平行四边形、矩形、菱形、正方形的定义、性质、判定
平行四边形的性质和判定 菱形梯形等腰梯形矩形正方形性质和判定
平行四边形的性质和判定菱形梯形等腰梯形矩形正方形性质和判定平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 .判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:顺次连接菱形各边中点为矩形正方形是特殊的菱形梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。
一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等等腰梯形的两条对角线相等等腰梯形判定:1两腰相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形.梯形的体积计算公式:V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
初中几何图形的定义、性质、判定
等腰三角形定义1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰性质2 等腰三角形的两个底角相等(简称“等边对等角”)3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴判定5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)等边三角形定义1 三边都相等的三角形是等边三角形。
性质2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质3 等边三角形的每个内角都等于60º4 等边三角形是锐角三角形5 等边三角形是轴对称图形,它有3条对称轴判定6 有一个角是60º的等腰三角形是等边三角形7 有两个角是60º的三角形是等边三角形直角三角形定义1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。
性质2 在直角三角形中,两个锐角互余。
3 直角三角形斜边上的中线等于斜边的一半4 直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)平行四边形定义1 在同一平面内,两组对边分别平行的四边形叫做平行四边形性质2 平行四边形是中心对称图形,对角线的交点是它的对称中心3 平行四边形的对边相等、对角相等、对角线互相平分判定4 一组对边平行且相等的四边形是平行四边形5 两条对角线互相平分的四边形是平行四边形6 两组对边分别相等的四边形是平行四边形7 两组对角分别相等的四边形是平行四边形8 一组对边平行,一组对角相等的四边形是平行四边形矩形定义1 有一个角是直角的平行四边形叫做矩形,通常叫长方形性质2 矩形是特殊的平行四边形,它具有平行四边形的一切性质3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 矩形的对角线相等,四个角都是直角判定5 对角线相等的平行四边形是矩形6 有一个角是直角的平行四边形是矩形7 有3个角是直角的四边形是矩形菱形定义1 一组邻边相等的平行四边形叫做菱形性质2 菱形是特殊的平行四边形,它具有平行四边形的一切性质3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 菱形的四条边相等5 菱形的对角线互相垂直并且每一条对角线平分一组对角6 S菱形=½×对角线的积判定7 四边都相等的四边形是菱形8 对角线互相垂直的平行四边形是菱形9 有一组邻边相等的平行四边形是菱形10 有一条对角线平分一组对角的平行四边形是菱形正方形定义1 有一组邻边相等并且有一个角是直角的平行四边形是正方形性质2 正方形具有矩形和菱形的性质3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点判定4 有一组邻边相等的矩形是正方形5 有一个角是直角的菱形是正方形梯形1 一组对边平行而另一组对边不平行的四边形是梯形2 梯形的中位线平行于两底,并且等于两底和得一半3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高等腰梯形定义1 两腰相等的梯形是等腰梯形性质2 等腰梯形是轴对称图形3 两条对角线相等4 等腰梯形的同一底上的两角相等判定5 同一底上的两个角相等的梯形是等腰梯形直角梯形1 有一个角是直角的梯形叫做直角梯形三角形全等1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
1.3平行四边形,矩形,菱形,正方形的性质和判定
第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。
记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。
∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。
例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。
求证:∠ADF=∠CBE。
例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。
例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。
