个点A,B如何作圆呢?能作几个?同样,在学生讨论回答的基础上,再让一名学生上黑板作图,并得出:经过两个点A,B作圆,只要以与点A,B距离相等的点为圆心,即以线段AB的垂直平分线上任意一点为圆心,以这一点与点A或点B的距离为半径就可以作出,这样的圆也有无数多个.(如图)(以上两点由于有前边两节课的知识作铺垫,学生比较容易作出.)二、动手实践,发现新知下面来研究,经过三个已知点作圆又会怎么样呢?仍然让学生讨论,自己动手作图,这时,学生会发现:由于两点确定一条直线,因此三个点就有在同一直线上的三点和不在同一直线上的三个点两种情况.1.作圆,使它经过不在同一直线上的三个已知点.例1 已知:不在同一直线上的三个已知点A,B,C(如图) 求作:⊙O,使它经过点A,B,C.分析:作圆的关键是确定圆心和半径.由于所作圆要经过已知点,所以如果圆心的位置确定了,那么圆的半径也就随之确定.因此,这个问题就转化为找圆心的问题.[来源:中.考.资.源.网]因为所求的圆要经过A,B,C三点,所以圆心到这三点的距离相等.因此,这个点既要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上,显然这两条垂直平分线交于一点且到这三点的距离相等.可见圆心、半径都确定了,圆便可以作出.教师在黑板上作圆,学生口述,教师写作法,学生随教师一起作图.证明:因为⊙O的半径为OA,所以点A在⊙O上,即⊙O经过点A,又因为点O在AB的垂直平分线DE上所以OB=OA则⊙O经过点B.同理可证⊙O经过点C.所以⊙O是所求的圆.结合以上作法和证明,请同学回答:师:经过不在同一直线上的三点A,B,C的圆是否存在?生:存在.师:是否还有其他符合条件的圆呢?生:没有.师:根据是什么?生:线段AB,BC的垂直平分线有且只有一个交点.这说明所作的圆心是唯一的,从而半径也是唯一的,则所作圆是唯一的.在黑板上写出:定理过不在同一直线上的三个点确定一个圆.2.过同一直线上的三点能不能做圆呢?我们不妨试试看.教师和学生一起用圆规和直尺按照上面的作法作圆,看能否作出圆来,再看不按上面的作法是否有办法作圆.实践的结果是不能作圆.实际上,假定过A,B,C三点可以作圆,不妨设这个圆心为O.由点的轨迹可知,点O在线段AB的垂直平分线l上,并且在线段BC的垂直平分线l上,即点O为l与l的交点,这与“过一点有且只有一条直线与已知直线垂直”相矛盾.(如图所示).所以,过同一直线上的三点不能作圆.3.现在我们回过头来再看看,由于任意一个三角形的三个顶点都不在同一直线上,所以由定理可知,经过三角形三个顶点可以作且只能作一个圆.接下来介绍有关概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.由上面作图方法还可以看出:三角形的外心是三角形三边中垂线的交点.三、应用举例,巩固新知[来源:中.考.资.源.网]练习1 判断题(投影打出)(1)经过三个点一定可以作圆. ( )(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆. ( )(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形. ( )(4)三角形的外心到三角形各顶点的距离相等. ( )(经过练习,巩固前边所学的知识)练习2 工人师傅要铸造一个和残轮片(图5)同样大小的圆轮,需要知道它的半径,你能用本课所学知识,帮助工人师傅解决这一问题吗?写出具体作法.[来源:ZXXK]分析:要想知道圆轮的半径,只要作出圆轮残片所在圆的圆心,而从本节所学定理可知,经过不在同一直线上的三个点可确定一个圆,于是可在残片的圆弧上任取三点,作过此三点的圆,即可确定残片的圆心和半径.(此题实际上是一个作图题,可由学生口述,教师板演) 四、师生共同小结1.先由教师提出问题:(1)这节课我们主要学习了哪些具体内容?(2)用什么方法解决过已知点作圆的问题?(3)学习本节知识需要注意哪些问题?2.在学生回答的基础上,教师加以小结:(1)本节课我们主要学习了经过不在同一直线上的三点作圆的问题.(2)我们在分析过已知点作圆的问题时,紧紧抓住对圆心和半径的探讨.已知圆心和半径就可作一个圆,这是从圆的定义引出的基本思想,因此作圆的问题,是如何根据已知条件找圆心和半径的问题.由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定.因此作圆的问题就又变成了找圆心的问题.(3)学习本节定理,必须注意强调三个点的位置关系,只有当三个点不在同一直线上时,才能确定一个圆,笼统地说“三点确定一个圆”是不确切的.关于“内接”与“外接”这两个术语,学生常常混淆不清,应指出,“内”与“外”是相对的概念,以一个图形为准,说明另一个图形是在它的里面或外面,这样内外关系即可自明.五、作业。

