金属自由电子气模型

合集下载

3.金属自由电子气的Sommerfeld模型

3.金属自由电子气的Sommerfeld模型
http://10.107.0.68/~jgche/ Sommerfeld模型
EF k BTF
k BT9
被激发电子数
电子经典能量
N U (T / TF )k BT 2
U c N (T / TF )k B T
el V
2
• 与严格的理论相比,只差一个因子 / 2 4.9 一般金属的TF~104-105K,因此,室温下,电子经 典比热被高估两个量级 注意,我们仅仅根据量子统计的规律,估计了参与 这个过程的电子数,其能量仍是经典的。这就抓住 了问题的本质!恰恰说明这是个量子问题。 • 思考:Drude模型中还有什么困难应该也只考 虑应用这个结论,即只有费米能级附近的电子 起作用,就会得到接近正确的结果?
L
k (r ) e
ik y L
ik r
边界条件导致k取值 的量子化,分立值
循环边界条件既保持 ik x L ik z L e e e 1 了固体的有限尺寸, 又易于操作。另一种 2 4 6 k x , k y , k z 0; ; ; ; 边界条件即驻波条 L LSommerfeld L 模型 件,作为习题。 14 http://10.107.0.68/~jgche/
8
3、比热的定性估计(半经典)
• 分析:电子从零度起被加热,不象经典粒子每 个电子都得到kBT的能量,而仅仅Fermi能级附 近的电子被激发 • Drude高估了对热容有贡献的电子数 • 估计:有 kBT /kBTF比例 的电子被激发,这部分 电子数目 N N ~ (k BT / k BTF ) (T / TF ) 2 2
V 4 3 N 2 k F 3 2 3
自旋 状态密度 体积
16
最高占据能级Fermi能级

2.金属自由电子气的Drude模型

2.金属自由电子气的Drude模型
* 离子实的作用仅维持固体结合,维持电中性
• 金属中的价电子就象无相互作用的理想气体, 但模型与理想气体又有所不同:
* 电子气体的浓度比理想气体大三个量级 * 有两种粒子:电子,离子
不是很圆滑,所以再加些限制(基本假定),完 成Drude模型的构造
10.107.0.68/~jgche/ 金属电子气的Drude模型
1、已知的金属性质
模型建立的依据
10.107.0.68/~jgche/
金属电子气的Drude模型
4
为什么研究固体从金属开始?
• 金属最基本物质状态之一,元素周期表中有2/3 是金属元素,应用很广泛,当时对金属的了解 比其他固体多
* 比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 * 区分非金属,实际上也是从理解金属开始
12
思考——假如你是Drude
• 根据已有线索,如何仿照理想气体建立模型?
* 与理想气体(电中性)还是有些不同!除了碰撞的 瞬间,可以不考虑其他。但现有两种带电粒子
• 不是电中性的,有库仑相互作用?那么
* 电子-电子如何相互作用? * 电子-离子实如何相互作用?
• 还有——电传导(也包括热传导)是个输运过 程,非平衡过程,所以
上讲回顾
• 固体的微观定义
* 固体中的原子在其平衡位置附近作微小振动
• 贯穿课程的主线
* 周期性波在周期性结构中的运动
10.107.0.68/~jgche/
金属电子气的Drude模型
1
本讲内容:建模推演比较修正
• 如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象

金属自由气体模型

金属自由气体模型

第十九讲金属自由气体模型一、固体物理中的主要模型(理论):Atoms in the solid matter= ion cores (离子实)+ valence electrons(价电子)= nuclei + core electrons + valence electrons1.最简单的模型—金属自由电子气体模型a)认为离子实静止不动;b)通过“自由电子近似(凝胶模型--离子实系统产生的势场是均匀的)”和“独立电子近似(忽略电子与电子之间的作用)”形成一类最简单的“单电子近似”模型:i.Drude Model (1900)ii.Sommerfeld Model (1928)2.次简单模型Ⅰ—晶格模型和能带理论a)认为离子实仍然静止不动;b)离子实系统产生的势场随空间是周期变化,不再是均匀的。