例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。
菱形矩形平行四边形和正方形的判定和定理
菱形矩形平行四边形和正方形的判定和定理好嘞,今天咱们来聊聊菱形、矩形、平行四边形和正方形这几个几何形状,听起来有点儿像数学课上那些晦涩的定义,但其实它们可有趣多了,就像一场几何的聚会,各有各的特色和风采。
先说说正方形吧,正方形简直是几何界的小可爱,四条边一样长,四个角都直得像刚刚打过铅笔的直角,真是一个方方正正的小家伙。
你想啊,正方形的每一边都能相互“打招呼”,彼此对称,简直就像是一个和谐的小家庭,里面的每个成员都能友好相处。
不仅如此,正方形的对角线也是超级好玩,长短一致,交点正好是中心,真是“家有一老,如有一宝”的感觉。
正方形总是给人一种稳稳当当的安全感,想象一下,你的书桌上放着一张正方形的桌子,摆放整齐,工作起来心里也踏实多了。
再说矩形,这家伙有点像正方形的哥哥,四条边也是直的,不过它就喜欢长得不一样,长边短边各有不同,像极了那种总是和朋友们比拼身高的家伙,长得高高瘦瘦的。
矩形的对角线同样是一对好兄弟,长度相等,分担着各自的职责。
不过呢,矩形也常常被调侃,毕竟它的角虽然直,但不如正方形的可爱。
就像学校里的风云人物,有点儿高冷,但其实心里藏着许多故事。
很多时候,矩形在日常生活中扮演着重要角色,像窗户、门这样大方的形状,给我们的生活带来了便利。
说到平行四边形,哎呀,这个家伙可有意思了,四条边也齐刷刷的,不过对边平行,不同于正方形和矩形。
它就像个爱运动的年轻人,灵活多变,斜斜的看着世界,像在向你展示它的独特风采。
平行四边形的对角线不一定相等,但它的面积可不低。
用一个简单的公式,就能算出它的大小。
平行四边形就像是一种风格,不在乎外表,内涵才是最重要的。
就像那些看似不拘一格的人,反而往往更有魅力。
最后得提提菱形,嘿,这可真是个神奇的家伙。
菱形的四条边都是一样长的,就像是个四面体的明星,爱闪闪发光。
对角线相互垂直交叉,这简直像在跳舞,动感十足。
菱形的形状有点像菱角,水中漂浮,别有一番风味。
很多时候,我们会看到它在装饰中闪现,或者在图案中点缀,仿佛在告诉我们,生活需要点儿花样,别太单调。
矩形、菱形、正方形的性质及判定(四边形)
矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。
1.3平行四边形,矩形,菱形,正方形的性质和判定7
教学目标
1.复习矩形的定义,会证明矩形的判定定理; 2.会判定一个图形是矩形;
回忆
矩形的定义是什么? 有一个角是____的_______叫做矩形; 根据矩形的定义,要证明一个图形是矩形,必须 具备两个条件:1.是_____;2.有一个角是____; 书写格式;
矩形还有哪些判定方法?
1.对角线_____的________形是矩形; 2.有____个角是___角的_____形是矩形;
如何证明???
思路整理
如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
典型例题
例一;
练一练
练习一; 练习二(课本P23);
提高一下
例二;
小结
有一个角是____的_______叫做矩形; 对角线_____的________形是矩形; 有____个角是___角的_____形是矩形; 如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
平行四边形的定义及特殊四边形的性质及判定
平行四边形的定义及特殊四边形的性质及判定在我们的数学世界中,四边形家族里有一个非常重要的成员——平行四边形。
它不仅自身具有独特的性质,还衍生出了一些特殊的四边形,如矩形、菱形和正方形,它们各自有着与众不同的特点和判定方法。
接下来,让我们一起深入探索平行四边形以及这些特殊四边形的奥秘。
首先,咱们来聊聊平行四边形的定义。
简单来说,平行四边形就是两组对边分别平行的四边形。
想象一下,有一个四边形,它的上下两条边相互平行,左右两条边也相互平行,那它就是一个平行四边形啦。
平行四边形具有不少有趣的性质。
它的对边是相等的,也就是说,如果我们把平行四边形的上边和下边长度量一量,会发现它们是一样长的;左边和右边也是如此。
还有呢,它的对角也相等。
另外,平行四边形的两条对角线还会互相平分。
那怎么判定一个四边形是不是平行四边形呢?方法有好几种。
如果一个四边形的两组对边分别相等,那它就是平行四边形;或者两组对边分别平行,这也是平行四边形;再或者一组对边平行且相等,同样能判定它是平行四边形。
还有,如果它的对角线互相平分,那也是平行四边形。
接下来,咱们看看由平行四边形衍生出来的特殊四边形。
先说说矩形,矩形就是有一个角为直角的平行四边形。
矩形具有平行四边形的所有性质,同时还有自己独特的地方。
比如,矩形的四个角都是直角,而且矩形的两条对角线相等。
那怎么判定一个平行四边形是不是矩形呢?如果一个平行四边形有一个角是直角,那它就是矩形;或者对角线相等的平行四边形也是矩形。
再来说说菱形,菱形是一组邻边相等的平行四边形。
菱形的四条边都相等,对角线互相垂直且平分每组对角。
要判定一个平行四边形是不是菱形,可以看它的一组邻边是否相等;或者看它的对角线是否互相垂直;还可以看它的四条边是否都相等。
最后是正方形,正方形既是矩形又是菱形,它具有矩形和菱形的所有性质。
正方形的四条边相等,四个角都是直角,对角线互相垂直、平分且相等。
判定一个四边形是不是正方形,那就得看它是不是既是矩形又是菱形。
数学平行四边形、菱形、矩形、正方形的定理、性质、判定
