平方差公式因式分解说课稿

合集下载

用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。

2. 培养学生运用平方差公式进行因式分解的能力。

3. 提高学生解决实际问题的能力。

二、教学内容:1. 平方差公式的定义和特点。

2. 平方差公式的记忆方法。

3. 运用平方差公式进行因式分解的方法和步骤。

三、教学重点:1. 平方差公式的记忆和应用。

2. 运用平方差公式进行因式分解的方法和技巧。

四、教学难点:1. 平方差公式的灵活运用。

2. 因式分解中的特殊情况的处理。

五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。

2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。

3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。

一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。

八年级数学上册 《平方差公式》说课稿 人教新课标版

八年级数学上册 《平方差公式》说课稿 人教新课标版

《平方差公式》说课稿一、说教材。

1、说课内容:人教版《义务教育课程标准实验教科书·数学》八年级上册“”(第一课时)。

2、本课在教材中的地位、作用和意义:《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型X例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.3、本节课的教学目标:基于对教材的理解和分析,以学生的学为根本,基于以下目的:1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.我把本课的目标定位为:(一)知识目标:1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单运算。

(二)能力目标1.在探索平方差公式的过程中,培养符号感和推理能力。

2.培养学生观察、归纳、概括的能力。

(三)情感目标:在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美。

部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案

部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案

第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。

人教版八年级数学上册14.2.1《平方差公式》说课稿

人教版八年级数学上册14.2.1《平方差公式》说课稿
3.情境教学:通过创设生活情境,让学生在实际问题中感受数学知识的应用,提高学生的学习兴趣。依据情境学习理论,学生在真实情境中更容易产生共鸣,从而提高学习效果。
(二)媒体资源
我将使用以下教具、多媒体资源或技术工具辅助教学:
1.教具:平方差公式推导过程中,我将使用实物模型、卡片等教具,帮助学生直观地理解平方差公式的推导过程。
2.引发疑问:提出问题“如何简便地计算两个数的平方差?”让学生产生求知欲望,为新课的学习做好铺垫。
3.游戏互动:设计一个简单的数学游戏,让学生在游戏中体验平方差的概念,为新课的学习营造轻松愉快的氛围。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.平方差公式推导:通过实物模型、动画演示等方式,让学生直观地理解平方差公式的推导过程,掌握其内涵。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的合作意识和解决问题的能力。
3.竞赛活动:开展数学竞赛,激发学生的学习积极性,提高他们运用平方差公式解决问题的速度和准确度。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生对自己的学习过程和成果进行评价,反思在学习过程中遇到的问题和解决方法。
2.知识点讲解:结合具体实例,讲解平方差公式的表达形式和应用方法,让学生明白如何运用公式解决实际问题。
3.互动提问:在讲解过程中,适时提问,了解学生对知识点的掌握情况,并及时解答学生的疑问。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计不同难度的练习题,让学生独立完成,检验他们对平方差公式的掌握程度。
1.启发式教学:这种方法能够激发学生的思维,引导学生主动探究问题,培养学生的创新意识。依据建构主义学习理论,学生通过自主探究和思考,能够更好地理解和掌握知识。

2024《平方差公式》说课稿范文

2024《平方差公式》说课稿范文

2024《平方差公式》说课稿范文今天我说课的内容是《平方差公式》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《平方差公式》是高中数学必修一中的重要内容,属于三角函数章节。

平方差公式是解决三角函数中一类特殊的问题的基本工具,是理解和掌握三角函数的关键知识点。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的知识和技能,我制定了以下三点教学目标:①认知目标:理解平方差公式的定义和作用,掌握平方差公式的推导和运用。

②技能目标:能够独立运用平方差公式解决特定问题。

③情感目标:培养学生对数学的兴趣和态度,增强学生学习数学的信心。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解平方差公式的定义和作用,掌握平方差公式的推导和运用。

难点是:能够独立运用平方差公式解决特定问题。

二、说教法学法在教学过程中,我将采用启发式教学法和示范演示法相结合的教学方法。

通过激发学生的思维,引导他们主动思考和发现,培养他们解决问题的能力。

三、说教学准备在教学过程中,我将使用电子白板和投影仪进行多媒体辅助教学,展示示范和演示过程,帮助学生更好地理解和掌握平方差公式的推导和运用。

同时,我还准备了一些练习题和实例,以巩固学生的学习成果。

四、说教学过程新课标提出:“知识性倾向和能力性倾向相结合是课堂教学有效进行的重要保证”,在教学过程中,我设计了如下教学环节。

环节一、导入新课我将以一个简单的问题开始课堂:“已知直角三角形的两边长分别为a 和b,求斜边长c。

”通过这个问题,我引导学生思考是否存在一个公式能够直接求解这个问题,从而引出平方差公式的引入。

环节二、讲解平方差公式的定义和推导过程我将通过多媒体的辅助展示,讲解平方差公式的定义和推导过程。

在讲解的过程中,我会适时提问,引导学生思考并参与其中,加深对平方差公式的理解。

环节三、示范演示平方差公式的运用我将通过几个具体的例子,展示平方差公式在解决三角函数问题中的运用过程。

平方差公式说课稿

平方差公式说课稿

平方差公式说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是平方差公式。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析平方差公式是初中数学中的重要公式之一,它在整式乘法和因式分解中都有着广泛的应用。