3.次简单模型Ⅱ—晶格振动理论和声子模型a)不考虑电子的运动;b)离子以简正模式运动。

4.最复杂的模型—电子与声子相互作用理论,光子与声子相互作用理论,光子与电子(固体、半导体中的电子,)相互作用理论,…总结:学习这种将复杂的大问题(真实的物理体系)化成可以局部求解的小问题(简化的物理体系);通过不断对简单模型的修正,来处理复杂的体系。

在学会这种思维方式的同时,保持头脑清醒,牢记各种模型的成立前提(或条件,或可忽略的物理内容),才能正确使用模型,得到合理的有价值的结论。

二、Sommerfeld量子金属自由电子气体模型通过三个近似,将一块体积为V的金属简单地看成一堆价电子在体积为V的“空盒子”中运动的单纯由电子组成的体系。

1.自由电子近似——对金属来说是个比较好的近似。

a)忽略价电子与离子实之间的作用,认为离子实系统产生的势场对处在其中的价电子来说是均匀的。

b)将离子实系统看成是保持体系电中性的均匀正电荷背景。

c)价电子的自由运动范围仅限于金属块的体积V内,由金属的表面势垒将价电子限制在样品内部。

2.独立电子近似——对其它晶体(包括半导体和绝缘体)来说也是一个比较好的近似。

电子行业金属自由电子气模型

电子行业金属自由电子气模型

电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。

在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。

本文将详细介绍电子行业金属中自由电子气模型的基本原理。

自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。

这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。

而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。

在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。

由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。

能带结构能带结构描述了金属中电子的能量分布情况。

根据自由电子气模型,电子能量随动量的变化形成能带。

在一维情况下,能带是连续的,电子在能带中可以具有任意动量。

而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。

根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。

因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。

能带结构可以分为导带和价带。

导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。

价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。

费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。

根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。

费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。

在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。

自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。

金属自由自由电子气体模型及基态性质解析PPT课件

金属自由自由电子气体模型及基态性质解析PPT课件

v p k mm
2k2 1 m 2m 2
2k 2 m2
1 mv2 2
即电子的能量和动量都有经典对应,但是,经典中的平面 波矢k可取任意实数,对于电子来说,波矢k应取什么值呢?
4.波矢k的取值
波矢k的取值应由边界条件来确定
边界条件的选取,一方面要考虑电子的实际运动情况(表面和内部);另一方 面要考虑数学上可解。

k2
d
k
E dE ky
dZ
2
V
2π 3

2m
2
m d 2 2m
E
kx
4πV
2π 3
(2 m )3 2 1 2
3
d
3
4πV
2m h2
21
2d
N ( )
dZ
C
1 2
d
其中
C
4πV
2m h2
3
2
第24页/共30页
法3. 在k空间自由电子的等能面是半径
k 2mE 的球面,
波函数为行波,表示当一个电子运动到表面时并不被反射回来,而是离开 金属,同时必有一个同态电子从相对表面的对应点进入金属中来。
二者的一致性,表明周期性边条件的合理性
由周期性边界条件:(讲解以下推导过程)
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z
V
(2)波矢空间状态密度(单位体积中的状态代表点数):
k
1 k
1
( 2 )3
L3
(2 )3
V
8 3
L
注意量纲
第14页/共30页
三、基态和基态能量 1.N个电子的基态、费米球、费米面 电子的分布满足:能量最小原理 和 泡利不相容原理