1. 定义: 两组对边分别平行的四边形叫做平行四边形。
2.性质:⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角;②矩形的对角线相等 .注意:矩形具有平行四边形的一切性质 .判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 .菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .注意:菱形也具有平行四边形的一切性质 .判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(4).有一条对角线平分一组对角的平行四边形是菱形正方形的性质和判定定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径①四条边都相等的平行四边形是正方形②有一组临边相等的矩形是正方形③有一个角是直角的菱形是正方形梯形及特殊梯形的定义梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形的性质1、等腰梯形两腰相等、两底平行;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等;4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.平行四边形性质定理1 平行四边形的对角相等平行四边形性质定理2 平行四边形的对边相等且平行平行四边形性质定理3 平行四边形的对角线互相平分平行四边形判定定理1 两组对角分别相等的四边形是平行四边形平行四边形判定定理2 两组对边分别相等的四边形是平行四边形平行四边形判定定理3 对角线互相平分的四边形是平行四边形平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有一个角是直角的平行四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形正方形性质定理1正方形的四个角都是直角,四条边都相等正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形菱形判定定理3是对称轴图形的平行四边形是菱形。
1.3平行四边形,矩形,菱形,正方形的性质和判定2
名称),所以具备这类图形的所有性质,而且必定 有一个角是_____;
再回忆一下
除了由定义得到的性质,矩形还有哪些性质? 性质定理一:矩形的四个角都是________;
性质定理二:矩形的对角线__________;
如何证明????
典型例题
例一; 例二;
等边三角形的判定
定义:三边都_____三角形叫做等边三角形; 三个角都______的三角形是等边三角形; 有两个角是_____的三角形是等边三角形;
有一个角是600的______三角形是等边三角形
例三;
回头再看看
两组对边分别_____四边形叫做矩形;根据矩形
的定义可知,矩形一定是______(图形名称),所 以具备这类图形的所有性质,而且必定有一个角 是_____; 性质定理一:矩形的四个角都是________; 性质定理二:矩形的对角线__________; 等边三角形的判定;
1.3平行四边形形,矩形,菱 形,正方形的性质和判定2。
教学目标
1.复习矩形的定义;分清矩形与矩形的关系;
2.会证明矩形的性质,会利用性质解决有关的数
学问题;
动动脑,回忆一下
矩形的定义是什么? 有一个角是_____的平行四边形叫做矩形;
根据矩形的定义可知,矩形一定是______(图形
特殊的四边形(归纳)
特殊的平行四边形知识点一:矩形的定义要点诠释:有一个角是直角的平行四边形叫做矩形。
(嘿嘿嘿)知识点二:矩形的性质要点诠释:矩形具有平行四边形所有的性质。
此外,它还具有如下特殊性质:1.矩形的四个角都是直角;2.矩形的对角线相等;推论:直角三角形斜边上的中线等于斜边的一半。
3.矩形是轴对称图形也是中心对称图形。
知识点三:矩形的判定方法要点诠释:1. 用矩形的定义:一个角是直角的平行四边形是矩形;2.有三个角是直角的四边形是矩形;3.对角线相等的平行四边形是矩形;4.对角线互相平分且相等的四边形是矩形。
知识点四:菱形的定义要点诠释:有一组邻边相等的平行四边形叫做菱形.知识点五:菱形的性质要点诠释:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。
2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
知识点六:菱形的判定办法要点诠释:1.用菱形的定义:有一组邻边相等的平行四边形是菱形;2.四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;4.对角线互相垂直平分的四边形是菱形。
知识点七:正方形的定义要点诠释:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
知识点八:正方形的性质要点诠释:1.正方形的四个角都是直角,四条边都相等;2.正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角;3.正方形既是轴对称图形也是中心对称图形。