北师大版九年级数学下册:3.5《确定圆的条件》教案

北师大版九年级数学下册:3.5《确定圆的条件》教案

北师大版九年级数学下册:3.5《确定圆的条件》教案一. 教材分析《确定圆的条件》这一节主要让学生了解确定圆的三个重要条件:圆心、半径和圆的方程。

通过学习,学生能够掌握圆的定义,理解圆心决定圆的位置,半径决定圆的大小,以及如何用圆的方程来表示圆。

这一节的内容是九年级数学的重要知识点,也是高考的考点之一。

二. 学情分析学生在学习这一节之前,已经掌握了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于圆的概念和性质可能还不够深入,因此,在学习这一节时,需要引导学生通过实际操作和思考,来理解和掌握圆的性质。

三. 教学目标1.让学生了解圆的定义,理解圆心、半径在确定圆的重要性。

2.让学生掌握圆的方程表示方法,能运用圆的性质解决实际问题。

3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.圆的定义和性质2.圆的方程表示方法3.运用圆的性质解决实际问题五. 教学方法1.采用问题驱动法,引导学生主动探究圆的性质。

2.利用多媒体辅助教学,直观展示圆的性质,提高学生的空间想象能力。

3.通过实际操作,让学生亲身体验圆的性质,加深对知识的理解。

六. 教学准备1.多媒体教学设备2.圆的模型或图片3.圆的方程示例题七. 教学过程1.导入(5分钟)利用多媒体展示圆的模型或图片,引导学生思考:什么是圆?圆有哪些性质?2.呈现(10分钟)教师通过讲解和展示,介绍圆的定义和性质,让学生理解圆心、半径在确定圆的重要性。