金属电子气的Drude模型

金属电子气的Drude模型

Drude模型在半导体物理中的应用
半导体载流子运动
Drude模型在半导体物理中用于描述半导体中载流子的运动行为。通过该模型, 可以研究半导体中电子和空穴的迁移率、扩散系数等性质,从而深入了解半导 体的光电、热电等效应。
半导体器件性能
Drude模型在半导体器件性能分析中也有重要应用,如晶体管、太阳能电池等。 通过该模型,可以研究器件中载流子的传输、注入、收集等过程,为优化器件 性能提供理论支持。ຫໍສະໝຸດ HANKS FOR WATCHING
感谢您的观看
04
Drude模型的局限性
Drude模型的近似性
Drude模型假设电子在金属中以无相 互作用的粒子形式运动,忽略了电子 间的相互作用。
在实际金属中,电子间存在相互作用, 这会导致电子的运动受到散射,使得 电子的运动不满足Drude模型的假设。
Drude模型在高场下的不适用性
Drude模型在高电场下不适用,因为 高电场下电子的运动速度接近光速, 需要考虑相对论效应。
02
当电子气受到外部扰动时,阻尼系数决定了电子气 的响应速度和振幅衰减。
03
阻尼系数的大小与金属的微观结构和温度有关,是 金属导电性能的重要参数。
电子气的弛豫时间
01 弛豫时间表示电子气达到热平衡状态所需的时间。 02 在Drude模型中,弛豫时间反映了电子气内部相
互作用的过程。
03 弛豫时间的长短决定了金属的电导和热导等物理 性质随时间的变化规律。
述这些效应。
发展Drude模型的量子版本
引入量子力学效应
在量子版本的Drude模型中,考 虑量子力学效应对金属电子气行 为的影响,如能级量子化、波函 数等。
考虑量子相干性
在低温下,金属电子气可能表现 出量子相干性,需要发展量子版 本的Drude模型来描述这种行为。

固体物理第一章金属电子气体模型

固体物理第一章金属电子气体模型

⇓ ⇓ ⇓
为计算方便,设金属是边长为 L 的立方体, 内有N个原子,一个原子提供1个价电子。 则金属的体积: V=L3 自由电子数目为:N 由自由电子气体模型, N 个原子和N 个电子 的多体问题转化为单电子问题。 按照量子力学假设,单电子的状态用波函 数 Ψ (r ) 描述,且满足薛定谔方程。
1.薛定谔方程及其解
(3)价电子速度服从费米—狄拉克分布—自由电 子费米气体 (free electron Fermi gas) (4)不考虑电子和金属离子之间的碰撞 (No collision) 2.电子密度 理想气体在温度恒定下可用气体密度来描述, 与此类似,自由电子气体模型也可用电子密度 n来描述,而且,n是唯一的一个独立的参量。 电子的能量、动量、速度等都可以写成n的 数。
k
为波矢,其方向为平面波的传播方向 的大小与电子的德布罗意波长的关系为:
k
k =

λ
把波函数
1 ik ⋅r ψ k (r ) = e 代入薛定谔方程 V
2 2
得到电子的本征能量:
k = 2 2 2 (k x + k y + k z ) ε = 2m 2m
2. 电子的动量 将动量算符
2
ˆ p = −i ∇
(3) 发展—1904年洛仑兹发展了这个理论:认 为金属中的电子不仅是自由的,而且遵守麦— 玻统计规律,同时认为电子和金属离子的碰撞 是弹性的。从而半定性地解释上述问题。 (4) 困难--(a) 根据经典统计的能量均分定 理,N个价电子的电子气有3N个自由度,它们 对热容的贡献为3NkB/2,但对大多数金属,实验 值仅为这个理论值的1% 。 (b) 根据这个理论得出的自由电子的顺磁磁 化率和温度成正比,但实验证明,自由电子的 顺磁磁化率几乎与温度无关。(第三节)