知识点九:正方形的判定方法要点诠释:1.正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2.有一组邻边相等的矩形是正方形;3.有一个角是直角的菱形是正方形.归纳整理,形成认知体系1.复习概念,理清关系2.集合表示,突出关系3.性质判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·两组对边分别平行;·两组对边分别相等;·一组对边平行且相等;·两组对角分别相等;·两条对角线互相平分.·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。
(完整版)平行四边形、矩形、菱形、正方形、等腰梯形的判定(教师)
平行四边形、矩形、菱形、正方形、等腰梯形的判定一、知识要点:(一).平行四边形的性质、判定:Ⅰ.平行四边形的性质边角对角线对称性平行四边形Ⅱ.平行四边形的判定:边的四边形是平行四边形角对角线(二).特殊四边形的性质、判定:Ⅰ.特殊四边形的性质边角对角线对称性面积公式矩形菱形正方形梯形直角梯形等腰梯形Ⅱ.特殊四边形的判定:是矩形是菱形是正方形是等腰梯形二、题型: (一)平行四边形: (Ⅰ) 性质的应用:1.(2012江苏苏州)如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的周长是 12 .GFEDCBA1题图 2题图 3题图2.(2012山东潍坊)如图,在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED ∥AB 交于BC 于点D ,则四边形BDEF 的周长是 24cm . 3.(2012重庆綦江县)如图,在□ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连结CG 、CF ,则以下四个结论一定正确的是( B )①△CDF ≌△EBC②∠CDF =∠EAF③△ECF 是等边三角形 ④CG ⊥AEA .只有①②B .只有①②③C .只有③④D .①②③④4.(2012青海西宁)如图1,在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是 3﹤x ﹤11 .4题图 5题图 5.(2011年桂林市、百色市)如图,□ABCD 中,AC ,BD 为对角线,ADCBQPOEDCBABC =6,BC 边上的高为4,则阴影部分的面积为( C ). A .3 B .6 C .12 D .24 (Ⅱ) 判定: ⑴选择条件型1.(2012 四川成都)已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( C )(A )6种 (B )5种 (C )4种 (D )3种 ⑵补充条件型2.(2012宁夏回族自治区)点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( C ) A .1个 B .2个 C .3个 D .4个 3.下面命题中,正确的是( D )A. 一组对角相等的四边形是平行四边形B. 一组对角互补的四边形是平行四边形C. 两组边分别相等的四边形是平行四边D. 两组对角分别相等的四边形是平行四边形. 4.(2011年广东)在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =5,AC =6.过D 点作DE ∥AC 交BC 的延长线于点E. (1)求△BDE 的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q. 求证:BP=DQ.解题思路:(1)∵四边形ABCD 是菱形,∴AB=BC=CD=AD=5,AC ⊥BD ,OB =OD ,OA =OC =3∴4OB =,BD =2OB=8 ∵AD ∥CE ,AC ∥DE ,∴四边形ACED 是平行四边形 ∴CE =AD =BC =5,DE =AC =6∴△BDE 的周长是:BD+BC+CE+DE =8+10+6=24.(2)证明:∵AD ∥BC ,∴∠OBP=∠ODQ ,∠OPD=∠OQD ∵OB=OD ,∴△BOP ≌△DOQ ,∴BP=DQ 。
平行四边形的定义及特殊四边形的性质及判定
平行四边形的定义及特殊四边形的性质及判定大家好,今天我们来聊聊平行四边形的定义及特殊四边形的性质及判定。
我们要明白什么是平行四边形。
平行四边形就是一个四边形,它的对边是平行的。
换句话说,如果一个四边形的两条相邻边分别平行于另外两条相邻边,那么这个四边形就是平行四边形。
接下来,我们来说说特殊四边形的性质及判定。
特殊四边形主要是指矩形、菱形和正方形这三种四边形。
它们都有一些特殊的性质和判定方法。
我们来看矩形。
矩形是一个特殊的平行四边形,它的所有角都是直角。
矩形有四个直角,所以它也是一个特殊的直角三角形。
矩形的对角线相等且互相平分。
我们可以通过勾股定理来判断一个三角形是不是矩形。
如果一个三角形的两条直角边的平方和等于斜边的平方,那么这个三角形就是一个矩形。
接下来,我们来说说菱形。
菱形是一个特殊的平行四边形,它的四条边都相等。
菱形的对角线互相垂直平分,而且每条对角线平分一组对角。
我们可以通过检查一个四边形的对角线是否互相垂直平分来判断它是不是菱形。
如果一个四边形的两条对角线互相垂直平分,那么这个四边形就是菱形。
我们来说说正方形。
正方形是一个特殊的矩形,它的所有边都相等,所有的角都是直角。
正方形既是矩形也是菱形,因为它的所有边都相等,所以它满足矩形的性质;同时它的所有角都是直角,所以它也满足菱形的性质。
正方形的对角线相等且互相平分,而且每条对角线平分一组对角。
我们可以通过检查一个四边形的所有边是否相等以及所有的角是否都是直角来判断它是不是正方形。