同时,引导学生思考如何用数学语言来表示圆。

3.操练(10分钟)学生分组讨论,每组设计一个圆的方程,并解释其含义。

教师巡回指导,给予反馈。

4.巩固(10分钟)教师出示几个实际问题,让学生运用圆的性质来解决。

例如:一个圆的半径为5cm,求其面积、周长等。

5.拓展(10分钟)教师引导学生思考:圆的性质在实际生活中有哪些应用?让学生举例说明。

6.小结(5分钟)教师引导学生总结本节课所学内容,强化对圆的性质的理解。

确定圆的条件市公开课获奖课件省名师示范课获奖课件

确定圆的条件市公开课获奖课件省名师示范课获奖课件

A D
●O C
读一读
四边形与圆旳位置关系
如图:圆内接四边形ABCD中,
D
∵ ∠BAD等于弧BCD所对圆心角
旳二分之一,∠BCD等于弧BAD所对 圆心角旳二分之一.
A
而弧BCD所正确圆心角+弧BAD所正
O
确圆心角=360°,
∴∠BAD+∠BCD= 180°.
B
C
同理∠ABC+∠ADC=180°.
圆内接四边形旳对角互补.
∴经过点A,B,C三点能够作一 种圆,而且只能作一种圆.
●B
┏ ●O
●C
D
老师期望:
G
将这个结论及其证明作为一种模型看待.
过如下三点能不能做圆? 为何?
A
B
C
不在同一直线上旳三点拟定一种圆
目前你懂得了怎样要
将一种如图所示旳破损旳
圆盘复原了吗?
A
措施:
1、在圆弧上任取三点A、
B、C。
2、作线段AB、BC旳垂
∴OA=OB. 同理,OB=OC. ∴OA=OB=OC.
●B
┏ ●O
●C
D
∴点A,B,C在以O为圆心旳圆上.
这么旳圆能 够作出几种?
G
∴⊙O就是所求作旳圆,
为何?.
议一议
三点定圆
• 定理 不在一条直线上旳三个点拟定一种圆.
• 在上面旳作图过程中.
∵直线DE和FG只有一种交点O,而
F ●A
且点O到A,B,C三个点旳距离相等,E
反思自我
•想一想,你旳收获和困惑有 哪些?
•说出来,与同学们分享.
4. 拟定圆旳条件(1)三点定圆
读一读
拟定圆旳条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《确定圆的条件》教案
王进
教学目标:
1.经历不在同一条直线上的三个点确定一个圆的探索过程,了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点做圆的方法。

了解三角形的外接圆,三角形的外心等概念。

2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。

教学重点:
1.探索平面内确定一个圆的条件
2.掌握经过不在同一直线上三个点作圆的方法。

3.了解三角形的外接圆,三角形外心等概念
教学难点:探索平面内确定一个圆的条件,并能过不在同一直线上的三个点作圆。

教学过程:
一、生活中的学问:
一位考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?
想一想:要确定一个圆必须满足几个条件?
二、知识回顾:
1、过一点可以作几条直线?
2、过几点可确定一条直线?
过几点可以确定一个圆呢?
三、探究新知:
A
探索一:经过一个已知点A能确定一个圆吗? 你怎样画这个圆?
探索二:经过两个已知点A、B能确定一个圆吗? 经过两个已知点A、B 所作的圆的圆心在怎样的一条直线上?
探索三:经过三个已知点A ,B ,C 能确定一个圆吗?
假设经过A 、B 、C 三点的⊙O 存在
(1)圆心O 到A 、B 、C
三点距离 (2)连结AB 、AC , O 点应在AB 的 ;
同时也应在AC 的————————————
(3)圆心O 应该是
讨论:过如下三点能不能做圆? 为什么?
画一画:已知:不在同一直线上的三点A 、B 、C,
求作: ⊙O 使它经过点A 、B 、C 。

现在你知道了怎样要将一个如图所示的破损的圆盘复原了吗?
定义:经过三角形各个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。

试一试:画出过以下三角形的顶点的圆
观察比较这三个三角形外心的位置,你有何发现?
四、练习巩固:
1.下列命题不正确的是( )
A.过一点有无数个圆.
B.过两点有无数个圆.
C.弦是圆的一部分.
D.过同一直线上三点不能画圆.
C A B A B C B A C A B C
2.三角形的外心具有的性质是( )
A.到三边的距离相等.
B.到三个顶点的距离相等.
C.外心在三角形的外.
D.外心在三角形内.
3.判断:
(1)、经过三点一定可以作圆。

( )
(2)、三角形的外心就是这个三角形两边垂直平分线的交点。

( )
(3)、三角形的外心到三边的距离相等。

( )
(4)、等腰三角形的外心一定在这个三角形内。

( )
五、练习拓展:
1、某一个城市在一块空地新建了三个居民小区,它们分别
为A 、B 、C ,且三个小区不在同一直线上,要想规划一所中学,
使这所中学到三个小区的距离相等。

请问同学们这所中学建在
哪个位置?你怎么确定这个位置呢?
六、归纳小结:
A B C。

相关文档
最新文档