金属自由电子模型

金属自由电子模型

0 EF
0
3 V 2m 3/2 3/2 3 0 ( 2 ) E dE EF 3eV 2 2 3 5
如果把电子比作费米子的理想气体分子,则在绝对零度,电子基态的平均能 量相当于 T~23077K,对应于平均速度为
3kBT | v | v 2 1106 m / s ~ 1/ 300 光速 me
E TF r C F r dr z
一,金属自由电子气体模型
1.1 经典电子论 特鲁德电子气模型: 特鲁德提出了第一个固体微观理论利用微观概念计算宏 观实验观测量 自由电子气+波尔兹曼统计 欧姆定律 电子平均自由程+分子运动论 电子的热导率 特鲁德(Paul Drude)模型的基本假设 1 1.自由电子近似: 传导电子由原子的价电子提供,离子实对电子的作用可以 忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似: 电子与电子之间的相互作用可以忽略不计。 外电场为零时, 忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气 体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能 带论中证明是错误的。 ) 特鲁德(Paul Drude)模型的基本假设 2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为 1 / , 称为弛豫时 间(即平均自由时间) 。每次碰撞时,电子失去它在电场作用下获得的能量,即 电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律 E j (或 j E ) ,其中 E 为外加电场强度、 为电阻率、 j 为 电流密度。
用托马斯一费米模型处理原子中的问题.为方便起见,下面均采用原子单位. 即。e= =μ=1 的单位制。 基于统计的考虑,Thomas 和 Fermi 于 1927 年曾几乎是同时地分别提出,将 多电子运动空间划分为边长为 l 的小容积(立方元胞) v l 3 。其中含有 N 个 电子 (不同的元胞中所含电子数不同) 。假定在温度近于 0K 时每一元胞中电子的 行为是独立的 Fermi 粒子, 并且各个元胞是无关的。则有三维有限势阱中自由里 子的能级公式

金属自由电子气模型

金属自由电子气模型
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
p(t
dt)
p(t)
F (t)dt
P(t)
dt
(1.2.3)
更简练的形式为
dp(t)
F (t )
P(t)
dt
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)d
m
d d
(t)
F (t)
• 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
1. Drude模型
1)传导电子和芯电子
Na: K L M 1s 2s2p 3s 281
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
传导电子密度 n:单位体积的传导电子数
原子数/mole: N0 = 6.022 ∙ 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 m是金属的质量密度(g/cm3),A 是元素的原子量
n
N0
Zm
A
6.022 1023
Zm
A
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍3源自0.22rs a0
1014 sec .
(1.2.10)
其a0为中玻,尔为半金径属。电阻率,rs为一个所占据体积的等效球半径,
金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2

金属电子气的Drude模型-PPT精品文档

金属电子气的Drude模型-PPT精品文档

6. Drude自由电子气模型的基本假定 (1)独立电子近似 电子与电子无相 互作用(既没有库仑 作用,也没有碰撞与理想气体不同)。 (2)自由电子近似 除碰撞的瞬间外,电子与离子无相互作 用(离子实完全抹平,均匀分布在整个 空间,只起维持系统的电中性。只有为 防止电子被外电场无限加速而设的碰撞 作用)。
②自由电子近似
即使以现在量子学的观点来看也是很 好的近似,而且1916年的Tolman实 验也支持这个假定。
③弛豫时间近似
电子不可能完全自由,碰撞或者 离子散射是电阻的根源,无碰撞,弛 豫时间无穷大,电导率无穷大,不会 达到热平衡。
四、金属的热传导
热流密度与热导系数的关系 j=-k△t 根据直觉导体的导热能力好于绝缘体, 利用能量均分定理和定容比热定义
4. 进行分析推测 芯电子:束缚住原子核周围形成离子 实,不参与导电。 价电子:离子实对他们的吸引弱,可以 离开离子实的束缚,自由地在整个金属 中移动,且参与导电。 5.Drude的经典金属自由电子气模型 (1900) 在微观层次上解释实验测量宏观物 理量的第一个理论模型,首次用于电传 导和热传导。
这个力使电子有一个与电场相反方向 的总体漂移,速度V漂移显示出电流密 度 j=-neV漂移 n是电子密度。根据牛顿定律,电子将 被加速,漂移速度会随时间不断增加 趋于无穷。需要检查电子运动方程中 被散射的机制。
2. 弛豫时间近似
ne j -nev p m
3.
电流密度与电子的平均速度或平均动量有
二、模型的假定及其合理性分析
1.1897年Thomsom的电子论 电子的发现时物理学发展的转折点 Drude意识到金属的导电和导热性质可 能与电子有关,当人有人也质疑这种猜 测。首先,电子对导热有什么帮助没有 依据;其次,不能因为良好的导电体就 是良好的导热体就断章取义。