如果一个四边形的所有边都相等,所有的角都是直角,那么这个四边形就是正方形。
总结一下,平行四边形是一个具有两组平行边的四边形,而特殊四边形包括矩形、菱形和正方形这三种具有特殊性质的四边形。
矩形是一个特殊的平行四边形,它的所有角都是直角;菱形是一个特殊的平行四边形,它的四条边都相等;正方形是一个特殊的矩形,它的所有边都相等,所有的角都是直角。
我们可以通过检查一个四边形的对角线是否互相垂直平分、是否相等以及是否平分一组对角来判断它是不是特殊四边形。
平行四边形、矩形、菱形、正方形的定义、性质、判定
平行四边形定义:两组对边分别平行的四边形叫做平行四边形
平行四边形性质:对边平行且相等,对角相等,对角线互相平分
平行四边形判定:1、有一组对边平行且相等的四边形是平行四边形
2、两组对边分别平行的四边形是平行四边形
3、两组对边分别相等的四边形是平行四边形
4、对角线互相平分的四边形是平行四边形
矩形定义:有一个角是90°的平行四边形叫做矩形
矩形性质:1、四个角都是90°2、对角线相等
矩形判定:1、有一个角是90°的平行四边形是矩形
2、三个角都是90°的角是矩形
3、对角线相等的平行四边形是矩形
菱形定义:有一组邻边相等的平行四边形叫做菱形
菱形性质:1、四边相等2、对角线互相垂直
菱形判定:1、有一组邻边相等的平行四边形是菱形
2、四条边都相等的四边形是菱形
3、对脚线互相垂直的平行四边形是菱形
正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形
正方形性质:具有平行四边形、菱形、矩形的所有性质
正方形判定:1、有一组邻边相等且有一个角是直角的平行四边形是正方形
2、有一组邻边相等的矩形是正方形
3、有一个角是直角的菱形是正方形。
初三总复习 矩形、菱形、正方形的性质与判定
矩形、菱形、正方形一、本部分知识重点:矩形、菱形、正方形的定义,性质和判定是重点。
这三种图形都是特殊的平行四边形,它们都具备平行四边形的性质。
二、知识要点:(一)矩形:定义:有一个角是直角的平行四边形是矩形。
性质:1、具有平行四边形的性质;2、矩形的四个角都是直角;3、矩形的对角线相等。
4、矩形是轴对称图形,它有两条对称轴。
如图.判定:1、用定义判定。
2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形。
(二)菱形:定义:有一组邻边相等的平行四边形是菱形。
性质:1、具有平行四边形的性质;2、菱形的四条边相等;3、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形是轴对称图形,它有两条对称轴。
如图.判定:1、用定义判定;2、四边都相等的四边形是菱形。
3、对角线互相垂直的平行四边形是菱形。
(三)正方形:定义;有一组邻边相等并且有一个角是直角的平行四边形是正方形。
性质:正方形是特殊的菱形,又是特殊的矩形,所以它具备菱形和矩形的所有的性质。
正方形是轴对称图形,它有四条对称轴。
如图.判定:1、用定义判定;2、有一个角是直角的菱形是正方形;3、有一组邻边相等的矩形是正方形。
另外由矩形性质得到直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。
三、例题:例1,判断正误:(要判断一个命题是假命题,只需举一个反例即可)1、有三个角相等的四边形是矩形。
()分析:不正确。
反例:四边形ABCD中,∠A=∠B=∠C=850,∠D=1050,显然此四边形不是矩形。
2、对角线相等的四边形是矩形。
分析:不正确。
因为对角线不平分,未必是平行四边形。
反例:如图,四边形ABCD中,对角线AC=BD,但它不是矩形。
3、四个角都相等的四边形是矩形。
分析:正确。
因为四边形内角和等于3600,又知这四个内角都相等,所以每个内角为900,根据“有三个角是直角的四边形是矩形”即可得证。
4、对角线互相垂直的四边形是菱形。
平行四边形矩形菱形正方形的性质与判定
平行四边形、矩形、菱形、正方形的性质与判定(1)九年级数学备课组 课型:新授【学习目标】1、会证明平行四边形的性质定理及其相关结论2、能运用平行四边形的性质定理进行计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 【教学重、难点】重点:平行四边形的性质证明 表达格式的逻辑性 完整性 精炼性 难点:分析 综合 思考的方法 【情境创设】你能说说它们之间有什么联系与区别吗如图''''''//,//,//AB A B BC B C CA C A ,图中有______个平行四边形。
【合作交流】3241O DC B A活动1、上表中平行四边形的性质中,你能证明哪些性质 活动2、你认为平行四边形性质中,可以先证明哪一个为什么 活动3、证明定理“平行四边形对角线互相平分”。
【典题选讲】例1.已知,如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O , 求证:AO=CO ,BO=DO由此证明过程,同时也证明了定理“平行四边形对边相等”、“平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:平行四边形对边相等。
平行四边形对角相等。
平行四边形对角线互相平分。
例2、 证明“夹在两条平行线之间的平行线段相等”分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已知条件写出证明过程。
例3、已知:如图,□ ABCD 中,E 、F 分别是CD 、AB 的中点。