本节课是在学生学习了整式乘法的基础上,进一步研究特殊形式的多项式乘法,为后续学习完全平方公式以及因式分解等内容奠定基础。

通过对平方差公式的学习,学生不仅能够掌握一种简便的计算方法,还能培养其观察、分析和归纳的能力,体会从特殊到一般、从具体到抽象的数学思维方法。

二、学情分析在学习本节课之前,学生已经掌握了单项式乘以单项式、单项式乘以多项式以及多项式乘以多项式的运算法则,具备了一定的计算能力和数学思维能力。

但对于公式的推导和应用,学生可能会存在一定的困难,需要教师引导学生通过观察、比较、归纳等方法来理解和掌握。

同时,学生在学习过程中可能会出现对公式结构特征理解不透彻,导致在应用时出现错误的情况。

因此,在教学过程中,要注重让学生通过实例来感受公式的合理性和实用性,加深对公式的理解和记忆。

三、教学目标1、知识与技能目标(1)理解平方差公式的结构特征,能正确运用平方差公式进行整式乘法运算。

(2)通过平方差公式的推导过程,培养学生的观察、分析和归纳能力。

2、过程与方法目标(1)经历探索平方差公式的过程,体会从特殊到一般、从具体到抽象的数学思维方法。

(2)通过对平方差公式的应用,提高学生的运算能力和解决问题的能力。

3、情感态度与价值观目标(1)在探索平方差公式的过程中,培养学生勇于探索、敢于创新的精神。

(2)通过小组合作学习,培养学生的团队合作意识和交流能力。

四、教学重难点1、教学重点平方差公式的结构特征和应用。

2、教学难点理解平方差公式的推导过程,正确运用平方差公式进行计算。

五、教法与学法1、教法(1)启发式教学法:通过设置问题情境,引导学生思考和探索,激发学生的学习兴趣。

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。

平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。

本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。

二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。

但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。

三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。

2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。

3.培养学生的逻辑思维能力,提高他们的数学解题能力。

四. 教学重难点1.掌握平方差公式的结构。

2.如何将实际的因式分解问题转化为平方差公式的形式。

五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。

六. 教学准备1.准备相关平方差公式的课件和教学素材。

2.准备一些实际的因式分解问题,用于课堂练习。

七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。

例如:已知多项式x^2 - 4,请将其因式分解。

让学生尝试解答,然后给出解答过程和答案。

2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。

通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。

3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。

5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿

湘教版数学七年级下册3.3《利用平方差公式进行因式分解》说课稿一. 教材分析湘教版数学七年级下册3.3《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。

平方差公式的引入,不仅能够帮助学生更好地理解代数式的运算,而且对于后续学习多项式的因式分解有着重要的意义。

教材从实际问题出发,引导学生发现并总结平方差公式,然后通过例题和练习题,让学生学会如何运用平方差公式进行因式分解。

教材的安排由浅入深,由易到难,符合学生的认知规律。

二. 学情分析学生在学习这一节之前,已经掌握了有理数的乘法、完全平方公式,对于代数式的运算有一定的理解。

但是,学生对于平方差公式的理解和运用,还需要通过实例和练习来进行深化。

学生的学习兴趣是学习的关键,为了激发学生的学习兴趣,我在教学中会尽量结合生活实际,让学生感受到数学与生活的联系,从而提高学生的学习积极性。

三. 说教学目标1.知识与技能目标:学生能够理解平方差公式的含义,并能够运用平方差公式进行因式分解。

2.过程与方法目标:通过观察、分析、归纳,学生能够自主发现并总结平方差公式,培养学生的观察能力和归纳能力。

3.情感态度与价值观目标:学生在解决实际问题的过程中,体验到数学的价值,增强学习数学的兴趣。

四. 说教学重难点1.教学重点:平方差公式的理解和运用。

2.教学难点:如何引导学生发现并总结平方差公式,以及如何运用平方差公式进行复杂的因式分解。

五. 说教学方法与手段在教学过程中,我将采用启发式教学法、分组合作学习法、案例分析法等多种教学方法,引导学生自主学习、合作学习、探究学习。

同时,我会利用多媒体教学手段,如PPT、视频等,来辅助教学,提高教学效果。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何对代数式进行因式分解,激发学生的学习兴趣。