第一章 金属自由电子气体模型

第一章 金属自由电子气体模型

K-空间中,本征波矢均匀分布,间隔:2π/L.由 于L很大,称为准连续谱 定义k-空间的态密度:k-k+dk范围的状态数:
ρ(k) = L 2π
三维导体
电子在三维金属体内运动,看成电子在三维无限 深势阱中运动(单电子薛定谔方程):
ℏ2 2 ∇ +U(r)ψ (r) = Eψ (r) − 2m 2m
()
()
π
π
在k-空间,k - k+dk 范围电子状态数
9
V 3 dN = g(ε )d ε = 2 3 2m ε d ε πℏ V 3 g(ε ) = 2 3 2m ε ∝ ε πℏ
在能量层 ε-ε+ dε范围的电子状态数 请讨论1、2维电子的能态密度
kz
g (ε )
kx
ky
ε
例:应用态密度计算电子的基态能
13
一、费米分布
T=0时,电子先占据低能量状态: f (ε )
limT →0
1, ε i < µ f (ε i ) = 0, ε i > µ
T>0 时,量子态上(自由) 电子占据的几率:
µ
ε
f (ε i ) =
e
(ε i − µ ) k BT
1
+1
k
∆ε ~ k BT
14
问题:常温下电子的热容量可以忽略?
z
费米面半径 :
kF
V 4 3 N = 2× 3 × π kF 8π 3 3 2 kF = 3π n TF = εF kB ≈10 ~ 10 K
4 5
8
kx
ky
电子的平均动能 为费米能时,体 系具有的温度
四、态密度

金属自由电子气模型

金属自由电子气模型
2 2 2 = (k x k y ) 2m
求(1)电子态密度(考虑自旋); (2)该系统的费米能(只考虑温度为绝对 零度
北京工业大学 固体物理学
第二节 自由电子气的热性质
费米-狄拉克分布函数 T≠0K时,电子在本征态上的分布服从费 米-狄拉克分布
fi
1 e
( i )/ k BT
vF/108cm/s TF/104K
1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.83 2.03 1.74 1.90 1.83 1.87 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 11.0 13.6 10.0 11.8 11.0 11.5
T=0 T1


北京工业大学 固体物理学
1、化学势随温度的变化 ① T≠0K,自由电子气单位体积的内能
2 u ( k ) f g( ) f ( )d k 0 V k
② T≠0K,分布函数中的化学势可由电子数 密度算出
2 n V

k
fk g( ) f ( )d 0
北京工业大学 固体物理学
代入
f f I Q( ) ( )d Q( ) ( )( )d 1 f 2 Q( ) ( ) ( )d 2



(**)
(**)第一项积分项等于1 (**)第二项
1 ik (r ) e r V
电子的本征能量:
将波函数代入薛定谔方程,得
k (k ) 2m
2
2

05 金属自由电子气体模型

05 金属自由电子气体模型

ε mol
=
N
A
⎜⎛ ⎝
3 2
k
BT
⎞⎟ ⎠
=
3 RT 2
一价金属:CVe ,mol
=
∂ε mol ∂T
=
3R 2
高温时金属的总比热容:
CV
=
C Ph V ,mol
+ CVe ,mol
= 3R + 3 R ≈ 37.40J / mol ⋅ K 2
实际
Ce V,mol
小于经典值
量子:
CVe
~
T TF
常温下:电子的贡献比例很小
kx
=
2π L
nx
ky
=
2π L
ny
kz
=
2π L
nz
nx , ny , nz--一组整数
自由电子的能量是不连续的,相邻能级相距很近. 5 kv空间与态密度 (k-space) 电 的子 端的 点状 代态 表由 一波 个矢可确 能定 的。kv 在 值。kv空相间邻中 代, 表每 点一 在波 三矢 维坐kv
vy
=

