精品 八年级数学下册 因式分解同步题

合集下载

北师大版八年级下册因式分解100题及答案

北师大版八年级下册因式分解100题及答案

北师大版八年级下册因式分解100题及答案一、提取公因式(1)(75)(4)(75)(45)(75)(92)++++--++-+m n m n m n(2)(71)(83)(92)(71)--+---x x x x(3)(43)(5)(43)(73)(43)(1)---+--+---m n m n m n(4)(2)(83)(93)(2)+--+-+m n n m(5)(71)(4)(71)(21)+---++m x m x(6)42224+a x y x y412(7)2443-+x yz y z xyz639(8)3444-abc a b c2718(9)(45)(53)(45)(62)+-+++-a b a b(10)(72)(21)(84)(72)++--+x x x x(11)(1)(92)(1)(1)x x x x------(12)(5)(45)(73)(5)+-+-++a b b a(13)(85)(94)(85)(85)---+-+x y x y(14)2422-x y x yz2(15)(3)(52)(3)(51)(3)(93)---+--++-+a b a b a b(16)(83)(75)(83)(31)(83)(4)++++--++-+a b a b a b(17)(3)(52)(3)(64)+-+-+-m x m x(18)(5)(1)(5)(65)(5)(64)-++---+-+a b a b a b(19)(3)(81)(75)(3)x x x x+--+++(20)2223-153a b c c二、公式法(21)22-x y19664(22)22-+-m n m441(23)2-+x x49266361(24)22-+a ab b169468324(25)22-+a ab b60900(26)236418121x x ++(27)22169494361x xy y ++(28)229644249m n m ---(29)221625309m n n -+-(30)22649161a b a ---三、分组分解法(31)7014408xy x y ----(32)2212351525x z xy yz zx--++(33)22351642248a c ab bc ca-++-(34)36451620--+ab a b(35)22++++x z xy yz zx1828153554 (36)22--+-x y xy yz zx4542193630 (37)49147020mx my nx ny+--(38)22--++xy x y(39)22x y xy yz zx---+403191830 (40)56483530-+-+xy x y(41)22-+-+a c ab bc ca8158519 (42)22-+-+a b ab bc ca721029418(43)22352301219a c ab bc ca++--(44)221676322x z xy yz zx+-+-(45)49144212mn m n --+(46)48163612mx my nx ny-+-(47)40722036mx my nx ny-+-(48)22825355a b ab bc ca-+++(49)30103612mx my nx ny+--(50)70704242xy x y +--四、拆添项(51)221616644039m n m n -+-+(52)22649801816a b a b ---+(53)22252023a b a b -+++(54)2236121880m n m n --+-(55)2264961011x y x y --++(56)4224165749a a b b -+(57)4224429m m n n -+(58)22811081413x y x y --+-(59)221694836m n m n--+(60)4224493164a a b b ++五、十字相乘法(61)2--++x xy x y5635892535 (62)222+----96152122a b c ab bc ac(63)222+---+2146201039x y z xy yz xz (64)29961535-++-x xy x y(65)222+++--x y z xy yz xz2146201445 (66)22x xy y x y-+-+-1845734621 (67)22x xy y x y+--+1437423530 (68)222+-+-+20156352x y z xy yz xz(69)2482446205x xy x y +--+(70)24614912p pq p q -+-+(71)2263024372235x xy y x y -+-+-(72)2222456143132x y z xy yz xz--+--(73)222201634817a b c ab bc ac-++--(74)2220113541236u uv v u v --+-+(75)22122035842a ab b a b -----(76)22232425242060x y z xy yz xz+++++(77)22204161783a ab b a b +---+(78)22-++-+x xy y x y16263521212(79)222a b c ab bc ac+++++ 212420464647 (80)22-++-+x xy y x y672241424六、双十字相乘法(81)222a b c ab bc ac-++++121237913 (82)22--+-+x xy y x y16421822397 (83)222x y z xy yz xz--++-41036114 (84)22x xy y x y+-+--2748356121 (85)22+---+401125515x xy y x y(86)2262315361742a ab b a b ++---(87)2227364911x y z xy yz xz-----(88)221051523285a ab b a b -----(89)222646356932x y z xy yz xz+++++(90)22352231241x xy y x y +++++七、因式定理(91)32152234x x x -++(92)3224221715x x x +--(93)321021256x x x +-+(94)32466m m m ---(95)32273318x x x --+(96)326583y y y --+(97)32313106x x x -++(98)32376x x x +--(99)321110x x x ---(100)32311212x x x ++-北师大版八年级下册因式分解100题答案一、提取公因式(1)(75)(121)m n+-+ (2)(71)(175)x x---(3)(43)(59)m n--(4)(2)(6)m n+-(5)(71)(35)m x-++ (6)22424(3)x y a y+(7)23323(23)yz x z y z x-+ (8)3339(32)abc a b c-(9)(45)(1)a b++ (10)(72)(65)x x-+-(11)(1)(81)x x--(12)(5)(112)a b-+-(13)(85)(1)x y---(14)232(2)x y y z-(15)(3)(2)a b--+(16)(83)(38)a b++ (17)(3)(116)m x-+-(18)(5)(0)a b-+ (19)(3)(4)x x-+-(20)2223(5)c a b c-二、公式法(21)(148)(148)x y x y+-(22)(21)(21)m n m n++-+ (23)2(719)x-(24)2(1318)a b-(25)2(30)a b-(26)2(1911)x+(27)2(1319)x y+(28)(387)(387)m n m n+---(29)(453)(453)m n m n+--+(30)(831)(831)a b a b+---三、分组分解法(31)2(74)(51)x y-++ (32)(457)(35)x y z x z-+-(33)(564)(74)a b c a c+-+(34)(94)(45)a b--(35)(654)(37)x y z x z+++ (36)(976)(56)x y z x y+--(37)(710)(72)m n x y-+ (38)(2)(1)x y--+(39)(53)(86)x y x y z-++(40)(85)(76)x y-+-(41)(3)(85)a b c a c++-(42)(92)(852)a b a b c-++(43)(52)(76)a c ab c-+-(44)(2)(837)x z x y z---(45)(76)(72)m n--(46)4(43)(3)m n x y+-(47)4(2)(59)m n x y+-(48)(5)(85)a b a b c+-+(49)2(56)(3)m n x y-+(50)14(53)(1)x y-+四、拆添项(51)(4413)(443)m n m n++-+(52)(832)(838)a b a b+---(53)(51)(53)a b a b++-+(54)(610)(68)m n m n+--+(55)(811)(81)x y x y+---(56)2222(47)(47)a ab b a ab b+---(57)2222(25)(25)m mn n m mn n+---(58)(913)(91)x y x y+--+(59)(4312)(43)m n m n+--(60)2222(798)(798)a ab b a ab b++-+五、十字相乘法(61)(75)(857)x x y---(62)(23)(935)a b c a b c---+(63)(72)(326)x y z x y z---+(64)(35)(337)x x y--+(65)(326)(72)x y z x y z+-+-(66)(373)(67)x y x y-+--(67)(275)(76)x y x y+--(68)(432)(553)x y z x y z+-++ (69)(841)(65)x y x+--(70)(23)(234)p p q+-+(71)(47)(665)x y x y---+(72)(46)(65)x y z x y z--++(73)(543)(44)a b c a b c--+-(74)(56)(436)u v u v++-+(75)(346)(457)a b a b--++(76)(425)(825)x y z x y z++++(77)(543)(441)a b a b--+-(78)(236)(82)x y x y-+-+(79)(345)(764)a b c a b c++++ (80)(24)(326)x y x y-+-+六、双十字相乘法(81)(34)(433)a b c a b c++-+ (82)(837)(261)x y x y++-+ (83)(22)(253)x y z x y z-++-(84)(371)(951)x y x y++--(85)(83)(525)x y x y--+-(86)(656)(37)a b a b+++-(87)(733)(2)x y z x y z++--(88)(235)(551)a b a b--++ (89)(863)(8)x y z x y z++++(90)(731)(51)x y x y++++七、因式定理(91)(1)(31)(54)x x x-+-(92)(1)(65)(43)x x x+-+ (93)(3)(21)(52)x x x+--(94)2(2)(423)m m m-++ (95)(3)(6)(21)x x x+--(96)(1)(23)(31)y y y+--(97)2(3)(342)x x x---(98)2(2)(53)x x x-++ (99)2(2)(35)x x x+--(100)2(3)(324)x x x++-。