2.探究:让学生分组讨论,观察、分析、归纳平方差公式的特点,引导学生自主发现并总结平方差公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平方差公式因式分解》说课稿
君山区采桑湖镇中心学校何秋元
一、说教材
1.教材的地位:因式分解是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

是后面学习分式通分和约分,二次根式的计算与化简,以及解方程等知识的基础。

因此分解因式这一章在整个教材中起到了承上启下的作用,而运用平方差公式分解因式是因式分解的重要组成部分。

2.教学目标:理解和掌握平方差公式的结构特征,会运用平方差公式进行因式分解。

培养学生自主探索、合作交流的能力。

培养学生观察、分析和创新能力,渗透整体思想。

让学生在合作学习的过程中体验成功的喜悦,从而增强学好数学的愿望和信心。

学生在前面已经学习了乘法公式中的平方差公式,在上一节课学习了提公因式法分解因式,初步体会了因式分解与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。

3.教学重点:会运用平方差公式因式分解。

4.教学难点:准确理解和掌握公式的结构特征,并善于运用平方差公式因式分解。

二、说教法
根据《课标》的要求,结合学生的认知特点,本堂课采用观察、讨论、小组合作、分析的方法,引导学生把握因式分解的基本思路,灵活地运用“整体(换元)”和“化归”思想把问题中的多项式转化适当的公
式形式。

三、说学法
为了提高学生学习兴趣,在学习中,我让学生通过探究学习、发现学习、研究学习、合作学习等方式,改变了学生原种“学而无思,思而无疑,疑而不问”的旧学习方式。

四、说教学程序
(一)探究新知
活动1:忆一忆
下列各式中能用平方差公式计算的是 ( )
A 、(2a+b )(a-b)
B 、(-2a+b)(-2a-b)
C 、(2a+b)(-2a-b)
D 、(2a+b) (a-2b)
2、填空:25x2=( )2, 162
m =( )2
0.09a2b4=( )2, 0.49(x+y)2=[ ]2
活动2:想一想(学生讨论)
同学们,你能很快得出992-1是100的倍数吗?你是怎么想出来的?
【设计意图】让学生感悟到整式乘法与因式分解的互逆关系,并能熟悉一些代数式能代表某个整式的平方。

同样也调动学生的学习兴趣。

(二)新知梳理
用平方差公式因式分解: a2-b2=(a+b )(a-b)
【设计意图】让学生探究、发现能用平方差公式因式分解的代数式所具备的特征,特别强调这里的a 和b 并不只是单独指数字、字母或单
项式,也可以是多项式。

(三)应用示例
例1:把25x2-4y2因式分解
分析:25x2=(5x)2,4y2=(2y)2,25x2-4y2=(5x)2-(2y)2,原式即可以用平方差公式进行因式分解。

解:25x2-4y2
=(5x)2-(2y)2
=(5x+2y)(5x-2y)
例2:把(x+y)2-(x-y)2因式分解。

分析:将(x+y)看成a,(x-y)看成b ,原式即可用平方差公式进行因式分解。

解(x+y)2-(x-y)2
=[(x+y)+(x-y)][ (x+y)-(x-y)]
=2x*2y
=4xy
点评:一个多项式,如果可以写成两个整体的平方的形式,且两个整体的符号相反,那么这个多项多则可以利用平方差公式因式分解。

例3:把x4-y4因式分解
解x4-y4
=(x2)2-(y2)2
=(x2+y2)(x2-y2)
=(x2+y2)(x+y)(x-y)
点评:在因式分解时,必须进行到每一个因式都不能分解为止。

例4:把x3y2-x5因式分解
分析:x3y2-x5有公因式x3,应先提出公因式,再进一步进行因式分解。

解x3y2-x5
=x3(y2-x2)
=x3(y+x)(y-x)
点评:1、本题关键是把多项式变形(提公因式),使之能用公式法进行因式分解。

2、要注意解答过程中正确地添括号和去括号,防止因符号错误而导致结果错误。

【设计意图】把每道例题作出分析与点评,使学生由浅入深地了解并运用平方差公式进行因式分解。

(四)课堂小结
【设计意图】使学生通过小组合作的形式,讨论并小结出本节课所学知识,从而让学生感受到一种成功的喜悦。

(五)学生练习,完成作业
【设计意图】通过下到小组查看学生的练习,了解学生的掌握情况,根据其实际情况,对症下药,进行点拨讲解。

让学生通过做作业,进一步巩固本节课所学知识。

相关文档
最新文档