eτ m
Ey
+
ωcτv x
ωc
=
eB m
--回旋频率
vz
=

eτ m
Ez
30
5
Jv = −nevv σ = ne2τ m
σ 0 E x = J x + ωcτJ y σ 0 E y = −ωcτJ x + J y
4.4 霍尔效应和磁阻
长方体样品, 沿x轴施加外电场Ex, 存在电流Jx, 在z轴 加磁场B后, 产生洛仑兹力在负y方向作用到电子上.
+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)电子在dt时间所受碰撞的几率正比于 dt/τ τ通常被成为弛豫时间(Relaxation time),相应的近似被 成为弛豫时间近似 弛豫时间近似(Relaxation time approximation)。 弛豫时间近似 这个图像所描述的碰撞过程为:电子在某时刻受到碰撞, 电子的速度瞬时被改变,然后电子的运动为自由运动, (如果存在外场,会受到外场力的作用),电子平均自 由运动τ时间后再一次受到碰撞。
1 1 κ = CVυl = CVυ 2τ 3 3
(1.5.2)
其中CV是电子气热容,v是电子运动的平均速度,l是电子 平均自由程,τ是电子弛豫时间。
计算比值:
1 cV mυ 2 κ 3 = ne 2 σ
(1.5.3)
应用经典统计的结果:
3 cV = nk B 2 1 3 2 mυ = k B T 2 2
v v J =σ ⋅E
(1.2.1)
这是最早从实验上确定的,但是为什么会如此? 按照Drude模型分析: 假定t时刻电子的平均动量为p(t),经过dt时间,电子没有受 到碰撞的几率为 1-dt/τ,那么这部分电子对平均动量的贡献 为
v v dt v p(t + dt ) = 1 − [ p(t ) + F (t )dt ] τ
3
(1.2.10)
其中,ρ为金属电阻率,rs为一个所占据体积的等效球半径, a0为玻尔半径。 金属Cu的室温电阻率ρ=1.56·10-6Ohm-cm, τ=2.7 ·10-14 sec
3)金属中电子的平均自由程 )
l = v0τ ; 而 mv02/2 =3kBT/2
在室温下,电子平均速度 v0 的典型值为107 cm/s,
3) Drude模型的假设 模型的假设
(1)自由电子近似 自由电子近似(Free electron approximation): 自由电子近似 忽略电子——离子的相互作用 独立电子近似(Independent electron approximation): 独立电子近似 忽略电子——电子之间的相互作用 (2)电子之间的碰撞是瞬时的,经过碰撞,电子速度的改 变也是突然的。
(1.5.4) (1.5.5)
我们有:
κ 3 kB = T σ 2 e
2
(1.5.6)
3k κ = B = 1.11 × 10 −8W ⋅ Ω / Κ 2 σT 2 e
2
(1.5.7)
这就是Wiedemann-Franz关系,该常数被称为Lorenz数 (Lorenz number)。实际上,Lorenz数比上述值大一倍。
传导电子 conduction electron
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
1. Drude模型和凝胶模型 1)传导电子和芯电子 ) 凝胶模型 (Jellium model) )
金属就是正离子浸没于传导电子气中的集合 体。正离子和传导电子气之间的相互作用就是金 属中原子的结合力。 属中原子的结合力。金属表面存在着一种把传导 电子限制在金属范围内的势垒,而在金属内部, 电子限制在金属范围内的势垒,而在金属内部, 势能是均匀的, 势能是均匀的,好像传导电子在一个均匀的势场 中运动,相对势能为零。 中运动,相对势能为零。
1. Drude模型