八年级数学下册《因式分解》练习与答案

八年级数学下册《因式分解》练习与答案

八年级数学下册《因式分解》练习1.因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.(1)a4﹣1;(2)x3﹣2x2y+xy2.12.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.分解因式:3x2﹣xy﹣2y2﹣x+y.21.因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.因式分解:4(x+y)2﹣16(x﹣y)2.23.分解因式:2x3﹣2x2y+8y﹣8x.24.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.因式分解:x3+3x2y﹣4x﹣12y.26.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.分解因式:(x2+x+1)(x2+x+2)﹣12.29.因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)八年级数学下册《因式分解》练习答案1.因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

八年级下册数学因式分解题

八年级下册数学因式分解题

八年级下册数学因式分解题一、提取公因式法。

1. 分解因式:6ab + 3ac- 解析:公因式为3a,提取公因式后得到3a(2b + c)。

2. 分解因式:5x^2y-10xy^2- 解析:公因式为5xy,分解结果为5xy(x - 2y)。

3. 分解因式:9m^3n - 3m^2n^2- 解析:公因式为3m^2n,因式分解得3m^2n(3m - n)。

4. 分解因式:4a^3b - 6a^2b^2+2ab^3- 解析:公因式为2ab,分解后为2ab(2a^2-3ab + b^2)。

5. 分解因式:x(a - b)+y(b - a)- 解析:首先将y(b - a)变形为-y(a - b),公因式为(a - b),结果为(a - b)(x - y)。

6. 分解因式:3(x - y)^2-2(y - x)- 解析:将(y - x)变形为-(x - y),公因式为(x - y),得到(x - y)[3(x - y)+2]=(x - y)(3x - 3y + 2)。

7. 分解因式:2m(m - n)^2-8m^2(n - m)- 解析:将(n - m)变形为-(m - n),公因式为2m(m - n),分解结果为2m(m - n)[(m - n)+4m]=2m(m - n)(5m - n)。

二、公式法(平方差公式a^2-b^2=(a + b)(a - b))8. 分解因式:x^2-9- 解析:x^2-9=x^2-3^2,根据平方差公式,分解为(x + 3)(x - 3)。

9. 分解因式:16y^2-25- 解析:16y^2-25=(4y)^2-5^2,因式分解得(4y + 5)(4y - 5)。

10. 分解因式:49 - m^2- 解析:49 - m^2=7^2-m^2,根据平方差公式分解为(7 + m)(7 - m)。

11. 分解因式:(x + 2)^2-y^2- 解析:根据平方差公式a=(x + 2),b = y,分解为(x+2 + y)(x + 2-y)。

八年级下数学《第四章因式分解》单元测试(含答案)

八年级下数学《第四章因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题一、因式分解计算题20题及解析。

1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2-3^2=(x + 3)(x-3)。

2. 题目:分解因式4x^2-16- 解析:先提取公因式4,得到4(x^2-4),而x^2-4又是平方差形式,x^2-4=(x + 2)(x-2),所以4x^2-16 = 4(x + 2)(x-2)。

3. 题目:分解因式x^3-2x^2+x- 解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以x^3-2x^2+x=x(x - 1)^2。

4. 题目:分解因式9x^2-y^2- 解析:这是平方差形式,9x^2-y^2=(3x + y)(3x-y)。

5. 题目:分解因式x^2y - 4y- 解析:先提取公因式y,得到y(x^2-4),x^2-4=(x + 2)(x-2),所以x^2y-4y=y(x + 2)(x-2)。