求证:AE=CF思考与表达怎样想 怎样写要证AO=CO ,BO=DO 只需证△AOB ≌△COD 只需证AB=CD 只需证△ABC ≌△CDAADCHB 1200【课堂练习】1、已知:如图,在平行四边形ABCD 中,AB =8cm ,BC =10cm ,∠C =1200,求BC 边上的高AH 的长; 求平行四边形ABCD 的面积3.平行四边形ABCD 的两条对角线AC 与BD 相交于O ,已知AB=8, BC=6,△AOB 的周长为18,求△AOD 的周长。
平行四边形、矩形、菱形、正方形知识点总结
平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2”表示平行四边形,例如:平行四边形记作ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形=⨯分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD 的三个角是直角. (2)识别菱形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab .③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h . 平行四边形 矩形 菱形 正方形图形性质1.对边 且 ;2.对角 ; 邻角 ;3.对角线 ;1.对边 且; 2.对角 且四个角都是; 3.对角线 ;1. 对边 且四条边都 ;2.对角 ;3.对角线 且每条对角线;1.对边 且四条边都 ;2.对角 且四个角都是 ;3.对角线 且每条对角线 ;面积。
正方形的性质及判定
1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.一、正方形的性质【例1】 正方形有 条对称轴.【例2】 已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形【例3】 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且20AE AF AF ⊥=,,则BE 的长为FE D CBA【例4】 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .正方形的性质及判定正方形菱形矩形平行四边形【例5】 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为【例6】 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =OFE DC BA【例7】 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA【例8】 如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例9】 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【例10】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【例11】 如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例12】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.GEHDFCBA【例13】 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例14】 如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【例15】 如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA【例16】 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【例17】 如图,过正方形顶点A 引AE BD ∥,且BE BD =.若BE 与AD 的延长线的交点为F ,求证DF DE =.GFEBDA【例18】 如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLDCB A【例19】 如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA【例20】 (2007年三帆中学期中考试)如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【例21】 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例22】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .【例23】 如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【例24】 如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.ABCDEF E 'GBO D CA QP【例25】 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA【例26】 如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证: DG DA =G FEC DBA【例27】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【例28】 如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF交于H ,求证:AH =正方形的边长.HEG CDF B A【例29】 把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例30】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【例31】 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF二、正方形的判定【例32】 四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.HEFG DCBA【例33】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【例34】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【例35】 如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDC BA【例36】 如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【例37】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE∆ 的面积为GFEDCB A【例38】 如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠= P 1PDC BA【例39】 如图,若在平行四边形ABCD 各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA【例40】已知:PA4PB=,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小.PDCBA。
初中平行四边形、菱形、矩形、正方形的判定及性质
一、平行四边形的判定:1. 两组对边分别平行的四边形是平行四边形;2. 两组对边分别相等的四边形是平行四边形;3. 两组对角分别相等的四边形是平行四边形;4. 对角线互相平分的四边形是平行四边形;5. 一组对边平行且相等的四边形是平行四边形;6.一组对边平行一组对角相等的四边形是平行四边形。
二、平行四边形的性质:1. 平行四边形对边平行且相等;2. 平行四边形两条对角线互相平分;3. 平行四边形的对角相等,邻角互补;4. 平行四边形是中心对称图形,对称中心是两条对角线的交点;5. 过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形;6. 平行四边形对角线把平行四边形面积分成四个全等三角形;7. 平行四边形的面积等于底乘高或对角线积的一半。
三、菱形的判定:1. 一组邻边相等的平行四边形是菱形;2. 四条边都相等的四边形是菱形;3. 对角线互相垂直的平行四边形是菱形;4. 对角线互相垂直平分的四边形是菱形。
四、菱形的性质:1. 菱形具备平行四边形的一切性质;2. 对角线互相垂直且平分;3. 四条边都相等;4. 每条对角线平分一组对角;5. 菱形是轴对称图形,对称轴是两条对角线。
五、矩形的判定:1. 有一个角是直角的平行四边形是矩形;2. 有三个角是直角的四边形是矩形;3. 四个角相等的四边形是矩形4. 对角线相等的平行四边形是矩形;5. 一组对角互补的平行四边形是矩形;6. 对角线互相平分且有一个内角是直角的四边形是矩形。
六、矩形的性质:1. 矩形具备平行四边形的一切性质;2. 矩形对角线相等;3. 矩形的四个内角都是90°;4. 矩形既是轴对称图形,也是中心对称图形。
七、正方形的判定:1. 有一个角是直角的菱形是正方形;2. 对角线相等的菱形是正方形;3. 有一组邻边相等的矩形是正方形;4. 对角线互相垂直的矩形是正方形;5. 四边相等,有一个角是直角的平行四边形是正方形;6. 一组邻边相等,有一个角是直角的平行四边形是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形定义:两组对边分别平行的四边形叫做平行四边形
平行四边形性质:对边平行且相等,对角相等,对角线互相平分
平行四边形判定:1、有一组对边平行且相等的四边形是平行四边形
2、两组对边分别平行的四边形是平行四边形
3、两组对边分别相等的四边形是平行四边形
4、对角线互相平分的四边形是平行四边形
矩形定义:有一个角是90°的平行四边形叫做矩形
矩形性质:1、四个角都是90°2、对角线相等
矩形判定:1、有一个角是90°的平行四边形是矩形
2、三个角都是90°的角是矩形
3、对角线相等的平行四边形是矩形
菱形定义:有一组邻边相等的平行四边形叫做菱形
菱形性质:1、四边相等2、对角线互相垂直
菱形判定:1、有一组邻边相等的平行四边形是菱形
2、四条边都相等的四边形是菱形
3、对脚线互相垂直的平行四边形是菱形
正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形正方形性质:具有平行四边形、菱形、矩形的所有性质
正方形判定:1、有一组邻边相等且有一个角是直角的平行四边形是正方形
2、有一组邻边相等的矩形是正方形
3、有一个角是直角的菱形是正方形。