1)传导电子和芯电子 )
Na: K L M 1s 2s2p 3s 2 8 1
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
1. Drude模型
1)传导电子和芯电子 )
Na: K L M 1s 2s2p 3s 2 8 1
芯电子(core electrons) 芯电子
电子密度) 2) 传导电子密度 (电子密度) 传导电子密度 n:单位体积的传导电子数 原子数/mole: N0 = 6.022 · 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 ρm是金属的质量密度(g/cm3),A 是元素的原子量
Zρ m Zρ m 23 n = N0 × = 6.022 × 10 × A A
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
v v dt v v p(t + dt ) − p(t ) = F (t )dt − P(t )
τ
(1.2.3)
更简练的形式为
v v dp ( t ) v P (t ) = F (t ) − (t dt τ
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)νd
v v dν d (t ) ν d (t ) m = F (t ) − m dt τ
v
(1.2.5)
碰撞的作用,相当于一个阻尼项
v v v dν d (t ) 对于恒定外电场的稳态情况, = 0, F = −eE dt (1.2.5)式为: v eτE νd = − (1.2.6) m
相应地:
v ne 2τ v v J = − ne ν d = E m v v J =σ ⋅E ne 2τ σ= m
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍 将每个电子平均占据的体积等效成球体,则:
1 V 4π 3 = = rs n N 3
定义电子占据体积的等效球半径:
3 rs = 4πn
1/ 3
rs的典型值∼Å。
κ = 2.22 × 10 −8W ⋅ Ω / Κ 2 (1.5.8) σT 这是Drude模型所无法解释的。其实,Drude模型能够给出 数量级正确的结果也是因为巧合,对CV估计大了两个数量 级,对v2估计小了两个数量级。
4. Drude模型的不足
1)Lorenz 数:数量差2倍,且与温度有关 2)电子比热:量差100倍,高温(RT以上)与温度无关 3)电导率:与温度有关
上式中F(t)是电子所受的外力。
(1.2.2)
对于受到碰撞的电子对平均动量的贡献: 这部分电子的比率为dt/τ,它们受到碰撞后无规取向(动量 无规取向对平均动量无贡献)。这部分电子对平均动量的贡 献在于受到碰撞前从外场获得的动量,由于碰撞发生在t+dt 时刻或之前,因此对平均动量的总贡献小于
v ( dt / τ ) ⋅ F (t ) ⋅ dt
(4)电子通过碰撞处于热平衡状态。电子热平衡的获得被假 定通过一个简单的途径达到,即碰撞前后的速度没有关联 (电子对自己的速度历史没有记忆)。 电子热平衡分布满足Bolzmann统计 (经典统计)
Drude模型所描述的受到离子散射的电子运动轨迹。
2. 金属的直流电导
1) 电导率 欧姆定律(Ohm’s law): V = I ⋅ R 欧姆定律更一般的形式(微分形式):
则 l =1 nm Drude 模型是自洽的。
3. 金属热导率
当温度梯度存在时,在金属中就会有热流产生:
J Q = −κ∇T
(1.5.1)
此即Fourier’s Law。其中JQ是热流,κ是热导率,∇T是温度梯 度。金属的热导率一般大于绝缘体的,因此金属的热导率可 以归结为自由电子的贡献。按照Drude模型,我们可以套用 理想气体热导率公式得:
第四章 金属自由电子气模型
§1 金属的Drude模型
• 金属在固体特性的研究中占据重要位置:元素单质材 料中最为常见的是金属;金属具有良好的电导率、热 导率等。尝试对金属特性的理解也是现代固体理论的 发端。 • 在J.J.Thomson于1897年发现电子3年之后,Drude根据 气体运动论建立了金属自由电子气模型,把金属中的 电子看到由电子组成的理想气体。 • 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
…… 理论值与实验值相差100倍! 偶然 or 必然?
(1.2.7)
(1.2.8)
2)金属中电子的弛豫时间 )
mσ m τ = = 2 ne ρ ne 2
(1.2.9)
在室温下,金属典型的电阻值为10-6Ohm-cm, 如果电阻 值用Ohm-cm为单位,弛豫时间的大小为:
0.22 rs τ = ⋅ × 10 −14 sec . ρ a 0
相关文档
最新文档