6. 题目:分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),x^2-4=(x + 2)(x-2),所以2x^2-8 = 2(x + 2)(x-2)。

7. 题目:分解因式x^4-1- 解析:这是平方差形式,x^4-1=(x^2+1)(x^2-1),而x^2-1=(x + 1)(x-1),所以x^4-1=(x^2+1)(x + 1)(x-1)。

8. 题目:分解因式a^3-a- 解析:先提取公因式a,得到a(a^2-1),a^2-1=(a + 1)(a-1),所以a^3-a=a(a + 1)(a-1)。

9. 题目:分解因式16x^2-25y^2- 解析:这是平方差形式,16x^2-25y^2=(4x+5y)(4x - 5y)。

10. 题目:分解因式x^3+2x^2+x- 解析:先提取公因式x,得到x(x^2+2x + 1),x^2+2x + 1=(x + 1)^2,所以x^3+2x^2+x=x(x + 1)^2。

八年级下因式分解习题及答案

八年级下因式分解习题及答案

因式分解练习专题练习+全国中考因式分解 1. 利用乘法公式,展开下列各式:2. 1 9x – 5 2 =__________________;3. 2 2x + 7 7 – 2x =__________________;4. 化简 – 2 x 2 + 3x – 5 + 4x 2 – 7x + 5 =__________________;5. 2 展开 – 2x + 3 4x – 5 =______;6. B 为两多项式,已知A = x 2 + 4x – 3,且A + B = 2x 2 + 4x – 2,求B =______;7. 已知x + 3 =0,则 x 2 + 4x + 3 =__________________;8. 化简下列各式:9. 1 4x 2 + 3x + 5 + 2x 2 + 5x – 3 =__________________;10.2 – 4x 2 + x – 3 – – 6x 2 – 2x – 4 =__________________;11.因式分解a 2 – 2a + 1– ba – 1=__________________;12.因式分解6a 2 – b 2–a + b=__________________;13. x 2 – 3x + 5 – ax 2 + bx + c =3x 2 – 4x + 5,则a + b + c =______;14.在下面空格中填入适当的式子;15.1 –7x 2 – 8x + 6 + ___ ___ = 0;16.2 ___ ___ + 4x 2 – 7x + 4 = –x 2 + 8x – 3;17.设xy – x + y = 5,求 x + 1 y – 1 之值 =______;18.若 x 2 +3121 x –6A = 0,则A =______; 19.若x =13,则 x –2 x + 2 之值为______;20.若一元二次式B = –x + 3x 2 + 5,则21.1 x 2项系数为______;2 x 项系数为______;3 常数项为______;22.展开下列各式:23.1 – 1 – 2x – 1 + 2x = ____________ ; 24.2 2x – 1 – 3x + 5 =________________________; 25.3 – 5 – 6x 2=________________________;26.展下列各式:1 4x + 3 x – 7 =________________________;2 3x +21 31x + 2 =__________________;27.设A 和B 都是一元二次式,若3A +2B=13x 2 – 3x + 4,且A – 3B=– 3x 2 – 23x + 5,则一元二次式A=__________________;28.设x 2 + 5x – 9=0,求x 2 + 5x + 12 + 4x 2 + 5x – 4+ 6=__________________; 29.因式分解下列各式:30.1 9x 2 + 24x + 16 =___ ____________ ___;31. 2 3x – 22 – 49 =__ ____________ ____;32.如附图是由一个面积为x 2cm 2及三个面积各为3x 、2x 与6 cm 2之33.长方形所构成,则此大长方形的周长为______cm,面积为______cm 2;34.附图的周长为______ 以x 来表示 ;35.2 附图的面积为______ 以x 来表示 ;36.3 若x = 3时,则附图的面积 = ______平方单位;37.x 2 – 3x + m 可分解为 x + 3 x + n ,则m =______;38.化简 8x 2 + 5x – 6 + ax 2 – 6x + b 的结果,若x 2项的系数为3,常数项为 – 2,则a + b=______;39.化简下列各式40.1 2x – 3x 2 – 2 – 3x 2 – x =__________________;41.2 x – 3 x – 4 – x + 1 x + 2 =__________________;42.3 3x + 2 2 – 3x =__________________;43.4 2x – 1 2– x + 1 2 =__________________;44.因式分解下列各式:45.1 36x2 + 60x + 25 =__________________;46.2 x2 + 8x + 12 = x + 2 .__________________;47.因式分解下列各式:48.1 4a2– 9b2 = __________________;2 5 2x – 1 2– 3x 2x – 1 =__________________;49.3 x + 1 3 x + 2 – x + 1 x + 2 3 = __________________;50. 3x – a ax + 5 的乘积中,x2项系数为– 12,求各项系数和为______;51.因式分解下列各式:52.1 8x x + 5 – 10x x + 5 =__________________;2 49x2– 81 =__________________;53.3 25x2 + 20x + 4 =__________________;54.设A与B表两个一元二次式;若A + B = –3x2 – x + 5,A – B = –x2 + 3x – 1,则A =______,B =______;55.求 10006 – 11 2– 10001 – 16 2 = ;56.若x2 + ax + 25为一元一次的完全平方式,则a=______;57.若x2 + ax + 4 = x + b 2,则a.b =______;58.若长方形的长为2x + 1,且面积为4x2– 1,则以x的式子表示这长方形的周长为______;59.设A = – x2 + x + 6,B = 2x2 + 3x – 4,C = 5x2– x – 1,则A – 2B – C =______ 以x表之 ;60.设A = 2x2– 3x + 4,B = x2 + x – 6,C = – 5x2 + 7x – 4,则 5A – 3B – 4C=______;61.设a、b是常数,且b<0,若4x2 + ax + 9可以因式分解为 2x – b 2,则a + b=__ _;62.因式分解下列各式:63.1 81 – 49x2 =__________________;2 3x + 1 2 + 6 3x + 1 + 9 =__________________;64.3 9x 2 – 6x + 1 =__________________;65.4 3x + 1 x – 2 – 2x – 1 x – 2 =__________________;66.5 7 x + 2 2 – 4 x + 2 =__________________;十字相乘法---- 因式分解1、x 2 + 2x +12、x 2 + 5x + 43、x 2 + 7x +10 5、3x 2+ 4x - 6 全国各省市中考数学试题分类汇编-—因式分解1.安徽11.因式分解:22a b ab b ++=_________.2.扬州市2因式分解:m 2-4m3.广州市19. 10分分解因式:8x 2-2y 2-x7x+y+xy4.苏州市11.分解因式:29a -= .5.泰州市10.分解因式:=-a a 422 ;6.赤峰市12.分解因式:244x y xy y -+= .7.菏泽市10. 因式分解:2a 2-4a+2= _______________ 8.成都市11. 分解因式:.221x x ++=________________;9.威海市16.分解因式:16-8x -y +x -y 2=_______________________;10.温州市11、因式分解:=-12a ;11.无锡市3.分解因式2x 2—4x+2的最终结果是A .2xx -2B .2x 2-2x+1C .2x -12D .2x -2212.金华市3.下列各式能用完全平方公式进行分解因式的是A .x 2+ 1B .x 2+2x -1C .x 2+x +1D .x 2+4x +413.宁波市14.因式分解:xy -y =______________.14.台州市13.因式分解:a 2+2a +1= .15.台湾5.下列四个多项式,哪一个是3522-+x x 的因式A 2x -1B 2x -3C x -1D x -3 16.河北3.下列分解因式正确的是A .-a +a 3=-a 1+a 2B .2a -4b +2=2a -2bC .a 2-4=a -22D .a 2-2a +1=a -1217.连云港市11.分解因式:x 2-9=_18..黄石市11.分解因式:228x -= .19.芜湖市12.因式分解 3322x x y xy -+=________;20.常州市分解因式:______92=-x ;参考答案专题练习1、 :1 81x2 – 90x + 25;2 49 – 4x22:1 2x2 – 13x + 15;2 – 8x2 + 22x – 15 3:x2 + 1 4、:0 5:1 6x2 + 8x + 2;2 2x2 + 3x + 16:a – 1a – 1 – b 7:a + b6a – 6b – 1 8:– 19:1 7x2 + 8x – 6;2 –5x2 + 15x – 7 10:411:6x2 + 3x – 2 12:9 13:1 3;2 –1;3 514:1 1 – 4x2;2 – 6x2 + 13x – 5;3 36x2 + 60x+ 25 15:1 4x2 – 25x – 21;2 x2 + 637x + 1 16 :3x2 – 5x + 217:126 解析:由x2 + 5x – 9 = 0得x2 + 5x = 9,所求=9 + 12 + 49 – 4+ 6 = 126 18:1 3x + 4 2; 2 3 x – 3 3x + 5 19:4x + 10,x2 + 5x + 620 :1 26x + 6;2 28x2 – 7 x – 2;3 229 21:– 1822:– 1 23:1 3x – 2;2 –10x + 10;3 4 – 9x2;4 3x2 – 6x24:1 6x + 5 2;2 x + 625:1 2a + 3b 2a – 3b ;2 2x – 1 7x – 5 ; 3 – x + 1 x + 2 2x + 3 26:7 27:1 –2xx + 5;2 7x + 9 7x – 9 ;35x + 2228:–2x2 + x + 2,–x2 – 2x + 3 29:19980030:±10 31:8 32:8x 33:– 6x + 13 34:–13x2 + 10x + 22 35:936:1 9 – 7x 9 + 7x ;2 3x + 4 2;3 3x – 1 2;4 x2 – 4;5 x + 2 7x + 10 十字相乘法---- 因式分解x 2 + 6x +5 x +1 x +5 x . 5 +x . 1 =6x 因此x+5x+1 为上式分解的因式 x 2 + 5x +6 x +2 x +3 x . 3 +x . 2 =5x 因此x+2x+3 为上式分解的因式 x 2 + 5x - 6 x + 6 x - 1 x . 6 +x .- 1 =5x 因此x+6x-1 为上式分解的因式 x 2 - 5x + 6 x -2 x -3 x . -3 +x . -2 =5x 因此x-2x-3x 2 - x - 6 x +2x - 3 x . -3 +x. +2 =-x因此x+2x-3 x 2 + x - 6x -2 x +3x . 3 +x . -2 =5x 2x 2 + 5x +2 2x +1 x +2 2x .2 +x . 1 =5x 4x 2 + 5x -3 2x -1 2x +3 2x .-1 +2x .+3 =5x 因此2x-1x+3参考答案2011中考专题1. ()21+a b2. mm来-2m+ 2-3.3. 解:()()22827x y x x y xy--++=2228167x y x xy xy---+=2216x y-=()()44x y x y+-4. a+3a-35. 2aa-26. y y-227.22(1a-) 8. x+129. 4-x+y2 10. a+1a-111. C 12. D x-1 14. a+12 15. A 16. D 17. x+3x-318. 2x+2x-2 19.2()x x y- 20. x+3x-321.))((baba-+ 22. 2.2a+12a-1 23. ab-2224. x+3yx-3y 25. x+5x-5 26. x+1x-1 27. 解:12需用2张;或。

初二数学因式分解50道题及答案

初二数学因式分解50道题及答案

初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。

初二因式分解经典题35题

初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。

就像大家都有个共同的小秘密一样。

那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。

2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。

把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。

提出来后就变成8mn(m^2 - 2mn + n^2)啦。

4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。

把它提出来,就得到−3xy(x - 2y+3)啦。

5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。

提出来就变成(x - y)(2a - 3b)啦。

6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。

那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。

7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。

8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。

9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。

10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。

因式分解初二练习题和答案

因式分解初二练习题和答案

因式分解初二练习题和答案1. 将下列各式进行因式分解:(1) 3x + 6y解:先提取公因式3,得到 3(x + 2y)。

(2) 4a - 8ab解:先提取公因式4a,得到 4a(1 - 2b)。

(3) xy - x^2解:先提取公因式x,得到 x(y - x)。

(4) 16x^2 - 4xy + 8xy^2解:先提取公因式4,得到 4(4x^2 - xy + 2xy^2)。

2. 分解下列各式:(1) x^2 - 4解:这是一个差的平方,因此可以分解为 (x + 2)(x - 2)。

(2) y^2 - 9解:这是一个差的平方,因此可以分解为 (y + 3)(y - 3)。

(3) 9x^2 - 4y^2解:这是一个差的平方,可以使用公式 a^2 - b^2 = (a + b)(a - b) 分解为 (3x + 2y)(3x - 2y)。

(4) 4x^2 - 12xy + 9y^2解:这是一个完全平方,可以分解为 (2x - 3y)^2。

3. 计算下列各式的积:(1) (2x - 5)(3x + 4)解:使用分配率,计算得到 6x^2 + 8x - 15x - 20 = 6x^2 - 7x - 20。

(2) (x + 2)(x - 3)解:使用分配率,计算得到 x^2 - 3x + 2x - 6 = x^2 - x - 6。

(3) (2a + 3)(2a - 3)解:使用分配率,计算得到 4a^2 - 6a + 6a - 9 = 4a^2 - 9。

4. 解方程:(1) 2x + 8 = 12解:首先移动常数项,得到 2x = 4。

然后除以系数2,解得 x = 2。

(2) 3(x - 4) = 21解:先使用分配率,得到 3x - 12 = 21。

然后移动常数项,解得 3x = 33。

最后除以系数3,解得 x = 11。

(3) 4(2x - 1) = 20 - 2x解:先使用分配率,得到 8x - 4 = 20 - 2x。

八下数学:4.1《因式分解》同步练习(含答案)

八下数学:4.1《因式分解》同步练习(含答案)

《因式分解》习题一、选择题1、把代数式xy2-9x,分解因式,结果正确的是( )A、x(y2-9)B、x(y+3)2C、x(y+3)(y-3)D、x(y+9)(y-9)2、下列各式从左到右的变形中,是分解因式的是( )A、x2-9+6x=(x+3)(x-3)+6xB、(x+5)(x-2)=x2+3x-10C、x2-8x+16=(x-4)2D、(x-2)(x+3)=(x+3)(x-2)3、观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A、962×95+962×5=962×(95+5)=962×100=96200B、962×95+962×5=962×5×(19+1)=962×(5×20)=96200C、962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D、962×95+962×5=91390+4810=962004、下列各式从左到右的变形中,是因式分解的为()A、x(a-b)=ax-bxB、x2-1+y2=(x-1)(x+1)+y2C、x2-1=(x+1)(x-1)D、ax+bx+c=x(a+b)+c5、下列各式从左到右的变形(1)15x2y=3x·5xy;(2)(x+y)(x-y)=x2-y2;(3)x2-6x+9=(x-3)2;(4)x2+4x+1=x(x+4+错误!未找到引用源。

),其中是因式分解的个数是()A、1个B、2个C、3个 D.4个6、下列各式的因式分解中正确的是()A、-m2+mn-m=-m(m+n-1)B、9abc-6a2b2=3abc(3-2ab)C、3a2x-6bx+3x=3x(a2-2b)D、错误!未找到引用源。

精品 八年级数学下册 因式分解同步题

精品 八年级数学下册 因式分解同步题

因式分解 提取公因式法定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。

ma +mb=m(a +b)(1)公因式的系数应取各项系数的最大公约数(当系数是整数时)。

(2)字母取各项的相同字母,且各字母的指数取最低次幂。

例1.对下列多项式进行因式分解:(1)5x 2y 3-10x 2y (2)24abc-9a 2b 2 (3)x(x-y)2-y(x-y)(4)-3ab+6abx-9aby (5)-3ma 3+6ma 2-12ma (6)2(a-b )2-a+b(7)3(a-b )2-6a+6b (8)-0.01x 3y+0.2x 2yz 2(9)a (x-a )+b (a-x )-c (x-a )例2.利用因式分解计算:22×3.145+53×3.145+31.45×2.5公式法))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-例1.对下列多项式进行因式分解:(1)16a 2-1 (2)-m 2n 2+4P2(3)259x 2-161y 4(4)(x+z )2-(y+z )2(5)121-4a 2b2(6)-91+4x 2例2.对下列多项式进行因式分解:(1)2222224)(b a b a c --- (2)222222)(4)(xy ab a y b x ---+-例3.分解因式:x n +4-169xn +2(n 是自然数)例4.),(3127123且均为自然数n m b a a nn m n m >---例5.已知a,b,c 满足a-b=8,ab+c 2+16=0,求a+b+c 的值 .例6.已知58-1能被20-30之间的两个整数整除,求这两个数。

例7.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值。

北师大版八年级下册因式分解(分组分解法)100题及答案

北师大版八年级下册因式分解(分组分解法)100题及答案

北师大版八年级下册因式分解(分组分解法)100题及答案(1)2232422122a b ab bc ca+-+-(2)2254491054236a b ab bc ca++++ (3)144144mx my nx ny-+-(4)2256716249a c ab bc ca-+-+ (5)224255025a b b---(6)22781863x y xy yz zx+-+-(7)22324142418a b ab bc ca-++-(8)22366424163x y x y-+-+(9)22487850a c ab bc ca-++-(10)36403640ab a b--+(11)90502715mn m n-+-(12)223635121012x y xy yz zx--++ (13)2128912ab a b+++(14)229129256a c ab bc ca+--+ (15)40401010mn m n-+-(16)813694xy x y-++-(17)2293025a b a -+-(18)39618ab a b --+(19)228116364832a b a b -+--(20)22491070m n m n---(21)18168172xy x y --+(22)2236493612672a b a b --+-(23)30103010mn m n +--(24)751410xy x y -+-(25)422ax ay bx by --+(26)2254463730x z xy yz zx----(27)228114416x y x y--+(28)9090100100ax ay bx by-+-(29)222148621x y xy yz zx-+-+(30)1262010ab a b -+-(31)2754918ab a b +--(32)306306ax ay bx by-+-(33)351573xy x y --++(34)70604236ax ay bx by+--(35)226321453522x z xy yz zx---+ (36)27181812xy x y--++(37)2727mn m n+++(38)2887020xy x y-+-(39)222536701248x y x y--++ (40)49283520xy x y--+(41)226464161a b a---(42)225642615a c ab bc ca++++ (43)12101210mx my nx ny+--(44)22842103520x y xy yz zx-+-+ (45)2262525306a b ab bc ca-+++ (46)35301412ax ay bx by+++ (47)1236618ax ay bx by+--(48)22725543049a c ab bc ca+-+-(49)22493611210817m n m n-+--(50)202456xy x y+--(51)22151682015x y xy yz zx-+--(52)22010xy x y----(53)224218288a b ab bc ca ---+(54)22924361658a c ab bc ca ++++(55)22216569a b ab bc ca --+-(56)56424836mx my nx ny -+-(57)2790620mn m n +++(58)2221227x y xy yz zx-++-(59)2249542749x y xy yz zx+--+(60)2291667280m n m n ----(61)1010ax ay bx by--+(62)2215286841x z xy yz zx+--+(63)223014474236x y xy yz zx+--+(64)2281141848m n m n --++(65)70359045mx my nx ny-+-(66)2242648749a b ab bc ca+-+-(67)224512201651a c ab bc ca++--(68)624520mx my nx ny-+-(69)224512481025x y xy yz zx++++(70)2264961011a b a b ---+(71)221825102535x z xy yz zx-+++ (72)61437ab a b--+(73)221035392820a b ab bc ca+--+ (74)226491284215x y x y-+++ (75)222148828x y xy yz zx-+-+ (76)9218ax ay bx by-+-(77)814595xy x y-++-(78)2215201353x y xy yz zx---+ (79)221810273542x y xy yz zx++++(80)12182436mx my nx ny+--(81)22259904232x y x y---+ (82)224727728a b ab bc ca-++-(83)9327xy x y+--(84)24323648xy x y+--(85)1292418mx my nx ny+++ (86)3232xy x y-+-+(87)22628132015x y xy yz zx----(88)729729mx my nx ny+--(89)22496470649m n m n --++(90)22161449m n m -+-(91)36892xy x y -+-+(92)2256425432a b ab bc ca----(93)2264112445a b a b --++(94)223693025m n n ---(95)2231084x y xy yz zx---+(96)222130573549a b ab bc ca+-+-(97)221524265x y xy yz zx--++(98)4242mx my nx ny+++(99)2281161621677x y x y -+++(100)2040816mn m n +--北师大版八年级下册因式分解(分组分解法)100题答案(1)(342)(6)a b c a b---(2)(67)(976)a b a b c+++ (3)2()(72)m n x y+-(4)(8)(727)a c ab c-++(5)(255)(255)a b a b++--(6)(743)(2)x y z x y---(7)(66)(34)a b c a b+--(8)(683)(681)x y x y++-+(9)(8)(67)a c ab c++-(10)4(1)(910)a b--(11)(103)(95)m n+-(12)(65)(672)x y x y z+-+(13)(73)(34)a b++(14)(92)(6)a c ab c+-+ (15)10(41)(1)m n+-(16)(91)(94)x y---(17)(35)(35)a b a b++-+(18)3(2)(3)a b--(19)(948)(944)a b a b++--(20)(7)(710)m n m n+--(21)(29)(98)x y--(22)(6712)(676)a b a b+--+ (23)10(1)(31)m n-+(24)(2)(75)x y+-(25)(2)(2)a b x y--(26)(674)(9)x y z x z--+ (27)(916)(9)x y x y+--(28)10(910)()a b x y+-(29)(72)(323)x y x y z-++(30)2(35)(21)a b+-(31)9(31)(2)a b-+(32)6()(5)a b x y+-(33)(51)(73)x y--+(34)2(53)(76)a b x y-+ (35)(753)(97)x y z x z--+ (36)3(32)(32)x y--+ (37)(1)(27)m n++(38)2(25)(72)x y+-(39)(568)(566)x y x y+---(40)(75)(74)x y--(41)(881)(881)a b a b+---(42)(7)(86)a c ab c+++ (43)2()(65)m n x y-+(44)(47)(265)x y x y z-++(45)(5)(656)a b a b c+-+(46)(52)(76)a b x y++(47)6(2)(3)a b x y-+(48)(86)(95)a b c a c---(49)(7617)(761)m n m n++--(50)(41)(56)x y-+(51)(34)(545)x y x y z+--(52)(10)(21)x y-++(53)(234)(27)a b c a b++-(54)(94)(46)a c ab c+++(55)(32)(733)a b a b c-+-(56)2(76)(43)m n x y+-(57)(92)(310)m n++(58)(3)(72)x y z x y+--(59)(7)(757)x y x y z--+ (60)(348)(3410)m n m n++--(61)(10)()a b x y--(62)(527)(34)x y z x z-++ (63)(526)(67)x y z x y-+-(64)(98)(96)m n m n+---(65)5(79)(2)m n x y+-(66)(667)(7)a b c a b---(67)(54)(943)a c ab c-+-(68)(65)(4)m n x y+-(69)(52)(965)x y x y z+++(70)(81)(811)a b a b+---(71)(25)(955)x z x y z++-(72)(21)(37)a b--(73)(57)(254)a b a b c--+ (74)(831)(8315)x y x y++-+ (75)(324)(72)x y z x y++-(76)(2)(9)a b x y+-(77)(91)(95)x y---(78)(54)(35)x y z x y++-(79)(327)(65)x y z x y+++ (80)6(2)(23)m n x y-+ (81)(532)(5316)x y x y+---(82)(4)(77)a b a b c-+-(83)(3)(9)x y-+(84)4(23)(34)x y-+ (85)3(2)(43)m n x y++ (86)(1)(32)x y-+-(87)(34)(275)x y x y z+--(88)9()(8)m n x y-+(89)(789)(781)m n m n+---(90)(47)(47)m n m n++-+ (91)(41)(92)x y-+-(92)(8)(744)a b a b c+--(93)(89)(85)a b a b+---(94)(635)(635)m n m n++--(95)(354)(2)x y z x y++-(96)(367)(75)a b c a b---(97)(56)(34)x y x y z+-+ (98)2()(2)m n x y++(99)(947)(9411)x y x y++-+ (100)4(52)(2)m n-+。

北师大八年级下册数学因式分解同步练习题及答案

北师大八年级下册数学因式分解同步练习题及答案

《因式分解》练习题一. 填空题1. 把一个__________化成几个____________的____________的形式叫因式分解,因式分解与__________正好相反。

2. 一个多项式各项的公因式是这个多项式各项系数的_________与各项都含有的字母的__________次幂的____________。

3. 分解因式时,如果有的因式还能分解,一定要再继续分解到每一个多项式因式都________为止。

4. 变形(1)()()a b a b a b +-=-22,(2)a b a b a b 22-=+⋅-()()中,属于因式分解过程的是____________。

5. 把一个多项式进行因式分解,首先看这个多项式各项有无_____________,如果有,就先____________-。

6. 如果9422x kxy y ++是一个完全平方式,那么k=______________。

7. 如果x x 2310--分解为()()x a x b ++,那么a=___________,b=___________。

8. 用分组分解法时,一定要考虑分组后能否_____________,____________。

9. --+=-15352053424253m n x m n x m n m n ( )。

10. -+-=-+a a b ab a ab b 32222()()。

11. a x y a b y x x y 323()()()()()---=-。

12. a b c c b c a b 2222()()()---+=___________。

13. ()()()()()().a b a b a b a b a b -++--=-⋅2342423214. ()()()x y x y x y nn n ---=-⋅--22____________。

15. x xy y 2256-+=____________。

八年级下册数学因式分解计算题

八年级下册数学因式分解计算题

八年级下册数学因式分解计算题一、提取公因式法。

1. 分解因式:6ab + 3a解析:首先观察多项式各项的公因式,在6ab+3a中,公因式为3a。

根据提取公因式法,将公因式提出来得到:3a(2b + 1)。

2. 分解因式:15x^3y^2+5x^2y 20x^2y^3解析:观察可得公因式为5x^2y。

提取公因式后得到:5x^2y(3xy+1 4y^2)。

3. 分解因式:9x^2y 18xy^2+27xy解析:公因式为9xy。

分解结果为:9xy(x 2y+3)。

二、公式法(平方差公式:a^2 b^2=(a + b)(a b))4. 分解因式:16x^2-9y^2解析:可以将16x^2看作(4x)^2,9y^2看作(3y)^2。

根据平方差公式可得:(4x + 3y)(4x 3y)。

5. 分解因式:25 49m^2解析:把25看作5^2,49m^2看作(7m)^2。

利用平方差公式分解为:(5 + 7m)(5 7m)。

6. 分解因式:x^4 y^4解析:首先x^4 y^4=(x^2)^2-(y^2)^2。

根据平方差公式先分解为(x^2 + y^2)(x^2 y^2)。

而x^2 y^2还可以继续分解为(x + y)(x y),所以最终结果为(x^2 + y^2)(x + y)(x y)。

三、公式法(完全平方公式:a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9解析:这里a = x,b = 3,2ab=2× x×3 = 6x。

符合完全平方公式a^2+2ab + b^2的形式,所以分解结果为(x + 3)^2。

8. 分解因式:4x^2-20x+25解析:把4x^2看作(2x)^2,25看作5^2,2ab = 2×2x×5=20x。

符合完全平方公式a^2 2ab + b^2的形式,分解为(2x 5)^2。

9. 分解因式:9x^2+12xy+4y^2解析:其中a = 9x^2=(3x)^2,b = 4y^2=(2y)^2,2ab = 2×3x×2y = 12xy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
2
(5)a x+a y+b x+b y
2
2
2
2
(6)a b+2a b -a b-2ab
4
3 2
2
2
(7)45m -20ax +20axy-5ay
2
2
2
(8)2(a -3mn)+a(4m-3n)
2
例 2.对下列多项式进行因式分解: (1) x y z 2yz
2 2 2
(2) x3 x 2 y xy2 y 3
(13) 2005 x 2 (2005 2 1) x 2005
复习题 1.多项式 a ( a x )( x b ) ab ( a x )(b x ) 的公因式是( ) A.-a、 B. a (a x)( x b) C. a (a x) 2.两个连续的奇数的平方差总可以被 k 整除,则 k 等于( A.4 B.8 C.4 或-4 3.若 a +a=-1,则 a +2a -3a -4a+3 的值为( A.8
2.对下列多项式进行因式分解: 2 2 (1)7x -19x-6 (2)12x -13x+3
(3)4x +24x+27
2
(4)8x y +6xy-35
2 2
课后练习: 1.对下列多项式进行因式分解: (1) 12 x 11xy 15 y
2 2
(2) a 8ab 128b
2
2
(3) 2ax 10ay 5by bx
8.已知:a、b、c 为三角形的三边,比较 a 2 b 2 c 2 和4a 2 b 2 的大小。
分组分解法 am+an+bm+bn=(a+b)(m+n) 例 1.对下列多项式进行因式分解: 2 (1)a -ab+3b-3a
(2)x -6xy+9y -1
2
2
(3)am-an-m +n
2
2
(4)2ab-a -b +c
2
特点: (1)二次项系数是 1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。 例 1.对下列多项式进行因式分解: 2 2 (1)x +2x-24 (2)x -x-30
(3)x -8x-12
2
(4)x -7x-30
2
(5)m(3-m)+28
(6)a b-a b-42ab
3
2
n+4
-169x
n+2
(n 是自然数)
例 4. 1 a 3m n 1 a m n b 2 n (m n, 且均为自然数) 27 3
例 5.已知 a,b,c 满足 a-b=8,ab+c +16=0,求 a+b+c 的值 .
2
例 6.已知 5 -1 能被 20-30 之间的两个整数整除,求这两个数。
(3) a 2 2a b 2 2b 2ab 1
(4) (a c)(a c) b(b 2a )
2.已知 a(a-1)-(a2-b)=1,求
1 (a2+b2)-ab 的值. 2
3.(1-
1 1 1 1 1 )(1- 2 )(1- 2 )…(1- 2 )(1- 2 ) 2 2 3 4 9 10
2 2 2 4 3 2
D. a ( x a ) D.8 的倍数

) D.12 ) D.x=1,y=-3 ) D.任意有理数
B.7
C.10
4.已知 x +y +2x-6y+10=0,那么 x,y 的值分别为( A.x=1,y=3
2 2 2
B.x=1,y=-3
C.x=-1,y=3
5.已知 a x ±2x+b 是完全平方式,且 a,b 都不为零,则 a 与 b 的关系为( A.互为倒数或互为负倒数 B.互为相反数 C.相等的数
8
例 7.若 x、y 互为相反数,且 ( x 2) ( y 1) 4 ,求 x、y 的值。
2 2
课堂同步: 2 1.若 x +2(a+4)x+25 是完全平方式,则 a 的值是________ 2 2 2.已知 a+b=1,ab=-12,则 a +b 的值为________ 3.已知 x 2 x m ( x n) 2 ,则 m =____ n =___ 4.若 x 2 2(m 3) x 16 是完全平方式,则 m=_______
(3)-x2+4xy-4y2
(4)3ax +6axy+3ay
2
2
(5)m +4
4
(6)1-10ab +25a b
2
2 4
(7)(a-b) +4(b-a)+4
2
(8)12x-4-9x
2
课后练习: 1.分解下列多项式: (1) x 2 6 xy 9 y 2 16a 2 8a 1 (2) 4a 2 x 4a 2 y b 2 x b 2 y
(8) x2 2xy xz yz y 2
(9) a2 2a b2 2b 2ab 1
(10) y ( y 2) (m 1)(m 1)
(11) (a c)(a c) b(b 2a )
十字相乘法 二次项系数为 1 的二次三项式 直接利用公式—— x ( p q ) x pq ( x p )( x q ) 进行分解。
1 2 1 x xy y 2 的值是_____ 2 2
2
10.若 x 2 4 x 4 的值为 0,则 3 x 12 x 5 的值是_______ 11.若 x 2 2(m 3) x 16 是完全平方式,则 m=_____ 12.若 16(a b) 2 M 25 是完全平方式 M=_____ 13.如果二次三项式 x ax 8 ( a 为整数)在整数范围内可以分解因式,那么 a 的值为
(3) ax2 bx2 bx ax a b
(4) x2 6xy 9 y 2 16a2 8a 1
(5) a 2 6ab 12b 9b 2 4a
(6) a 4 2a 3 a 2 9
(7) 4a2 x 4a2 y b2 x b2 y
(7)(a+4)(a+5)+3a
(8)y +7y -18y
4
3
2
例 2.对下列多项式进行因式分解: (1)(x-1)(x-2)(x-3)(x-4)-48 (2) 2005 x ( 2005 1) x 2005
2 2
(3) ( x 1)( x 2)( x 3)( x 6) x
4.已知 m、n 为自然数,且 m(m-n)-n (n-m)=7,求 m、n 的值。
5.试说明不论 x、y 取什么有理数,多项式 x +y -2x+2y+3 的值总是正数.
2
2
6.若 x 为任意整数,求证: (7 x)(3 x)(4 x2 ) 的值不大于 100。
1 1 1 1 1 1 7.已知:a、b、c 是非零实数,且 a 2 b 2 c 2 1, a ( ) b ( ) c( ) 3 ,求 a+b+c 的值。 b c c a a b
2
2
(5)-x +15x+16
2
(6)15x +x-2
2
(7)6y +19y+10
2
(8)20-9y-20y
2
(9)4n +4n-15
2
(10)(x+y) -8(x+y)+48
2
(11)2x -7x+3
2
(12)6x -7x-5
2
(13)5x +6xy-8y
2
2
(14)(x-y) (2x-2y-3)-2
5.已知: x
8
1 1 2, 则x 2 2 =_________ x x
10
6.如果 2 2
2 n 为完全平方数,则 n =-------------2 2004
7.已知 1 x x x 8.分解下列多项式: 3 3 (1)4x y-9xy
x 2005 0, 则 x 2006 ________ .
(3)x(x-y) -y(x-y)
2
(4)-3ab+6abx-9aby
(5)-3ma +6ma -12ma
3
2
(6)2(a-b) -a+b
2
(7)3(a-b) -6a+6b
2
(8)-0.01x y+0.2x yz
3
2
2
(9)a(x-a)+b(a-x)-c(x-a)
ቤተ መጻሕፍቲ ባይዱ
例 2.利用因式分解计算:22×3.145+53×3.145+31.45×2.5
公式法
a b (a b)(a b),
2 2
a 2 2ab b 2 (a b) 2 , a 3 b 3 (a b)(a 2 ab b 2 )
例 1.对下列多项式进行因式分解: (1)16a2-1 (2)-m2n2+4P2 (3)
9 2 1 4 xy 25 16
(4) (x+z)2-(y+z)2
(5)121-4a2b2
(6)-
1 +4x2 9
例 2.对下列多项式进行因式分解: (1) (c 2 a 2 b 2 ) 2 4a 2 b 2 (2) ( x 2 b 2 y 2 a 2 ) 2 4(ab xy ) 2
相关文档
最新文档